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|. Finite Horizon: Numerical Methods



The system of PDEs

( O Au+ H(z,Vu) = Viml, in(0.T)xT.
\ Om ot OH
B + vAm + div (ma—p(a?, VU)) = 0, in (0,7) x T,

with the initial and terminal conditions

u(t =0) =Vym(t=0)], and m(T,x) =mp(z), InT,

and
m > 0, /m(t, x)dx = 1.
T



T unit torus of R
v >0

H i1s a smooth Hamiltonian (convex):

: L
H(x,p) = sup (p-v— L(z,7v)), with  lim inf (z,7) = 400

~ERY =0 @ |y

V and V/, are operators from the space of probability measures on T
Into a bounded set of Lipschitz functions on T such that

V' [m.,] converges uniformly on T to V'[m]| if m,, weakly converges to m.

Typical examples for V' include nonlocal smoothing operators.
Alternatively V' [m](t,x) = V(m(t, x)).

mr probability density on T.



The pde systems comes from passing to the limit in a finite horizon
Nash-equilibrium, where the cost of the player ¢ at time ¢ is

T ]

. 1
E LXIA)+V = 4y
/t (X2 %) N -1 &%

dS+V0

1 _
N—1 Z5X%
JFi

The N players initial conditions are random, independent, with the same

probability distribution m,, and

dX] = V2vdW} —v'dt, X,=a"€cT.



Finite difference schemes

Goal: use a (semi-)implicit finite difference scheme, robust when v — 0,
which guarantees existence, and possibly uniform bounds and
unigueness.

Take d = 2:

e Let T}, be auniform grid on the torus with mesh step h, and z;; be a
generic point in T},.

e Uniform time grid: At =T /Nrp, t,, = nAt.
e The values of v and m at (z; ;, t,) are resp. approximated by U"; and

Mn
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Notation:
e The discrete Laplace operator:

1

(ARW);ij = —73

(AWij = Wi = Wicj = Wij — Wij1).

e Right-sided finite difference formulas for 0, w(x; ;) and Orw(z; ;):

Wit1,j — Wi Wijr1 — Wi

(DY W), = and (D3 W);; =

h ’ h

e The set of 4 finite difference formulas at z; ;:

DW= ((DTW)M, (DY W)iz1,5, (D3 W) ;, (D;W)i,j—l)-



Discrete HIB equation

% — vAu + H(x,Vu) = V|m]
l

yrtt _pn.
,J SR V(AhUn+1)i,j + g(ll?z',ja [DhUnH]z’,j) — (Vh [Mn])w

At

g(zi,5, [DRU™ 5 5)
=g (fw,j, (DY U™ )5, (DTU )15, (DFU™), 5, (DJUnH)i,j—l),
e for instance,
(Vi M])i; = VImp|(z5),

calling m,, the piecewise constant function on T taking the value M; ;
In the square |z — x; ;|0 < h/2.



Classical assumptions on the discrete Hamiltonian ¢

(91,92,93,94) — 9 (2,491,492, 93, q4) -

e Monotonicity: ¢ is nonincreasing with respect to ¢; and g3 and
nondecreasing with respect to to ¢, and ¢4.

e Consistency:

g (x7Q17Q17QB7Q3> — H(:C7Q)7 Vo € T,\V/q = (Ql,Qg) < RQ.

o Differentiability: g is of class C!, and
0
52 (o s 00:00))| < OO ol + bl + e + o)

i ConveXity: (Q17 d2, 43, Q4> — g (CC, d1,42, 43, Q4> IS convex.



The discrete version of
H
%—T: + vAm + div (m%—p(m7 Vv)) = 0.

It is chosen so that

e each time step leads to a linear system with a matrix
— whose diagonal coefficients are negative,
— whose off-diagonal coefficients are nonnegative,

In order to hopefully use some discrete maximum principle.

e The argument for uniqueness should hold in the discrete case, so the
discrete Hamiltonian g should be used for (1) as well.
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Principle

Discretize
OH OH
— [ div [ m—(z,Vu) |w = m—xVu Vw
/11‘ ( Op ( )> Op ( )
by
h2 ZBi’j(U’ M)Wi,j T= h2 ZMi,jvqg(xi,jv [DhU]i,j) ’ [DhW]i,j7
i,j ,J

which leads to

0 0
[ Mg, i [DaUL) = Moty g (i, [DAULi5) )
%) 5,
. M1~ (i1, [DaUlig) — Mij~2 (24 5, [DuU): ;)
Bi (U, M) = =~ 85612 5 Oqo
h M ;=L (215, [DrUis) — My g1 = (251, [DnU]s 1)
_|_ 86]3 86]3 8
g
K +M; j11 dan (xi,j—Fl) [DhU]z J+1) - M’L,j8—q4(xz g [DhU]z ]) )

11



This yields the scheme:

urtt —ur. 1
©J ) V(AhUn+1)i,j + g(i 4, [DhUn+ ]’LJ) — (Vh[Mn])

At i\J
MM — M
0= 2J N + V(Ath)Z j
( Mi,] I (xz YR [DhU +1]z _]) Mz—l,] (xz 1,75 [DhU +1]z 1 j) \
6‘q1 6‘q1 8
FM g (@i 5 [DnU™ i ) = My 52 (g, [DAU™ i)
1 2
+E dg dg
M'Z?ja_%(x’bja [DhUn+1]z ]) zng 15,_(13(5’713 1 [Dh nH]w 1)
™ 0 0
n g n—+1 n g n+1
\ +M; 3+18—q4($z j+1, [DnU " Jij+1) — My (36]4 (g, (DU i) )

12



Classical discrete Hamiltonians g can be chosen.

For example, if the Hamiltonian is of the form
H(z,Vu) = $(z, |Vul),
a possible choice is the Godunov scheme
9(7,q1, 92,93, Ga) =

" (x /min(q1, 0)2 + max(ga, 0)2 + min(gs, 0)% + max(qa, 0)2) |

If 4»(x, w) is convex and nondecreasing w.r.t. w, then g is a convex function
of (g1, 92,43, q4); g 1S nonincreasing w.r.t. ¢; and g3 and nondecreasing
w.r.t. go and gy.

Finally, it can be proven that the global scheme is consistent if H is smooth
enough.

13



Existence for the discrete problem

Theorem Assume that M7 > 0 and that 22 )", . M;";" = 1. Under the
assumptions above on V, V{; and g, the discrete problem has a solution
and there is a Lipschitz estimate on U; uniform in n, h and At.

Strategy of proof

K=< (M )o<ij<n : h? ZMzg =1,M;; >0

2y

Apply Brouwer fixed point theorem to a well chosen mapping

X : JCNT — KT,

14



Proof: a fixed point method in KNT,
Stepl:amap®: (M"™), — (U"),.

Given (M;"T), define the map ®: (M™)o<n<ny € KN — (U™)o<n<ny

( n+1
urtt —ur.
< 1, N J V<AhUn+1)z',j 4+ 9(33z',j7 [DhUn+1]z',j) _ (Vh[MnDz‘,ja
X U’L'Oyj =W [mg](x%,j)

e EXxistence is classical: (Leray-Schauder fixed point theorem at each
time step, making use of the monotonicity of g, the uniform
boundedness assumption on V" and of H (-, 0)).

e Uniqueness stems from the monotonicity of g.

15



Step 2: estimates
e There exists a constant C' independent of (M™),, and A s.t.

Ul < C(A+T).

e The map ® is continuous, from the continuity of V" and well known
results on continuous dependence on the data for monotone schemes.

e There exists a constant L independent of (M™),, and h s.t.
HDhUnHoo < LT, Vn,

proved by using the assumption

dg

5 (41,02, 03,42)| < C(1+ |au| +az] + las| + laal)-

16



Step3: Amapyx: (M"), — (1\7”)77,

e Choose a positive constant 1 > 0 large enough.

e For (U™),, = ®((M™),,), backward linear parabolic problem for M™:

17

( MNT _ MNT’
MM — M . -
—pM;y; = —> At = —v(ARM™); pM;;
< 1 sz (CUZJ7[DhU +1]Z J) Mz—l,j_
— Oq1 oq1
+h AN 89 n+1 AN ag
M (T, [DhU " lig,y) — M
55 0 9y 0%
M7 =2 (@4, [DRU™ i ) — My =
+_ 86]3 8q3 a
h AN g n+1 AN g
\ +Mi i1y (Tij+1, (DU )i 1) — M5 54



From the previous estimates on (U™),,, one can find p large enough and
iIndependent of (M™),, such that the iteration matrix is the opposite of a
M-matrix, thus there is a discrete maximum principle.

Therefore, there exists a unique solution (M™),,.
Moreover,

M">0 = M">0, vn,
W2y, Mr=1 = Ry, M"=1 V.

Thus M™ € K for all n. Define the map

X : KNt s CNT,

—~—

(M™)o<neny — (M™)o<n<nr

18



Step 4: existence of a fixed point of y

From the boundedness and continuity of the mapping ®, and from the fact
that ¢ is C!, we obtain that y : V7 — KY7 is continuous.

From Brouwer fixed point theorem, y has a fixed point, which yields a
solution of the full system.

19



Uniqueness

Theorem Same assumptions as above on V, V{;, H and g. Assume also that
the operators V}, and 1}, 5, are strictly monotone, i.e.

—~— —~— —~—

(ValM] = Va[M), M =) <0 = Vi[M] = Va[M],
(vo,h[M] Vo M], M — M’)2 <0 = VoplM] = VoM.

The discrete problem has a unique solution.

Proof The choice of the scheme makes it possible to mimic the proof used
In the continuous case: uses the convexity and monotonicity assumptions on

g.

20



I1. Infinite Horizon: A numerical method

21



7

[ —v(ALM);;
dg dg
1 Mz’,ja_ql(ng, DU} 5) Mi—l,jﬁ—ql X
+Mit1, 5 (Tit1,5, [DrU]it+1,5) Mz,ja—
(9g (9g g2
1 Mi’jc‘?—qg(g”’ DU} 5) Mi,j—lﬁ—qg ’
h g g
Mi ) 7 3 D 7 Mz )
\ + M j+1 94 (x j+1 [ hU] ,J+1) ' 94
| Mi; >0
and

—V(ARrU)i,j + 9(xi 5, [DrUi ) + A = (Va[M]),

22
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Existence for the discrete problem: strategy of proof

e Use Brouwer fixed point theorem in the set of discrete probability
measures foramappingxy: M — U — M.

e Themap®: M — U consists of solving

—v(ARU); 5 + g(xi 5, (DU ) + A = (Vi [M]),
Zz’,j Uij =0

J 7

e (U, \) is obtained by considering the ergodic approximation:

~U(BaU )y + (@i g, [DAUW)i5) + pULS = (Va[M]), ;.
and passing to the limitas p — 0.

o We need estimates on U(¥) — U3 uniform in p and .

23



Difficulty

The proof of existence for the continuous problem used the estimate
|Vullo < C', which was obtained with the Bernstein method and the
assumption: there exists # € (0, 1) such that for |p| large,

OH 0
inf (| — - — H*? 0.
;relﬂr((‘?:c p+2y >>

Discrete case: this argument seems difficult to reproduce.

We had to make more restrictive assumptions on H and ¢ to obtain bounds
on || Dpul|oo uniformin h.

24



Assumptions on the Hamiltonian

H(z,p) = glgﬁ(p o — L(z, 04)),

where
e A is a compact subset of R?,

e Lisa(ClfunctiononT x A,

For the discrete Hamiltonian g(z, q)
e monotocity, consistency.
e continuous with respect to =, C! with respect to ¢
e sublinear with respect to ¢,
e there exists ¢> : R* — R monotonous and sublinear s.t.

lim,_.o sup, |eg(z, 1) — > (q)| = 0.

25



Estimates on the discrete ergodic approximation

Proposition (using Kuo-Trudinger(1992) and Camilli-Marchi(2008))
Consider a grid function V' and make the assumptions:

e as above for H and ¢
e ||Vl is bounded uniformly w.rt. h.

For any real number p > 0, there exists a unique grid function U? such that

pU? . — V(AhUp)i,j + Q(CITz‘,j, [DhUp]i,j) = Vij,

0,
and there exist two constants 4, 6 € (0,1) and C, C' > 0, uniform in h and p

S.L
UP(&) -UPE)| <OlE-¢°,  VEE €Ty

26



Proposition (using Krylov(2007) and Camilli-Marchi(2008))
Same assumptions as before, and furthermore

4
® g(¢7Q17Q27q37Q4) — Sup (Z(_aﬁ(xaﬂ)sﬁ + bﬁ(xaﬁ)qﬁ) _ f(xaﬁ)> ’
geB =1

with s; = s2 = (g1 — q2)/h, 53 = s4 = (g3 — q4)/h, a1 = a2 > 0 and
as = a4 > 0, by, ap and f are uniformly Lipschitz continuous w.r.t. x.
¢ || D1,V is bounded uniformly w.r.t h.

Then, for any real number p > 0, there exists a unique grid function U” s.t.
pU! . = v(ARU?)ij + g(xi g, [DhU")i5) = Vi,
and there exists a constant C', C' > 0, uniform in A and p s.t.

UP(€) —UP(E) <ClE=¢&, V& €T

27



Themap &: M — U

Proposition
Under the first set of assumptions, there exists a unique grid function U and
a real number )\ such that

—v(ArU )i j + g9(xi g, [DnUi ;) + X = (Va[M]),
Zi,j Uij =0,

and there exist two constants 4, 6 € (0,1) and C, C' > 0, uniformin & s.t.

J 7

UE)-UE) <ClE=¢€1°,  VEE Ty

Under the second set of assumptions,

U -UE)=ClE-¢, v eTh.

28



Existence and unigueness for the stationary problem

Theorem Under the above assumptions on V' and g, the discrete stationary
problem has at least a solution and we have either a uniform Holder or a
Lipschitz estimate on u;,, depending on the assumptions.

Uniqueness: Ok if

(Vh[M] — VM), M — ]\7)2 <0= M= M.

Remark Existence is still OK if for v > 1,

g(flj, q1,42,43, Q4) > &((Q1)2_ + (q2)3_ + (Q?,)Z_ + (Q4)3_)’Y/2 — C,

but no bounds on u;, uniform in A.

29



Convergenceas h — 0

The same method used for uniqueness can be used for proving convergence
of the discrete scheme under some assumptions on consistency and stronger
assumptions on V.

Example
If there exist s > 0 such that

IS
o0

W (ValM] = VA[M], M = M) = e Va[M] = Vi[M]

then uniform convergence for u, convergence of A and a convergence
related to V' for m.

Uses the HOlder or Lipschitz estimates on Uj, uniform w.r.t. h.

30



The case when V' is a local operator

Vim|(z) = F(m(z), ),

Same assumptions on H, g as above.
e EXxistence for the discrete problem: OK

e If Fis abounded and C! function on R x T, uniform bounds for some
Holder norm of wy,.

31



[11. Infinite Horizon: long time approximation

32



Long time approximation (Eductive strategy, see Guéant-Lasry)

2—? —vAu+ H(x,Vu) = V|m]|,
i H
9 %—TZ — vAm — div (m%—p(:p, V&)) = 0,
\ uw(0,z) = ao(z), m0,2z) = mo(x),
with fT mo = 1 and mo > 0.
We expect that
tlim (u(t, ) — At) = u(x), 1tlim m(t,zr) = m(x),

Same thing at the discrete level.

We use a semi-implicit linearized scheme. It requires the numerical solution
of a linearized problem. Linearizing must be done carefully and is not
always possible. In such cases, an explicit method can be used.

33
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Vim|(z) = F(m(z)) = —log(m(x)).

Same Hamiltonian as before. We now take v = 0.1.

cooo
o

O
[¢)

=
~

cooo!

left: u, right m.
The measure mj, concentrates near the minimum of uy,.
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Deterministic limitv — 0

Theorem (Lasry-Lions)
If

e H(x,p) > H(x,0) =0,
o V|m] = F(m)+ fo(x) where F' > 0,

then
lim (A, m,) = (A, m),

r—0

where

+
and

m(z) = (F7 (A = fo(2)))

41



v = 0.001,
H(z,p) = |p",
V[m](z) = 4 cos(4rx) + m(x)
a N T

left: u, right m.
The supports of Vu and of m tend to be disjoint.
m(x) ~ (A — 4cos(4mx))™

42



A nonlocal operator V
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V. Finite Horizon: a Newton method
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Difficulty: time dependent problem with conditions at both initial and final
times

I
f=

FoU, M) = 0,
FuU, M)

Solution procedure: Newton method

utt o\ [ u [ Avo UMY Auu (U M) Fo U, M)
M M Anro (UL, MY Ay (UE, M) Far (U, MY

where

AvvU,M) = DyFulU, M), AvmU, M) = DpFuUU, M),
DUfM(uaM)v AM,M(uaM) — DMfM(UvM)

o
<
=
<
<
]
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The linear systems
The most time consuming part of the procedure lies in solving the systems

Avv Auwm U Gy
Amvu Awmwm M Gy

The matrices Ay ¢y and Ay have the form

I 0 0 Eg O
1 . .
_A_tI D1 . . El 0
vy 0 : : : . UM 0 Eo
—2azl DNp—1 0
1
0 0 -a3!  Dng o ... 0 En,

The block D,, correponds to the discrete operator
(Zi,j) = (Zij/ At —v(ApZ)i; + [DnZlij - V(@i , [DnU"]i5)).
Monotonicity = D,, is a M-matrix, thus A is invertible.
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The matrices Ay and Ay have the form

pT a1 0 0 0 E; 0 0
T 1 ~
A - : 3 3 3 Ay =
M M _ . . . 0 MU 0
. T 1 ~
. DR —ap! En.
0 0 I 0 0
Note that

VIE,W = ZM” "DypV0ij - D2 g(i 5, [DRU™: ;) [Da W] ;.

,J

From the convexity of g, ., is positive if M1 > 0.
Th. If V is strictly monotone and if A/”~! > 0, then the Jacobian matrix

Avv Auwm . .
IS Invertible.

Amu Awmm
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The chosen procedure is as follows:

1. solve first Ay ;U = Gy. This is done by sequentially solving
Dkﬁk = —Lkﬁk_l + Glf], (1)

I.e. marching in time in the forward direction. (1) are solved with
efficient direct solvers.

~

2. Introducingd = U — U,

Avv Auvwm U 0
Avv Amum M Gy — Ayl

which implies

(AM,M — AM,UA(_]}UAU,M> M=Gp — AM,Ua- (2)

(2) is solved by an iterative method, e.g. BiCGStab.
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v=1 T=1, At=h=1/50,

m(T) =1
H(x,p) = sin(2mrxy) + sin(2wx1) + cos(4mzy) + |p|?,
F(xz,m) =m?, Vo[m](x) = m* 4 cos(mxy) cos(mxs).
le+06 "../conv_newton Nul" =——— 1000 "conv_bi cgstab_nul" =———
10000 A 100
100 10 N
| BN
1
0.1
0. 01 0 o1
0. 0001 0. 001
le- 06 0. 0001
0 2 4 6 8 10 12 14 16 0 5 10 15 20 25

Convergence of the Newton method(left) and of a linear solver (right)
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Same test except

100
10

0.1
0.01
0. 001
0. 0001
le-05

v = 0.01,

"conv_newt on" =—

\

N

1000

100

10

1

0.1

0.01

0.001

0. 0001

le-05

At = 1/200.

"conver gence_Bi cgst ab_nu=0. 01" ——

0 10 20 30 40 50 60 70 80 90 100

Convergence of the Newton method(left) and of a linear solver (right)
500, 000 m unknowns in the nonlinear system.
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V. Optimal planning problem

( % —vAu+ H(x,Vu) = V(m(x)), in (0,7) x T,
\
\ %—T + vAm + div (m%—[;(:c, Vu)) = 0, in (0,T) x T,

with the initial and terminal conditions
m(oa LE) — mO(Qj)a m(Ta QZ‘) — mT(x)v in T,

and
m > 0, /m(t, x)dx = 1.
T
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T unit torus of R¢
v >0

H i1s a smooth Hamiltonian (convex):

H(x,p) = sup (p-v— L(z,7)), with
vER?

V : R — R is a smooth function

mgo and mq are probability densities on T.

=Y

lim inf
|y| =00 @

L(z,7)
il

= +00



Existence results (P-L. Lions)

Ok if v = 0, If H coercive, if V Is a strictly increasing function and if
mgo and m are smooth positive functions.

OKif v =0, if V = 0 (optimal transport) and if mq and m are
smooth positive functions.

Ok if v > 0 and if H(p) = v|p|?, if V is a strictly increasing function
and if mg and m7 are smooth positive functions.

If v > 0and H(p) # v|p|* ?

Non-existence if H is sublinear, my % m and T" small enough.
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Optimal control approach
Assumption: V = W' where W : R — R is a strictly convex function.

A weak form of the MFG system can be found by considering the optimal
control problem:

minimize (m, ) H/o /]T[m(t,;r;)L(w,v(t,x))—I—W(m(t,x))} dt dz,

subject to the constraints

[ Oym + vAm + div(m~) = 0, in(0,T)x T,
\ m(T,x) = mp(x) InT,
\ m(0,z) = mg(x) InT.

This approach does not work completely, i.e. one may find the existence of
a pair (m, z ~ ~ym), but the question is to recover the MFG system.
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The semi-implicit scheme

( gt _pn
= A7 L — v( AU g+ (@i, [DRU i) = V(ME),
ML
< 1,7 At 1,] 4+ V(Ath)i’j i Bi,j(Un—i_l,Mn) _ 0,
MY e K,
\ MZ-ZE-T = (m7)ij, MP: = (mo)i;.

We will see that convex programming yields the existence of (M, U) under
rather general assumptions.
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Existence of (M, U) via convex programming

Theorem:

If
e V = W' where W is a strictly convex and coercive C? function.

e The discrete Hamiltonian Is convex and coercive:

lim 9(5’7761174127(137(]4) _ lim g(x7Q17QQ7Q37Q4) — 400,
g1 — — 00 g1 | g2——+00 q2

lim g(xaqla(JQac_ZB)C_M) _ lim g(x,ql,qQ,C_Z?,,C_M) = “400.
g3 — — 00 ‘q;g‘ q4—+00 44

® Mg, M € JC with (mo)i,j > 0,

then a solution of the discrete MFG system can be found by solving a
saddle-point problem. The primal problem is the discrete analogue of the

optimal control of pdes problem above.
Moreover M is unique (same usual proof).
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Proof
e Call x the indicator function of the set R..
e Call © the convex and continuous functional:

O, 8) = Y (W+x)"(af; +glwi;. [8":5)).

n=1 12,3
where o = ('), B8 = ([8":,;) and [, ; = (B, B2, B0, B0,
e The cost function of the primal problem is defined as
Nr—1
O (M, Z)= Y Y (W+x)(M
n=0 1,3
]NT 1
T Sup { SO A28 i) — Mg (s, [5"“]@;’)}-
n=0 1,j

e Here o~ Oyu —vAu, (B ~Vu, Z~mn.
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The primal problem is to

minimize ©* (M, Z) subject to the constraint

= _Aiwznj 1 +v(AM™ )+ divi(Z2™7Y);; = 0, 1<n< N,
) MM = (mr)iy,

\ MP: = (mo)iy,
where

diva(Z)i,j = (DY Z")i-1,j + (D Z%)i5 + (D3 Z°)i j—1 + (D3 Z%)i .

This is an optimal control problem for a discrete density driven by a discrete
Fokker-Planck equation.
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Convex programming

The primal problem can be written: minimize ©* (M, Z)+>"(—M,—7),

where :
( F(U) ifdv st (a,0) = A(¥) and Z\If
Y(a, B) = 4
|+ otherwise.
with
( n+1 n
prtl _gn
n+l 2% LI n+1y
(a,3) = A(T) & Qij = Y, V(AP 5,
\ 8", = [Dp¥" i, 0<n < Np,
and

N
E mo,; ;W g mT”\IJ T



Lemma: constraint qualifications
e © and X are convex and resp. continuous, LSC and there exists (¢, 3)

such that

~

(&, B) < +o0.

e ©* and ©* are convex and LSC and there exists (M, Z) such that

—~— ~

O*(M,Z) < +oo, Y*(—M,—Z) < +oo,

©* is continuous near M, Z.
Fenchel-Rockafeller duality theorem There exists a saddle point:
min (0 + X) = —min(0* (M, Z2) + (- M, - Z)).
Optimality conditions for the saddle point— the discrete MFG.

65



Open question Find bounds on M and U independent of h, At.
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A penalized scheme

([ pentl _pen
1,7 At (V. V(AhUe’n_i_l)i,j 1+ g(%’,j, [DhUe’n+1]i,j) — V (
e,n+1 €,n
\ M’i,j o Mi,j €,n e,n+1 €,n _
A + V(AhM )z’,j + B@',j(U , M ) = 0,
\ M e K,

with the final time and initial time conditions

1
U = (MY = (mo)iy), MO = (mp)i;, V0<i,j< Ny

i,j c i,] 1,]
Theorem As ¢ — 0, M€ — M, given by the discrete MFG system.
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T=1,v=1V(m)=m? H(p) = sin(2rz2) + sin(2rx1) + cos(4rwx1) + |p|*
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T =0.01,v = 0.1, H(p) = sin(2nx2) + sin(2wx1) + cos(4rz1) + |p|°
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T =0.1,vr=0.125,V(m) = — log(m)

TEE]
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