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I. Finite Horizon: Numerical Methods
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The system of PDEs





∂u

∂t
− ν∆u+H(x,∇u) = V [m], in (0, T ) × T,

∂m

∂t
+ ν∆m+ div

(
m
∂H

∂p
(x,∇u)

)
= 0, in (0, T ) × T,

with the initial and terminal conditions

u(t = 0) = V0[m(t = 0)], and m(T, x) = mT (x), in T,

and

m ≥ 0,

∫

T

m(t, x)dx = 1.
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• T unit torus of R
d

• ν ≥ 0

• H is a smooth Hamiltonian (convex):

H(x, p) = sup
γ∈Rd

(p · γ − L(x, γ)) , with lim
|γ|→∞

inf
x

L(x, γ)

|γ| = +∞

• V and V0 are operators from the space of probability measures on T

into a bounded set of Lipschitz functions on T such that

V [mn] converges uniformly on T to V [m] if mn weakly converges to m.

Typical examples for V include nonlocal smoothing operators.

• Alternatively V [m](t, x) = V (m(t, x)).

• mT probability density on T.
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The pde systems comes from passing to the limit in a finite horizon

Nash-equilibrium, where the cost of the player i at time t is

E



∫ T

t


L(Xi

s, γ
i
s) + V


 1

N − 1

∑

j 6=i

δXj
s




 ds+ V0


 1

N − 1

∑

j 6=i

δXj
T






The N players initial conditions are random, independent, with the same

probability distribution m◦, and

dXi
t =

√
2νdW i

t − γidt, Xi
0 = xi ∈ T.
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Finite difference schemes

Goal: use a (semi-)implicit finite difference scheme, robust when ν → 0,
which guarantees existence, and possibly uniform bounds and
uniqueness.

Take d = 2:

• Let Th be a uniform grid on the torus with mesh step h, and xij be a

generic point in Th.

• Uniform time grid: ∆t = T/NT , tn = n∆t.

• The values of u and m at (xi,j , tn) are resp. approximated by Un
i,j and

Mn
i,j .
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Notation:
• The discrete Laplace operator:

(∆hW )i,j = − 1

h2
(4Wi,j −Wi+1,j −Wi−1,j −Wi,j+1 −Wi,j−1).

• Right-sided finite difference formulas for ∂1w(xi,j) and ∂2w(xi,j):

(D+
1 W )i,j =

Wi+1,j −Wi,j

h
, and (D+

2 W )i,j =
Wi,j+1 −Wi,j

h
.

• The set of 4 finite difference formulas at xi,j :

[DhW ]i,j =
(
(D+

1 W )i,j, (D
+
1 W )i−1,j, (D

+
2 W )i,j, (D

+
2 W )i,j−1

)
.
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Discrete HJB equation

∂u

∂t
− ν∆u+H(x,∇u) = V [m]

↓
Un+1

i,j − Un
i,j

∆t
− ν(∆hU

n+1)i,j + g(xi,j , [DhU
n+1]i,j) = (Vh[Mn])i,j

•
g(xi,j , [DhU

n+1]i,j)

=g
“
xi,j , (D

+

1 U
n+1)i,j , (D

+

1 U
n+1)i−1,j , (D

+

2 U
n+1)i,j , (D

+

2 U
n+1)i,j−1

”
,

• for instance,

(Vh[M ])i,j = V [mh](xi,j),

calling mh the piecewise constant function on T taking the value Mi,j

in the square |x− xi,j |∞ ≤ h/2.

8



Classical assumptions on the discrete Hamiltonian g

(q1, q2, q3, q4) → g (x, q1, q2, q3, q4) .

• Monotonicity: g is nonincreasing with respect to q1 and q3 and
nondecreasing with respect to to q2 and q4.

• Consistency:

g (x, q1, q1, q3, q3) = H(x, q), ∀x ∈ T, ∀q = (q1, q3) ∈ R
2.

• Differentiability: g is of class C1, and
∣∣∣∣
∂g

∂x

(
x, (q1, q2, q3, q4)

)∣∣∣∣ ≤ C(1 + |q1| + |q2| + |q3| + |q4|).

• Convexity: (q1, q2, q3, q4) → g (x, q1, q2, q3, q4) is convex.
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The discrete version of

∂m

∂t
+ ν∆m+ div

(
m
∂H

∂p
(x,∇v)

)
= 0. (†)

It is chosen so that

• each time step leads to a linear system with a matrix

– whose diagonal coefficients are negative,

– whose off-diagonal coefficients are nonnegative,

in order to hopefully use some discrete maximum principle.

• The argument for uniqueness should hold in the discrete case, so the
discrete Hamiltonian g should be used for (†) as well.
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Principle
Discretize

−
∫

T

div

(
m
∂H

∂p
(x,∇u)

)
w =

∫

T

m
∂H

∂p
(x,∇u) · ∇w

by

h2
∑

i,j

Bi,j(U,M)Wi,j := h2
∑

i,j

Mi,j∇qg(xi,j , [DhU ]i,j) · [DhW ]i,j,

which leads to

Bi,j(U, M) =
1

h

0
BBBBBBBB@

0
B@

Mi,j
∂g

∂q1

(xi,j , [DhU ]i,j) − Mi−1,j
∂g

∂q1

(xi−1,j , [DhU ]i−1,j)

+Mi+1,j
∂g

∂q2

(xi+1,j , [DhU ]i+1,j) − Mi,j
∂g

∂q2

(xi,j , [DhU ]i,j)

1
CA

+

0
B@

Mi,j
∂g

∂q3

(xi,j , [DhU ]i,j) − Mi,j−1

∂g

∂q3

(xi,j−1, [DhU ]i,j−1)

+Mi,j+1

∂g

∂q4

(xi,j+1, [DhU ]i,j+1) − Mi,j
∂g

∂q4

(xi,j , [DhU ]i,j)

1
CA

1
CCCCCCCCA

,
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This yields the scheme:

Un+1

i,j − Un
i,j

∆t
− ν(∆hU

n+1)i,j + g(xi,j , [DhU
n+1]i,j) = (Vh[Mn])i,j

0 =
Mn+1

i,j − Mn
i,j

∆t
+ ν(∆hM

n)i,j

+
1

h

0
BBBBBBBBBBB@

0
B@

M
n
i,j

∂g

∂q1

(xi,j , [DhU
n+1]i,j) − M

n
i−1,j

∂g

∂q1

(xi−1,j , [DhU
n+1]i−1,j)

+M
n
i+1,j

∂g

∂q2

(xi+1,j , [DhU
n+1]i+1,j) − M

n
i,j

∂g

∂q2

(xi,j , [DhU
n+1]i,j)

1
CA

+

0
B@

M
n
i,j

∂g

∂q3

(xi,j , [DhU
n+1]i,j) − M

n
i,j−1

∂g

∂q3

(xi,j−1, [DhU
n+1]i,j−1)

+M
n
i,j+1

∂g

∂q4

(xi,j+1, [DhU
n+1]i,j+1) − M

n
i,j

∂g

∂q4

(xi,j , [DhU
n+1]i,j)

1
CA

1
CCCCCCCCCCCA
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Classical discrete Hamiltonians g can be chosen.

For example, if the Hamiltonian is of the form

H(x,∇u) = ψ(x, |∇u|),

a possible choice is the Godunov scheme

g(x, q1, q2, q3, q4) =

ψ
(
x,
√

min(q1, 0)2 + max(q2, 0)2 + min(q3, 0)2 + max(q4, 0)2
)
.

If ψ(x,w) is convex and nondecreasing w.r.t. w, then g is a convex function
of (q1, q2, q3, q4); g is nonincreasing w.r.t. q1 and q3 and nondecreasing
w.r.t. q2 and q4.

Finally, it can be proven that the global scheme is consistent if H is smooth
enough.
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Existence for the discrete problem

Theorem Assume that MNT ≥ 0 and that h2
∑

i,j M
NT

i,j = 1. Under the
assumptions above on V , V0 and g, the discrete problem has a solution
and there is a Lipschitz estimate on Un

h uniform in n, h and ∆t.

Strategy of proof

K =



(Mi,j)0≤i,j<N : h2

∑

i,j

Mi,j = 1,Mi,j ≥ 0



 .

Apply Brouwer fixed point theorem to a well chosen mapping

χ : KNT −→ KNT ,

(Mn)n → (Un)n → (Mn)n.
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Proof: a fixed point method in KNT ,

Step 1: a map Φ : (Mn)n → (Un)n.

Given (MNT

i,j ), define the map Φ: (Mn)0≤n<NT
∈ KNT → (Un)0≤n≤NT

:




Un+1
i,j − Un

i,j

∆t
− ν(∆hU

n+1)i,j + g(xi,j , [DhU
n+1]i,j) = (Vh[Mn])i,j ,

U0
i,j = V0[m

0
h](xi,j).

• Existence is classical: (Leray-Schauder fixed point theorem at each

time step, making use of the monotonicity of g, the uniform

boundedness assumption on V and of H(·, 0)).

• Uniqueness stems from the monotonicity of g.
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Step 2: estimates
• There exists a constant C independent of (Mn)n and h s.t.

‖Un‖∞ ≤ C(1 + T ).

• The map Φ is continuous, from the continuity of V and well known

results on continuous dependence on the data for monotone schemes.

• There exists a constant L independent of (Mn)n and h s.t.

‖DhU
n‖∞ ≤ LT, ∀n,

proved by using the assumption
∣∣∣∣
∂g

∂x
(x, q1, q2, q3, q4)

∣∣∣∣ ≤ C(1 + |q1| + |q2| + |q3| + |q4|).
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Step 3: A map χ : (Mn)n → (M̃n)n

• Choose a positive constant µ > 0 large enough.
• For (Un)n = Φ((Mn)n), backward linear parabolic problem for M̃n:
8
>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

fMNT = MNT ,

−µM
n
i,j =

fMn+1

i,j − fMn
i,j

∆t
− ν(∆h

fMn)i,j − µfMn
i,j

+
1

h

0
B@

fMn
i,j

∂g

∂q1

(xi,j , [DhU
n+1]i,j) − fMn

i−1,j
∂g

∂q1

(xi−1,j , [DhU
n+1]i−1,j)

+fMn
i+1,j

∂g

∂q2

(xi+1,j , [DhU
n+1]i+1,j) − fMn

i,j
∂g

∂q2

(xi,j , [DhU
n+1]i,j)

1
CA

+
1

h

0
B@

fMn
i,j

∂g

∂q3

(xi,j , [DhU
n+1]i,j) − fMn

i,j−1

∂g

∂q3

(xi,j−1, [DhU
n+1]i,j−1)

+fMn
i,j+1

∂g

∂q4

(xi,j+1, [DhU
n+1]i,j+1) − fMn

i,j
∂g

∂q4

(xi,j , [DhU
n+1]i,j)

1
CA
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From the previous estimates on (Un)n, one can find µ large enough and
independent of (Mn)n such that the iteration matrix is the opposite of a
M-matrix, thus there is a discrete maximum principle.

Therefore, there exists a unique solution (M̃n)n.
Moreover,

Mn ≥ 0 ⇒ M̃n ≥ 0, ∀n,
h2
∑

i,j M
n = 1 ⇒ h2

∑
i,j M̃

n = 1, ∀n.

Thus M̃n ∈ K for all n. Define the map

χ : KNT 7→ KNT ,

(Mn)0≤n<NT
→ (M̃n)0≤n<NT
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Step 4: existence of a fixed point of χ

From the boundedness and continuity of the mapping Φ, and from the fact

that g is C1, we obtain that χ : KNT 7→ KNT is continuous.

From Brouwer fixed point theorem, χ has a fixed point, which yields a

solution of the full system.
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Uniqueness

Theorem Same assumptions as above on V , V0, H and g. Assume also that

the operators Vh and V0,h are strictly monotone, i.e.
(
Vh[M ] − Vh[M̃ ],M − M̃

)
2
≤ 0 ⇒ Vh[M ] = Vh[M̃ ],

(
V0,h[M ] − V0,h[M̃ ],M − M̃

)
2
≤ 0 ⇒ V0,h[M ] = V0,h[M̃ ].

The discrete problem has a unique solution.

Proof The choice of the scheme makes it possible to mimic the proof used

in the continuous case: uses the convexity and monotonicity assumptions on

g.
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II. Infinite Horizon: A numerical method
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8
>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

−ν(∆hU)i,j + g(xi,j , [DhU ]i,j) + λ = (Vh[M ])i,j ,
0
BBBBBBBBBBB@

−ν(∆hM)i,j

−
1

h

0
B@

Mi,j
∂g

∂q1

(xi,j , [DhU ]i,j) − Mi−1,j
∂g

∂q1

(xi−1,j , [DhU ]i−1,j)

+Mi+1,j
∂g

∂q2

(xi+1,j , [DhU ]i+1,j) − Mi,j
∂g

∂q2

(xi,j , [DhU ]i,j)

1
CA

−
1

h

0
B@

Mi,j
∂g

∂q3

(xi,j , [DhU ]i,j) − Mi,j−1

∂g

∂q3

(xi,j−1, [DhU ]i,j−1)

+Mi,j+1

∂g

∂q4

(xi,j+1, [DhU ]i,j+1) − Mi,j
∂g

∂q4

(xi,j , [DhU ]i,j)

1
CA

1
CCCCCCCCCCCA

= 0,

Mi,j ≥ 0,

and

h2
∑

i,j

Mi,j = 1, and
∑

i,j

Ui,j = 0.
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Existence for the discrete problem: strategy of proof

• Use Brouwer fixed point theorem in the set of discrete probability

measures for a mapping χ : M → U →M .

• The map Φ : M → U consists of solving




−ν(∆hU)i,j + g(xi,j , [DhU ]i,j) + λ = (Vh[M ])i,j ,∑
i,j Ui,j = 0

• (U, λ) is obtained by considering the ergodic approximation:

−ν(∆hU
(ρ))i,j + g(xi,j , [DhU

(ρ)]i,j) + ρU
(ρ)
i,j = (Vh[M ])i,j ,

and passing to the limit as ρ→ 0.

• We need estimates on U (ρ) − U
(ρ)
0,0 uniform in ρ and h.
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Difficulty
The proof of existence for the continuous problem used the estimate

‖∇u‖∞ ≤ C, which was obtained with the Bernstein method and the

assumption: there exists θ ∈ (0, 1) such that for |p| large,

inf
x∈T

(
∂H

∂x
· p+

θ

2ν
H2

)
> 0.

Discrete case: this argument seems difficult to reproduce.

We had to make more restrictive assumptions on H and g to obtain bounds

on ‖Dhu‖∞ uniform in h.
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Assumptions on the Hamiltonian

H(x, p) = max
α∈A

(
p · α− L(x, α)

)
,

where

• A is a compact subset of R
2,

• L is a C0 function on T ×A,

For the discrete Hamiltonian g(x, q)

• monotocity, consistency.

• continuous with respect to x, C1 with respect to q

• sublinear with respect to q,

• there exists g∞ : R
4 → R monotonous and sublinear s.t.

limε→0 supx

∣∣εg(x, q
ε ) − g∞(q)

∣∣ = 0.
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Estimates on the discrete ergodic approximation

Proposition (using Kuo-Trudinger(1992) and Camilli-Marchi(2008))

Consider a grid function V and make the assumptions:

• as above for H and g

• ‖V ‖∞ is bounded uniformly w.r.t. h.

For any real number ρ > 0, there exists a unique grid function U ρ such that

ρUρ
i,j − ν(∆hU

ρ)i,j + g(xi,j , [DhU
ρ]i,j) = Vi,j ,

and there exist two constants δ, δ ∈ (0, 1) and C, C > 0, uniform in h and ρ

s.t.

|Uρ(ξ) − Uρ(ξ′)| ≤ C|ξ − ξ′|δ, ∀ξ, ξ′ ∈ Th.
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Proposition (using Krylov(2007) and Camilli-Marchi(2008))
Same assumptions as before, and furthermore

• g(x, q1, q2, q3, q4) = sup
β∈B

(
4∑

`=1

(−a`(x, β)s` + b`(x, β)q`) − f(x, β)

)
,

with s1 = s2 = (q1 − q2)/h, s3 = s4 = (q3 − q4)/h, a1 = a2 ≥ 0 and
a3 = a4 ≥ 0, b`, a` and f are uniformly Lipschitz continuous w.r.t. x.
• ‖DhV ‖∞ is bounded uniformly w.r.t h.

Then, for any real number ρ > 0, there exists a unique grid function U ρ s.t.

ρUρ
i,j − ν(∆hU

ρ)i,j + g(xi,j , [DhU
ρ]i,j) = Vi,j ,

and there exists a constant C, C > 0, uniform in h and ρ s.t.

|Uρ(ξ) − Uρ(ξ′)| ≤ C|ξ − ξ′|, ∀ξ, ξ′ ∈ Th.
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The map Φ: M → U

Proposition
Under the first set of assumptions, there exists a unique grid function U and

a real number λ such that




−ν(∆hU)i,j + g(xi,j , [DhU ]i,j) + λ = (Vh[M ])i,j ,∑
i,j Ui,j = 0,

and there exist two constants δ, δ ∈ (0, 1) and C, C > 0, uniform in h s.t.

|U(ξ) − U(ξ′)| ≤ C|ξ − ξ′|δ, ∀ξ, ξ′ ∈ Th.

Under the second set of assumptions,

|U(ξ) − U(ξ′)| ≤ C|ξ − ξ′|, ∀ξ, ξ′ ∈ Th.
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Existence and uniqueness for the stationary problem

Theorem Under the above assumptions on V and g, the discrete stationary

problem has at least a solution and we have either a uniform Hölder or a

Lipschitz estimate on uh, depending on the assumptions.

Uniqueness: Ok if
(
Vh[M ] − Vh[M̃ ],M − M̃

)
2
≤ 0 ⇒M = M̃.

Remark Existence is still OK if for γ > 1,

g(x, q1, q2, q3, q4) ≥ α((q1)
2
− + (q2)

2
+ + (q3)

2
− + (q4)

2
+)γ/2 − C,

but no bounds on uh uniform in h.
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Convergence as h→ 0

The same method used for uniqueness can be used for proving convergence

of the discrete scheme under some assumptions on consistency and stronger

assumptions on Vh.

Example
If there exist s > 0 such that

h2
(
Vh[M ] − Vh[M̃ ],M − M̃

)
2
≥ c‖Vh[M ] − Vh[M̃ ]‖s

∞,

then uniform convergence for u, convergence of λ and a convergence

related to V for m.

Uses the Hölder or Lipschitz estimates on Uh uniform w.r.t. h.
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The case when V is a local operator

V [m](x) = F (m(x), x),

Same assumptions on H , g as above.

• Existence for the discrete problem: OK

• If F is a bounded and C1 function on R × T, uniform bounds for some

Hölder norm of uh.
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III. Infinite Horizon: long time approximation
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Long time approximation (Eductive strategy, see Guéant-Lasry)





∂ũ

∂t
− ν∆ũ+H(x,∇ũ) = V [m̃],

∂m̃

∂t
− ν∆m̃− div

(
m̃
∂H

∂p
(x,∇ũ)

)
= 0,

ũ(0, x) = ũ0(x), m̃(0, x) = m̃0(x),

with
∫

T
m̃0 = 1 and m̃0 ≥ 0.

We expect that

lim
t→∞

(ũ(t, x) − λt) = u(x), lim
t→∞

m̃(t, x) = m(x),

Same thing at the discrete level.
We use a semi-implicit linearized scheme. It requires the numerical solution
of a linearized problem. Linearizing must be done carefully and is not
always possible. In such cases, an explicit method can be used.
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ν = 1, H(x, p) = sin(2πx2) + sin(2πx1) + cos(4πx1) + |p|2, F (x,m) = m2
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ν = 0.01,

H(x, p) = sin(2πx2) + sin(2πx1) + cos(4πx1) + |p|2, F (x,m) = m2.
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ν = 0.01, Convergence
1

t

∫

T

ũ(x, t)dx→ λ as t→ ∞
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    0.08
    0.07
    0.06
    0.05
    0.04
    0.03
    0.02
    0.01
       0
   -0.01
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     1.7
     1.6
     1.5
     1.4
     1.3
     1.2
     1.1
       1
     0.9
     0.8
     0.7
     0.6
     0.5
     0.4
     0.3
     0.2
     0.1

ν = 0.01, left: u, right m.

Note that the supports of ∇u and of m tend to be disjoint as ν → 0.
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V [m](x) = F (m(x)) = − log(m(x)).

Same Hamiltonian as before. We now take ν = 0.1.

     1.2
       1
     0.8
     0.6
     0.4
     0.2
-5.55e-17
    -0.2
    -0.4
    -0.6
    -0.8

      32
      30
      28
      26
      24
      22
      20
      18
      16
      14
      12
      10
       8
       6
       4
       2

left: u, right m.
The measure mh concentrates near the minimum of uh.
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Deterministic limit ν → 0

Theorem (Lasry-Lions)

If

• H(x, p) ≥ H(x, 0) = 0,

• V [m] = F (m) + f0(x) where F ′ > 0,

then

lim
ν→0

(λν ,mν) = (λ,m),

where

m(x) =
(
F−1(λ− f0(x))

)+
and

∫

T

mdx = 1.
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ν = 0.001,

H(x, p) = |p|2,

V [m](x) = 4 cos(4πx) + m(x)

"u.gp" "m.gp"

left: u, right m.
The supports of ∇u and of m tend to be disjoint.

m(x) ≈ (λ− 4 cos(4πx))+
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A nonlocal operator V
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     0.2
    0.15
     0.1
    0.05
-1.39e-17
   -0.05
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       7
     6.5
       6
     5.5
       5
     4.5
       4
     3.5
       3
     2.5
       2
     1.5
       1
     0.5

ν = 0.1,

H(x, p) = sin(2πx2) + sin(2πx1) + cos(4πx1) + |p|3/2,

F (x, m) = 200(1 − ∆)−1(1 − ∆)−1m

left: u, right m.
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"u.gp" "m.gp"

ν = 0.001,

H(x, p) = sin(2πx2) + sin(2πx1) + cos(4πx1) + |p|2,

F (x, m) = (1 − ∆)−1(1 − ∆)−1m

left: u, right m.
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       1

ν = 0.1,

H(x, p) = sin(2πx2) + sin(2πx1) + cos(4πx1) + (0.6 + 0.59 cos(2πx))|p|3/2,

F (x, m) = 200(1 − ∆)−1(1 − ∆)−1m

left: u, right m.
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IV. Finite Horizon: a Newton method
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Difficulty: time dependent problem with conditions at both initial and final

times 



FU (U ,M) = 0,

FM (U ,M) = 0,

Solution procedure: Newton method
0
@ U i+1

Mi+1

1
A=

0
@ U i

Mi

1
A−

0
@ AU,U (U i,Mi) AU,M (U i,Mi)

AM,U (U i,Mi) AM,M (U i,Mi)

1
A
−10

@ FU (U i,Mi)

FM (U i,Mi)

1
A

where

AU,U (U ,M) = DUFU (U ,M), AU,M (U ,M) = DMFU (U ,M),

AM,U (U ,M) = DUFM(U ,M), AM,M (U ,M) = DMFM(U ,M).
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The linear systems
The most time consuming part of the procedure lies in solving the systems


 AU,U AU,M

AM,U AM,M




 U

M


 =


 GU

GM


 .

The matrices AUU and AUM have the form

AUU =

0
BBBBBBBBBBBBBBBB@

I 0 . . . . . . 0

−

1
∆t

I D1

.
.
.

.

.

.

0

.
.
.

.
.
.

.
.
.

.

.

.

.

.

.

.
.
.

−

1

∆t
I DNT−1 0

0 . . . 0 −

1
∆t

I DNT

1
CCCCCCCCCCCCCCCCA

AUM =

0
BBBBBBBBBBBBBBBB@

E0 0 . . . . . . 0

E1 0

.

.

.

0 E2

.
.
.

.

.

.

.

.

.
.
.
.

.
.
.

.
.
.

.

.

.

0 . . . 0 ENT
0

1
CCCCCCCCCCCCCCCCA

.

The block Dn correponds to the discrete operator

(Zi,j) 7→ (Zi,j/∆t− ν(∆hZ)i,j + [DhZ]i,j · ∇g(xi,j , [DhU
n]i,j)).

Monotonicity ⇒ Dn is a M-matrix, thus AUU is invertible.
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The matrices AMM and AMU have the form

AMM =

0
BBBBBBBBBBBBBBBB@

DT
1

−

1
∆t

I 0 . . . 0

0 DT
2

−

1
∆t

I

.
.
.

.

.

.

.

.

.
.
.
.

.
.
.

.
.
. 0

.

.

.
.
.
. DT

NT
−

1
∆t

I

0 . . . . . . 0 I

1
CCCCCCCCCCCCCCCCA

AMU =

0
BBBBBBBBBBBBBBBB@

0 eE1 0 . . . 0

.

.

.

.
.
. eE2

.
.
.

.

.

.

.

.

.
.
.
.

.
.
. 0

.

.

.

.
.
. eENT

0 . . . . . . 0

1
CCCCCCCCCCCCCCCCA

.

Note that

VT ẼnW =
∑

i,j

Mn−1
i,j [DhV ]i,j ·D2

q,qg(xi,j , [DhU
n]i,j)[DhW ]i,j.

From the convexity of g, Ẽn is positive if Mn−1 ≥ 0.
Th. If V is strictly monotone and if Mn−1 ≥ 0, then the Jacobian matrix


 AU,U AU,M

AM,U AM,M


 is invertible.
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The chosen procedure is as follows:

1. solve first AU,U Ũ = GU . This is done by sequentially solving

DkŨ
k = −LkŨ

k−1 +Gk
U , (1)

i.e. marching in time in the forward direction. (1) are solved with
efficient direct solvers.

2. Introducing U = U − Ũ ,

 AU,U AU,M

AM,U AM,M




 U

M


 =


 0

GM −AM,U Ũ


 ,

which implies
(
AM,M −AM,UA

−1
U,UAU,M

)
M = GM −AM,U Ũ . (2)

(2) is solved by an iterative method, e.g. BiCGStab.
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ν = 1, T = 1, ∆t = h = 1/50,

m(T ) = 1

H(x, p) = sin(2πx2) + sin(2πx1) + cos(4πx1) + |p|2,
F (x,m) = m2, V0[m](x) = m2 + cos(πx1) cos(πx2).
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Convergence of the Newton method(left) and of a linear solver (right)
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Same test except

ν = 0.01, ∆t = 1/200.
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"convergence_Bicgstab_nu=0.01"

Convergence of the Newton method(left) and of a linear solver (right)
500, 000 m unknowns in the nonlinear system.
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ν = 0.2, V (m) = − log(m)
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V. Optimal planning problem





∂u

∂t
− ν∆u+H(x,∇u) = V (m(x)), in (0, T ) × T,

∂m

∂t
+ ν∆m+ div

(
m
∂H

∂p
(x,∇u)

)
= 0, in (0, T ) × T,

with the initial and terminal conditions

m(0, x) = m0(x), m(T, x) = mT (x), in T,

and

m ≥ 0,

∫

T

m(t, x)dx = 1.
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• T unit torus of R
d

• ν ≥ 0

• H is a smooth Hamiltonian (convex):

H(x, p) = sup
γ∈Rd

(p · γ − L(x, γ)) , with lim
|γ|→∞

inf
x

L(x, γ)

|γ| = +∞

• V : R → R is a smooth function

• m0 and mT are probability densities on T.
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Existence results (P-L. Lions)

• Ok if ν = 0, if H coercive, if V is a strictly increasing function and if

m0 and mT are smooth positive functions.

• OK if ν = 0, if V = 0 (optimal transport) and if m0 and mT are

smooth positive functions.

• Ok if ν > 0 and if H(p) = ν|p|2, if V is a strictly increasing function

and if m0 and mT are smooth positive functions.

• If ν > 0 and H(p) 6= ν|p|2 ?

• Non-existence if H is sublinear, m0 6= mT and T small enough.
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Optimal control approach
Assumption: V = W ′ where W : R → R is a strictly convex function.

A weak form of the MFG system can be found by considering the optimal
control problem:

minimize (m, γ) →
∫ T

0

∫

T

[
m(t, x)L(x, γ(t, x))+W (m(t, x))

]
dt dx,

subject to the constraints




∂tm+ ν∆m+ div(mγ) = 0, in (0, T ) × T,

m(T, x) = mT (x) in T,

m(0, x) = m0(x) in T.

This approach does not work completely, i.e. one may find the existence of
a pair (m, z ∼ γm), but the question is to recover the MFG system.

59



The semi-implicit scheme





Un+1
i,j − Un

i,j

∆t
− ν(∆hU

n+1)i,j + g(xi,j , [DhU
n+1]i,j) = V (Mn

i,j),

Mn+1
i,j −Mn

i,j

∆t
+ ν(∆hM

n)i,j + Bi,j(U
n+1,Mn) = 0,

Mn ∈ K,
MNT

i,j = (mT )i,j , M0
i,j = (m0)i,j .

We will see that convex programming yields the existence of (M,U) under

rather general assumptions.
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Existence of (M,U) via convex programming
Theorem:
If

• V = W ′ where W is a strictly convex and coercive C2 function.

• The discrete Hamiltonian is convex and coercive:

lim
q1→−∞

g(x, q1, q2, q3, q4)

|q1|
= lim

q2→+∞

g(x, q1, q2, q3, q4)

q2
= +∞,

lim
q3→−∞

g(x, q1, q2, q3, q4)

|q3|
= lim

q4→+∞

g(x, q1, q2, q3, q4)

q4
= +∞.

•m0,mT ∈ K with (m0)i,j > 0,

then a solution of the discrete MFG system can be found by solving a

saddle-point problem. The primal problem is the discrete analogue of the

optimal control of pdes problem above.

Moreover M is unique (same usual proof).
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Proof
• Call χ the indicator function of the set R+.
• Call Θ the convex and continuous functional:

Θ(α, β) =

NT∑

n=1

∑

i,j

(W + χ)∗
(
αn

i,j + g(xi,j , [β
n]i,j)

)
,

where α = (αn
i,j), β = ([βn]i,j) and [βn]i,j = (β1,n

i,j , β
2,n
i,j , β

3,n
i,j , β

4,n
i,j ).

• The cost function of the primal problem is defined as

Θ∗(M,Z) =

NT −1∑

n=0

∑

i,j

(W + χ)(Mn
i,j)

+ sup
β

{
NT −1∑

n=0

∑

i,j

〈[Zn
i,j ], [β

n+1]i,j〉 −Mn
i,jg(xi,j , [β

n+1]i,j)

}
.

• Here α ∼ ∂tu− ν∆u, β ∼ ∇u, Z ∼ mγ.
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The primal problem is to

minimize Θ∗(M,Z) subject to the constraint



Mn
i,j −Mn−1

i,j

∆t
+ ν(∆hM

n−1)i,j + divh(Zn−1)i,j = 0, 1 ≤ n ≤ NT ,

MNT

i,j = (mT )i,j ,

M0
i,j = (m0)i,j ,

where

divh(Z)i,j = (D+
1 Z

1)i−1,j + (D+
1 Z

2)i,j + (D+
2 Z

3)i,j−1 + (D+
2 Z

4)i,j .

This is an optimal control problem for a discrete density driven by a discrete

Fokker-Planck equation.
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Convex programming

The primal problem can be written: minimize Θ∗(M,Z)+Σ∗(−M,−Z),

where :

Σ(α, β) =





F(Ψ) if ∃Ψ s.t. (α, β) = Λ(Ψ) and
∑

i,j

Ψ0
i,j = 0,

+∞ otherwise.

with

(α, β) = Λ(Ψ) ⇔





αn+1
i,j =

Ψn+1
i,j − Ψn

i,j

∆t
− ν(∆hΨn+1)i,j ,

[βn+1]i,j = [DhΨn+1]i,j , 0 ≤ n < NT ,

and

F(Ψ) =
1

∆t


∑

i,j

m0,i,jΨ
0
i,j −

∑

i,j

mT,i,jΨ
NT

i,j


 .
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Lemma: constraint qualifications
• Θ and Σ are convex and resp. continuous, LSC and there exists (α̃, β̃)

such that

Σ(α̃, β̃) < +∞.

• Θ∗ and Σ∗ are convex and LSC and there exists (M̃, Z̃) such that




Θ∗(M̃, Z̃) < +∞, Σ∗(−M̃,−Z̃) < +∞,

Θ∗ is continuous near M̃, Z̃.

Fenchel-Rockafeller duality theorem There exists a saddle point:

min (Θ + Σ) = −min
(
Θ∗(M,Z) + Σ∗(−M,−Z)

)
.

Optimality conditions for the saddle point→ the discrete MFG.
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Open question Find bounds on M and U independent of h, ∆t.
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A penalized scheme




U ε,n+1
i,j − U ε,n

i,j

∆t
− ν(∆hU

ε,n+1)i,j + g(xi,j , [DhU
ε,n+1]i,j) = V

(
M ε,n

i,j

)
,

M ε,n+1
i,j −M ε,n

i,j

∆t
+ ν(∆hM

ε,n)i,j + Bi,j(U
ε,n+1,M ε,n) = 0,

M ε,n ∈ K,

with the final time and initial time conditions

U ε,0
i,j =

1

ε
(M ε,0

i,j − (m0)i,j), M ε,NT

i,j = (mT )i,j , ∀ 0 ≤ i, j < Nh.

Theorem As ε→ 0, M ε →M , given by the discrete MFG system.
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T = 1, ν = 1, V (m) = m2, H(p) = sin(2πx2) + sin(2πx1) + cos(4πx1) + |p|2
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T = 0.01
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T = 0.01, ν = 0.1, H(p) = sin(2πx2) + sin(2πx1) + cos(4πx1) + |p|3
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T = 0.1, ν = 0.125, V (m) = − log(m)
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