Mean Field Games: Numerical Methods

Y. Achdou,

with I. Capuzzo-Dolcetta and F. Camilli

January 7, 2010

Content

- Numerical schemes for the mean field games system
 - Description
 - Finite horizon: existence, bounds, uniqueness
 - Infinite horizon: Existence, bounds, uniqueness
- Numerical procedures and tests
 - Infinite horizon: a long time approximation
 - Finite horizon: a Newton method
- The optimal planning problem
 - Description
 - Existence of the solution via convex programming
 - Numerical results

I. Finite Horizon: Numerical Methods

The system of PDEs

$$\begin{cases} \frac{\partial u}{\partial t} - \nu \Delta u + H(x, \nabla u) &= V[m], \quad \text{in } (0, T) \times \mathbb{T}, \\ \frac{\partial m}{\partial t} + \nu \Delta m + \operatorname{div} \left(m \frac{\partial H}{\partial p}(x, \nabla u) \right) &= 0, \quad \text{in } (0, T) \times \mathbb{T}, \end{cases}$$

with the initial and terminal conditions

 $u(t=0) = V_0[m(t=0)], \text{ and } m(T,x) = m_T(x), \text{ in } \mathbb{T},$

and

$$m \ge 0,$$
 $\int_{\mathbb{T}} m(t, x) dx = 1.$

- \mathbb{T} unit torus of \mathbb{R}^d
- $\nu \ge 0$
- *H* is a smooth Hamiltonian (convex):

$$H(x,p) = \sup_{\gamma \in \mathbb{R}^d} \left(p \cdot \gamma - L(x,\gamma) \right), \quad \text{with} \quad \lim_{|\gamma| \to \infty} \inf_x \frac{L(x,\gamma)}{|\gamma|} = +\infty$$

V and V₀ are operators from the space of probability measures on T into a bounded set of Lipschitz functions on T such that

 $V[m_n]$ converges uniformly on \mathbb{T} to V[m] if m_n weakly converges to m.

Typical examples for V include nonlocal smoothing operators.

- Alternatively V[m](t, x) = V(m(t, x)).
- m_T probability density on \mathbb{T} .

The pde systems comes from passing to the limit in a finite horizon Nash-equilibrium, where the cost of the player i at time t is

$$\mathbb{E}\left(\int_{t}^{T} \left(L(X_{s}^{i}, \gamma_{s}^{i}) + V\left[\frac{1}{N-1}\sum_{j\neq i}\delta_{X_{s}^{j}}\right]\right) ds + V_{0}\left[\frac{1}{N-1}\sum_{j\neq i}\delta_{X_{T}^{j}}\right]\right)$$

The N players initial conditions are random, independent, with the same probability distribution m_{\circ} , and

$$dX_t^i = \sqrt{2\nu} dW_t^i - \gamma^i dt, \quad X_0^i = x^i \in \mathbb{T}.$$

Finite difference schemes

Goal: use a (semi-)implicit finite difference scheme, robust when $\nu \rightarrow 0$, which guarantees existence, and possibly uniform bounds and uniqueness.

Take d = 2:

- Let \mathbb{T}_h be a uniform grid on the torus with mesh step h, and x_{ij} be a generic point in \mathbb{T}_h .
- Uniform time grid: $\Delta t = T/N_T$, $t_n = n\Delta t$.
- The values of u and m at $(x_{i,j}, t_n)$ are resp. approximated by $U_{i,j}^n$ and $M_{i,j}^n$.

Notation:

• The discrete Laplace operator:

$$(\Delta_h W)_{i,j} = -\frac{1}{h^2} (4W_{i,j} - W_{i+1,j} - W_{i-1,j} - W_{i,j+1} - W_{i,j-1}).$$

• Right-sided finite difference formulas for $\partial_1 w(x_{i,j})$ and $\partial_2 w(x_{i,j})$:

$$(D_1^+W)_{i,j} = \frac{W_{i+1,j} - W_{i,j}}{h}, \text{ and } (D_2^+W)_{i,j} = \frac{W_{i,j+1} - W_{i,j}}{h}.$$

• The set of 4 finite difference formulas at $x_{i,j}$:

$$[D_h W]_{i,j} = \left((D_1^+ W)_{i,j}, (D_1^+ W)_{i-1,j}, (D_2^+ W)_{i,j}, (D_2^+ W)_{i,j-1} \right).$$

Discrete HJB equation

$$\frac{\partial u}{\partial t} - \nu \Delta u + H(x, \nabla u) = V[m]$$

$$\downarrow$$

$$\frac{U_{i,j}^{n+1} - U_{i,j}^n}{\Delta t} - \nu (\Delta_h U^{n+1})_{i,j} + g(x_{i,j}, [D_h U^{n+1}]_{i,j}) = (V_h[M^n])_{i,j}$$

$$g(x_{i,j}, [D_h U^{n+1}]_{i,j}) = g\left(x_{i,j}, (D_1^+ U^{n+1})_{i,j}, (D_1^+ U^{n+1})_{i-1,j}, (D_2^+ U^{n+1})_{i,j}, (D_2^+ U^{n+1})_{i,j-1}\right),$$

• for instance,

$$(V_h[M])_{i,j} = V[m_h](x_{i,j}),$$

calling m_h the piecewise constant function on \mathbb{T} taking the value $M_{i,j}$ in the square $|x - x_{i,j}|_{\infty} \leq h/2$.

Classical assumptions on the discrete Hamiltonian g

 $(q_1, q_2, q_3, q_4) \to g(x, q_1, q_2, q_3, q_4).$

- Monotonicity: g is nonincreasing with respect to q_1 and q_3 and nondecreasing with respect to to q_2 and q_4 .
- Consistency:

$$g(x, q_1, q_1, q_3, q_3) = H(x, q), \quad \forall x \in \mathbb{T}, \forall q = (q_1, q_3) \in \mathbb{R}^2$$

• **Differentiability:** g is of class C^1 , and

$$\left|\frac{\partial g}{\partial x}\left(x,(q_1,q_2,q_3,q_4)\right)\right| \le C(1+|q_1|+|q_2|+|q_3|+|q_4|).$$

• Convexity: $(q_1, q_2, q_3, q_4) \rightarrow g(x, q_1, q_2, q_3, q_4)$ is convex.

The discrete version of

$$\frac{\partial m}{\partial t} + \nu \Delta m + \operatorname{div}\left(m\frac{\partial H}{\partial p}(x, \nabla v)\right) = 0. \tag{\dagger}$$

It is chosen so that

- each time step leads to a linear system with a matrix
 - whose diagonal coefficients are negative,
 - whose off-diagonal coefficients are nonnegative,

in order to hopefully use some discrete maximum principle.

• The argument for uniqueness should hold in the discrete case, so the discrete Hamiltonian g should be used for (†) as well.

Principle

Discretize

$$-\int_{\mathbb{T}} \operatorname{div} \left(m \frac{\partial H}{\partial p}(x, \nabla u) \right) w = \int_{\mathbb{T}} m \frac{\partial H}{\partial p}(x, \nabla u) \cdot \nabla w$$

by

$$h^{2} \sum_{i,j} \mathcal{B}_{i,j}(U,M) W_{i,j} := h^{2} \sum_{i,j} M_{i,j} \nabla_{q} g(x_{i,j}, [D_{h}U]_{i,j}) \cdot [D_{h}W]_{i,j},$$

which leads to

$$\mathcal{B}_{i,j}(U,M) = \frac{1}{h} \begin{pmatrix} M_{i,j} \frac{\partial g}{\partial q_1}(x_{i,j}, [D_h U]_{i,j}) - M_{i-1,j} \frac{\partial g}{\partial q_1}(x_{i-1,j}, [D_h U]_{i-1,j}) \\ + M_{i+1,j} \frac{\partial g}{\partial q_2}(x_{i+1,j}, [D_h U]_{i+1,j}) - M_{i,j} \frac{\partial g}{\partial q_2}(x_{i,j}, [D_h U]_{i,j}) \end{pmatrix} \\ + \begin{pmatrix} M_{i,j} \frac{\partial g}{\partial q_3}(x_{i,j}, [D_h U]_{i,j}) - M_{i,j-1} \frac{\partial g}{\partial q_3}(x_{i,j-1}, [D_h U]_{i,j-1}) \\ + M_{i,j+1} \frac{\partial g}{\partial q_4}(x_{i,j+1}, [D_h U]_{i,j+1}) - M_{i,j} \frac{\partial g}{\partial q_4}(x_{i,j}, [D_h U]_{i,j}) \end{pmatrix}$$

This yields the scheme:

$$\frac{U_{i,j}^{n+1} - U_{i,j}^n}{\Delta t} - \nu(\Delta_h U^{n+1})_{i,j} + g(x_{i,j}, [D_h U^{n+1}]_{i,j}) = (V_h [M^n])_{i,j}$$

$$0 = \frac{M_{i,j}^{n+1} - M_{i,j}^n}{\Delta t} + \nu (\Delta_h M^n)_{i,j}$$

$$+\frac{1}{h}\left(\begin{array}{c} \left(\begin{array}{c} M_{i,j}^{n}\frac{\partial g}{\partial q_{1}}(x_{i,j},[D_{h}U^{n+1}]_{i,j})-M_{i-1,j}^{n}\frac{\partial g}{\partial q_{1}}(x_{i-1,j},[D_{h}U^{n+1}]_{i-1,j})\\ +M_{i+1,j}^{n}\frac{\partial g}{\partial q_{2}}(x_{i+1,j},[D_{h}U^{n+1}]_{i+1,j})-M_{i,j}^{n}\frac{\partial g}{\partial q_{2}}(x_{i,j},[D_{h}U^{n+1}]_{i,j})\end{array}\right)\\ +\left(\begin{array}{c} M_{i,j}^{n}\frac{\partial g}{\partial q_{3}}(x_{i,j},[D_{h}U^{n+1}]_{i,j})-M_{i,j-1}^{n}\frac{\partial g}{\partial q_{3}}(x_{i,j-1},[D_{h}U^{n+1}]_{i,j-1})\\ +\left(\begin{array}{c} M_{i,j+1}^{n}\frac{\partial g}{\partial q_{4}}(x_{i,j+1},[D_{h}U^{n+1}]_{i,j})-M_{i,j}^{n}\frac{\partial g}{\partial q_{3}}(x_{i,j-1},[D_{h}U^{n+1}]_{i,j-1})\\ +M_{i,j+1}^{n}\frac{\partial g}{\partial q_{4}}(x_{i,j+1},[D_{h}U^{n+1}]_{i,j+1})-M_{i,j}^{n}\frac{\partial g}{\partial q_{4}}(x_{i,j},[D_{h}U^{n+1}]_{i,j})\end{array}\right)\end{array}\right)$$

Classical discrete Hamiltonians g can be chosen.

For example, if the Hamiltonian is of the form

 $H(x,\nabla u)=\psi(x,|\nabla u|),$

a possible choice is the Godunov scheme

$$g(x, q_1, q_2, q_3, q_4) = \psi\left(x, \sqrt{\min(q_1, 0)^2 + \max(q_2, 0)^2 + \min(q_3, 0)^2 + \max(q_4, 0)^2}\right).$$

If $\psi(x, w)$ is convex and nondecreasing w.r.t. w, then g is a convex function of (q_1, q_2, q_3, q_4) ; g is nonincreasing w.r.t. q_1 and q_3 and nondecreasing w.r.t. q_2 and q_4 .

Finally, it can be proven that the global scheme is consistent if H is smooth enough.

Existence for the discrete problem

Theorem Assume that $M^{N_T} \ge 0$ and that $h^2 \sum_{i,j} M_{i,j}^{N_T} = 1$. Under the assumptions above on V, V_0 and g, the discrete problem has a solution and there is a Lipschitz estimate on U_h^n uniform in n, h and Δt .

Strategy of proof

$$\mathcal{K} = \left\{ (M_{i,j})_{0 \le i,j < N} : h^2 \sum_{i,j} M_{i,j} = 1, M_{i,j} \ge 0 \right\}$$

Apply Brouwer fixed point theorem to a well chosen mapping

$$\chi: \qquad \mathcal{K}^{N_T} \longrightarrow \qquad \mathcal{K}^{N_T}, \\ (M^n)_n \to \quad (U^n)_n \to \quad (M^n)_n$$

Proof: a fixed point method in \mathcal{K}^{N_T} ,

Step 1: a map
$$\Phi : (M^n)_n \to (U^n)_n$$
.

Given $(M_{i,j}^{N_T})$, define the map $\Phi: (M^n)_{0 \le n < N_T} \in \mathcal{K}^{N_T} \to (U^n)_{0 \le n \le N_T}$: $\begin{cases} \frac{U_{i,j}^{n+1} - U_{i,j}^n}{\Delta t} - \nu(\Delta_h U^{n+1})_{i,j} + g(x_{i,j}, [D_h U^{n+1}]_{i,j}) = (V_h[M^n])_{i,j}, \\ U_{i,j}^0 = V_0[m_h^0](x_{i,j}). \end{cases}$

- Existence is classical: (Leray-Schauder fixed point theorem at each time step, making use of the monotonicity of g, the uniform boundedness assumption on V and of H(·, 0)).
- Uniqueness stems from the monotonicity of g.

Step 2: estimates

• There exists a constant C independent of $(M^n)_n$ and h s.t.

 $||U^n||_{\infty} \le C(1+T).$

- The map Φ is continuous, from the continuity of V and well known results on continuous dependence on the data for monotone schemes.
- There exists a constant L independent of $(M^n)_n$ and h s.t.

 $||D_h U^n||_{\infty} \le LT, \quad \forall n,$

proved by using the assumption

$$\left|\frac{\partial g}{\partial x}(x, q_1, q_2, q_3, q_4)\right| \le C(1 + |q_1| + |q_2| + |q_3| + |q_4|).$$

Step 3: A map $\chi : (M^n)_n \to (\widetilde{M}^n)_n$

- Choose a positive constant $\mu > 0$ large enough.
- For $(U^n)_n = \Phi((M^n)_n)$, backward linear parabolic problem for \widetilde{M}^n :

$$\begin{split} \widetilde{M}^{N_{T}} &= M^{N_{T}}, \\ -\mu M_{i,j}^{n} &= \frac{\widetilde{M}_{i,j}^{n+1} - \widetilde{M}_{i,j}^{n}}{\Delta t} - \nu (\Delta_{h} \widetilde{M}^{n})_{i,j} - \mu \widetilde{M}_{i,j}^{n}}{+ \frac{1}{h} \begin{pmatrix} \widetilde{M}_{i,j}^{n} \frac{\partial g}{\partial q_{1}}(x_{i,j}, [D_{h} U^{n+1}]_{i,j}) - \widetilde{M}_{i-1,j}^{n} \frac{\partial g}{\partial q_{1}}(x_{i-1,j}, [D_{h} U^{n+1}]_{i-1,j}) \\ + \widetilde{M}_{i+1,j}^{n} \frac{\partial g}{\partial q_{2}}(x_{i+1,j}, [D_{h} U^{n+1}]_{i+1,j}) - \widetilde{M}_{i,j}^{n} \frac{\partial g}{\partial q_{2}}(x_{i,j}, [D_{h} U^{n+1}]_{i,j}) \\ + \frac{1}{h} \begin{pmatrix} \widetilde{M}_{i,j}^{n} \frac{\partial g}{\partial q_{3}}(x_{i,j}, [D_{h} U^{n+1}]_{i,j}) - \widetilde{M}_{i,j-1}^{n} \frac{\partial g}{\partial q_{3}}(x_{i,j-1}, [D_{h} U^{n+1}]_{i,j-1}) \\ + \widetilde{M}_{i,j+1}^{n} \frac{\partial g}{\partial q_{4}}(x_{i,j+1}, [D_{h} U^{n+1}]_{i,j+1}) - \widetilde{M}_{i,j}^{n} \frac{\partial g}{\partial q_{4}}(x_{i,j}, [D_{h} U^{n+1}]_{i,j}) \end{pmatrix} \end{split}$$

From the previous estimates on $(U^n)_n$, one can find μ large enough and independent of $(M^n)_n$ such that the iteration matrix is the opposite of a M-matrix, thus **there is a discrete maximum principle.**

Therefore, there exists a unique solution $(\widetilde{M}^n)_n$. Moreover,

$$\begin{split} M^n &\geq 0 \quad \Rightarrow \quad M^n \geq 0, \qquad \quad \forall n, \\ h^2 \sum_{i,j} M^n &= 1 \quad \Rightarrow \quad h^2 \sum_{i,j} \widetilde{M}^n = 1, \qquad \forall n. \end{split}$$

Thus $\widetilde{M}^n \in \mathcal{K}$ for all n. Define the map

$$\chi: \qquad \mathcal{K}^{N_T} \mapsto \mathcal{K}^{N_T}, \\ (M^n)_{0 \le n < N_T} \to (\widetilde{M}^n)_{0 \le n < N_T}$$

Step 4: existence of a fixed point of χ

From the boundedness and continuity of the mapping Φ , and from the fact that g is \mathcal{C}^1 , we obtain that $\chi : \mathcal{K}^{N_T} \mapsto \mathcal{K}^{N_T}$ is continuous.

From Brouwer fixed point theorem, χ has a fixed point, which yields a solution of the full system.

Uniqueness

Theorem Same assumptions as above on V, V_0 , H and g. Assume also that the operators V_h and $V_{0,h}$ are strictly monotone, i.e.

$$\left(V_h[M] - V_h[\widetilde{M}], M - \widetilde{M} \right)_2 \le 0 \quad \Rightarrow \quad V_h[M] = V_h[\widetilde{M}],$$
$$\left(V_{0,h}[M] - V_{0,h}[\widetilde{M}], M - \widetilde{M} \right)_2 \le 0 \quad \Rightarrow \quad V_{0,h}[M] = V_{0,h}[\widetilde{M}].$$

The discrete problem has a unique solution.

Proof The choice of the scheme makes it possible to mimic the proof used in the continuous case: uses the convexity and monotonicity assumptions on *g*.

II. Infinite Horizon: A numerical method

$$\begin{pmatrix} -\nu(\Delta_{h}U)_{i,j} + g(x_{i,j}, [D_{h}U]_{i,j}) + \lambda = (V_{h}[M])_{i,j}, \\ -\nu(\Delta_{h}M)_{i,j} \\ -\frac{1}{h} \begin{pmatrix} M_{i,j} \frac{\partial g}{\partial q_{1}}(x_{i,j}, [D_{h}U]_{i,j}) - M_{i-1,j} \frac{\partial g}{\partial q_{1}}(x_{i-1,j}, [D_{h}U]_{i-1,j}) \\ +M_{i+1,j} \frac{\partial g}{\partial q_{2}}(x_{i+1,j}, [D_{h}U]_{i+1,j}) - M_{i,j} \frac{\partial g}{\partial q_{2}}(x_{i,j}, [D_{h}U]_{i,j}) \end{pmatrix} \\ -\frac{1}{h} \begin{pmatrix} M_{i,j} \frac{\partial g}{\partial q_{3}}(x_{i,j}, [D_{h}U]_{i,j}) - M_{i,j-1} \frac{\partial g}{\partial q_{3}}(x_{i,j-1}, [D_{h}U]_{i,j-1}) \\ +M_{i,j+1} \frac{\partial g}{\partial q_{4}}(x_{i,j+1}, [D_{h}U]_{i,j+1}) - M_{i,j} \frac{\partial g}{\partial q_{4}}(x_{i,j}, [D_{h}U]_{i,j}) \end{pmatrix} \end{pmatrix} = 0, \\ M_{i,j} \ge 0, \end{cases}$$

and

$$h^2 \sum_{i,j} M_{i,j} = 1$$
, and $\sum_{i,j} U_{i,j} = 0$.

Existence for the discrete problem: strategy of proof

- Use Brouwer fixed point theorem in the set of discrete probability measures for a mapping $\chi: M \to U \to M$.
- The map $\Phi: M \to U$ consists of solving

$$\begin{cases} -\nu(\Delta_h U)_{i,j} + g(x_{i,j}, [D_h U]_{i,j}) + \lambda = (V_h[M])_{i,j}, \\ \sum_{i,j} U_{i,j} = 0 \end{cases}$$

• (U, λ) is obtained by considering the ergodic approximation:

$$-\nu(\Delta_h U^{(\rho)})_{i,j} + g(x_{i,j}, [D_h U^{(\rho)}]_{i,j}) + \rho U^{(\rho)}_{i,j} = (V_h[M])_{i,j},$$

and passing to the limit as $\rho \rightarrow 0.$

• We need estimates on $U^{(\rho)} - U^{(\rho)}_{0,0}$ uniform in ρ and h.

Difficulty

The proof of existence for the continuous problem used the estimate $\|\nabla u\|_{\infty} \leq C$, which was obtained with the Bernstein method and the assumption: there exists $\theta \in (0, 1)$ such that for |p| large,

$$\inf_{x \in \mathbb{T}} \left(\frac{\partial H}{\partial x} \cdot p + \frac{\theta}{2\nu} H^2 \right) > 0.$$

Discrete case: this argument seems difficult to reproduce.

We had to make more restrictive assumptions on H and g to obtain bounds on $||D_h u||_{\infty}$ uniform in h.

Assumptions on the Hamiltonian

$$H(x,p) = \max_{\alpha \in \mathcal{A}} \Big(p \cdot \alpha - L(x,\alpha) \Big),$$

where

- \mathcal{A} is a compact subset of \mathbb{R}^2 ,
- L is a \mathcal{C}^0 function on $\mathbb{T} \times \mathcal{A}$,

For the discrete Hamiltonian g(x,q)

- monotocity, consistency.
- continuous with respect to x, \mathcal{C}^1 with respect to q
- sublinear with respect to q,
- there exists $g^{\infty} : \mathbb{R}^4 \to \mathbb{R}$ monotonous and sublinear s.t.

 $\lim_{\epsilon \to 0} \sup_{x} \left| \epsilon g(x, \frac{q}{\epsilon}) - g^{\infty}(q) \right| = 0.$

Estimates on the discrete ergodic approximation

Proposition (using Kuo-Trudinger(1992) and Camilli-Marchi(2008)) Consider a grid function V and make the assumptions:

- as above for H and g
- $||V||_{\infty}$ is bounded uniformly w.r.t. h.

For any real number $\rho > 0$, there exists a unique grid function U^{ρ} such that

$$\rho U_{i,j}^{\rho} - \nu (\Delta_h U^{\rho})_{i,j} + g(x_{i,j}, [D_h U^{\rho}]_{i,j}) = V_{i,j},$$

and there exist two constants δ , $\delta \in (0, 1)$ and C, C > 0, uniform in h and ρ s.t.

$$|U^{\rho}(\xi) - U^{\rho}(\xi')| \le C|\xi - \xi'|^{\delta}, \qquad \forall \xi, \xi' \in \mathbb{T}_h.$$

Proposition (using Krylov(2007) and Camilli-Marchi(2008)) Same assumptions as before, and furthermore

•
$$g(x, q_1, q_2, q_3, q_4) = \sup_{\beta \in \mathcal{B}} \left(\sum_{\ell=1}^4 (-a_\ell(x, \beta)s_\ell + b_\ell(x, \beta)q_\ell) - f(x, \beta) \right),$$

with $s_1 = s_2 = (q_1 - q_2)/h$, $s_3 = s_4 = (q_3 - q_4)/h$, $a_1 = a_2 \ge 0$ and $a_3 = a_4 \ge 0$, b_ℓ , a_ℓ and f are uniformly Lipschitz continuous w.r.t. x. • $||D_h V||_{\infty}$ is bounded uniformly w.r.t h.

Then, for any real number $\rho > 0$, there exists a unique grid function U^{ρ} s.t.

$$\rho U_{i,j}^{\rho} - \nu (\Delta_h U^{\rho})_{i,j} + g(x_{i,j}, [D_h U^{\rho}]_{i,j}) = V_{i,j}$$

and there exists a constant C, C > 0, uniform in h and ρ s.t.

$$|U^{\rho}(\xi) - U^{\rho}(\xi')| \le C|\xi - \xi'|, \qquad \forall \xi, \xi' \in \mathbb{T}_h.$$

The map Φ **:** $M \to U$

Proposition

Under the first set of assumptions, there exists a unique grid function U and a real number λ such that

$$\begin{cases} -\nu(\Delta_h U)_{i,j} + g(x_{i,j}, [D_h U]_{i,j}) + \lambda = (V_h[M])_{i,j}, \\ \sum_{i,j} U_{i,j} = 0, \end{cases}$$

and there exist two constants δ , $\delta \in (0, 1)$ and C, C > 0, uniform in h s.t.

$$|U(\xi) - U(\xi')| \le C|\xi - \xi'|^{\delta}, \qquad \forall \xi, \xi' \in \mathbb{T}_h.$$

Under the second set of assumptions,

$$|U(\xi) - U(\xi')| \le C|\xi - \xi'|, \qquad \forall \xi, \xi' \in \mathbb{T}_h.$$

Existence and uniqueness for the stationary problem

Theorem Under the above assumptions on V and g, the discrete stationary problem has at least a solution and we have either a uniform Hölder or a Lipschitz estimate on u_h , depending on the assumptions.

Uniqueness: Ok if

$$\left(V_h[M] - V_h[\widetilde{M}], M - \widetilde{M}\right)_2 \le 0 \Rightarrow M = \widetilde{M}.$$

Remark Existence is still OK if for $\gamma > 1$,

$$g(x, q_1, q_2, q_3, q_4) \ge \alpha((q_1)_-^2 + (q_2)_+^2 + (q_3)_-^2 + (q_4)_+^2)^{\gamma/2} - C,$$

but no bounds on u_h uniform in h.

Convergence as $h \rightarrow 0$

The same method used for uniqueness can be used for proving convergence of the discrete scheme under some assumptions on consistency and stronger assumptions on V_h .

Example

If there exist s > 0 such that

$$h^2\left(V_h[M] - V_h[\widetilde{M}], M - \widetilde{M}\right)_2 \ge c \|V_h[M] - V_h[\widetilde{M}]\|_{\infty}^s,$$

then uniform convergence for u, convergence of λ and a convergence related to V for m.

Uses the Hölder or Lipschitz estimates on U_h uniform w.r.t. h.

The case when V is a local operator

$$V[m](x) = F(m(x), x),$$

Same assumptions on H, g as above.

- Existence for the discrete problem: OK
- If F is a bounded and C¹ function on ℝ × T, uniform bounds for some Hölder norm of u_h.

III. Infinite Horizon: long time approximation

Long time approximation (Eductive strategy, see Guéant-Lasry)

$$\begin{cases} \frac{\partial \tilde{u}}{\partial t} - \nu \Delta \tilde{u} + H(x, \nabla \tilde{u}) &= V[\tilde{m}], \\ \frac{\partial \tilde{m}}{\partial t} - \nu \Delta \tilde{m} - \operatorname{div} \left(\tilde{m} \frac{\partial H}{\partial p}(x, \nabla \tilde{u}) \right) &= 0, \\ \tilde{u}(0, x) = \tilde{u}_0(x), \quad \tilde{m}(0, x) &= \tilde{m}_0(x), \end{cases}$$

with $\int_{\mathbb{T}} \tilde{m}_0 = 1$ and $\tilde{m}_0 \ge 0$. We expect that

$$\lim_{t \to \infty} \left(\tilde{u}(t, x) - \lambda t \right) = u(x), \qquad \lim_{t \to \infty} \tilde{m}(t, x) = m(x),$$

Same thing at the discrete level.

We use a semi-implicit linearized scheme. It requires the numerical solution of a linearized problem. Linearizing must be done carefully and is not always possible. In such cases, an explicit method can be used.

$$\nu = 1$$
, $H(x, p) = \sin(2\pi x_2) + \sin(2\pi x_1) + \cos(4\pi x_1) + |p|^2$, $F(x, m) = m^2$

$$H(x,0) = \sin(2\pi x_2) + \sin(2\pi x_1) + \cos(4\pi x_1).$$

$$\nu = 1$$
, left: u , right m .

Convergence as $h \to 0$

$$\nu = 0.01,$$

$$H(x,p) = \sin(2\pi x_2) + \sin(2\pi x_1) + \cos(4\pi x_1) + |p|^2, \quad F(x,m) = m^2.$$

 $\nu = 0.01$, left: u, right m. Note that the supports of ∇u and of m tend to be disjoint as $\nu \to 0$.

$$V[m](x) = F(m(x)) = -\log(m(x)).$$

Same Hamiltonian as before. We now take $\nu = 0.1$.

Deterministic limit $\nu \to 0$

Theorem (Lasry-Lions) If

•
$$H(x,p) \ge H(x,0) = 0$$
,

•
$$V[m] = F(m) + f_0(x)$$
 where $F' > 0$,

then

$$\lim_{\nu \to 0} (\lambda_{\nu}, m_{\nu}) = (\lambda, m),$$

where

$$m(x) = (F^{-1}(\lambda - f_0(x)))^+$$
 and $\int_{\mathbb{T}} m dx = 1.$

$$\nu = 0.001,$$
$$H(x, p) = |p|^2,$$
$$V[m](x) = 4\cos(4\pi x) + m(x)$$

left: u, right m. The supports of ∇u and of m tend to be disjoint. $m(x) \approx (\lambda - 4\cos(4\pi x))^+$

$$\nu = 0.1,$$

$$H(x, p) = \sin(2\pi x_2) + \sin(2\pi x_1) + \cos(4\pi x_1) + |p|^{3/2},$$

$$F(x, m) = 200(1 - \Delta)^{-1}(1 - \Delta)^{-1}m$$

left: u, right m.

$$\nu = 0.001,$$

$$H(x, p) = \sin(2\pi x_2) + \sin(2\pi x_1) + \cos(4\pi x_1) + |p|^2,$$

$$F(x, m) = (1 - \Delta)^{-1}(1 - \Delta)^{-1}m$$

left: u, right m.

$$\nu = 0.1,$$

$$H(x,p) = \sin(2\pi x_2) + \sin(2\pi x_1) + \cos(4\pi x_1) + (0.6 + 0.59\cos(2\pi x))|p|^{3/2},$$

$$F(x,m) = 200(1 - \Delta)^{-1}(1 - \Delta)^{-1}m$$

left: u, right m.

IV. Finite Horizon: a Newton method

Difficulty: time dependent problem with conditions at both initial and final times

$$\mathcal{F}_U(\mathcal{U}, \mathcal{M}) = 0,$$

$$\mathcal{F}_M(\mathcal{U}, \mathcal{M}) = 0,$$

Solution procedure: Newton method

$$\begin{pmatrix} \mathcal{U}^{i+1} \\ \mathcal{M}^{i+1} \end{pmatrix} = \begin{pmatrix} \mathcal{U}^{i} \\ \mathcal{M}^{i} \end{pmatrix} - \begin{pmatrix} A_{U,U}(\mathcal{U}^{i},\mathcal{M}^{i}) & A_{U,M}(\mathcal{U}^{i},\mathcal{M}^{i}) \\ A_{M,U}(\mathcal{U}^{i},\mathcal{M}^{i}) & A_{M,M}(\mathcal{U}^{i},\mathcal{M}^{i}) \end{pmatrix}^{-1} \begin{pmatrix} \mathcal{F}_{U}(\mathcal{U}^{i},\mathcal{M}^{i}) \\ \mathcal{F}_{M}(\mathcal{U}^{i},\mathcal{M}^{i}) \end{pmatrix}^{-1} \begin{pmatrix} \mathcal{F}_{U}(\mathcal{U}^{i},\mathcal{M}^{i}) & A_{M,M}(\mathcal{U}^{i},\mathcal{M}^{i}) \end{pmatrix}^{-1} \begin{pmatrix} \mathcal{F}_{U}(\mathcal{U}^{i},\mathcal{M}^{i}) \\ \mathcal{F}_{M}(\mathcal{U}^{i},\mathcal{M}^{i}) \end{pmatrix}^{-1} \begin{pmatrix} \mathcal{F}_{U}(\mathcal{U}^{i},\mathcal{M}^{i}) & A_{M,M}(\mathcal{U}^{i},\mathcal{M}^{i}) \end{pmatrix}^{-1} \end{pmatrix}^{-1} \begin{pmatrix} \mathcal{F}_{U}(\mathcal{U}^{i},\mathcal{M}^{i}) & A_{M,M}(\mathcal{U}^{i},\mathcal{M}^{i}) \end{pmatrix}^{-1} \begin{pmatrix} \mathcal{F}_{U}(\mathcal{U}^{i},\mathcal{M}^{i}) & A_{M,M}(\mathcal{U}^{i},\mathcal{M}^{i}) \end{pmatrix}^{-1} \end{pmatrix}^{-1} \begin{pmatrix} \mathcal{F}_{U}(\mathcal{U}^{i},\mathcal{M}^{i}) & A_{M,M}(\mathcal{U}^{i},\mathcal{M}^{i}) \end{pmatrix}^{-1} \begin{pmatrix} \mathcal{F}_{U}(\mathcal{U}^{i},\mathcal{M}^{i}) & A_{M,M}(\mathcal{U}^{i},\mathcal{M}^{i}) \end{pmatrix}^{-1}$$

where

 $A_{U,U}(\mathcal{U},\mathcal{M}) = D_{\mathcal{U}}\mathcal{F}_{\mathcal{U}}(\mathcal{U},\mathcal{M}), \qquad A_{U,M}(\mathcal{U},\mathcal{M}) = D_{\mathcal{M}}\mathcal{F}_{\mathcal{U}}(\mathcal{U},\mathcal{M}),$ $A_{M,U}(\mathcal{U},\mathcal{M}) = D_{\mathcal{U}}\mathcal{F}_{\mathcal{M}}(\mathcal{U},\mathcal{M}), \qquad A_{M,M}(\mathcal{U},\mathcal{M}) = D_{\mathcal{M}}\mathcal{F}_{\mathcal{M}}(\mathcal{U},\mathcal{M}).$

The linear systems

The most time consuming part of the procedure lies in solving the systems

$$\begin{pmatrix} A_{U,U} & A_{U,M} \\ A_{M,U} & A_{M,M} \end{pmatrix} \begin{pmatrix} \mathcal{U} \\ \mathcal{M} \end{pmatrix} = \begin{pmatrix} G_U \\ G_M \end{pmatrix}$$

The matrices A_{UU} and A_{UM} have the form

The block D_n correponds to the discrete operator $(Z_{i,j}) \mapsto (Z_{i,j}/\Delta t - \nu(\Delta_h Z)_{i,j} + [D_h Z]_{i,j} \cdot \nabla g(x_{i,j}, [D_h U^n]_{i,j})).$ Monotonicity $\Rightarrow D_n$ is a M-matrix, thus A_{UU} is invertible. The matrices A_{MM} and A_{MU} have the form

$$A_{MM} = \begin{pmatrix} D_1^T & -\frac{1}{\Delta t}I & 0 & \dots & 0 \\ & D_2^T & -\frac{1}{\Delta t}I & \ddots & \ddots & \\ 0 & D_2^T & -\frac{1}{\Delta t}I & \ddots & \ddots & \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & \ddots & 0 \\ \vdots & & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & \vdots & 0 \\ 0 & \dots & \dots & 0 & I \end{pmatrix} A_{MU} = \begin{pmatrix} 0 & \tilde{E}_1 & 0 & \dots & 0 \\ \vdots & \ddots & \tilde{E}_2 & \ddots & \vdots \\ \vdots & & \ddots & \tilde{E}_2 & \ddots & \vdots \\ \vdots & & \ddots & 0 \\ \vdots & & \ddots & 0 \\ \vdots & & & \ddots & 0 \\ 0 & \dots & 0 & I \end{pmatrix}.$$

Note that

$$\mathcal{V}^T \widetilde{E}_n \mathcal{W} = \sum_{i,j} M_{i,j}^{n-1} [D_h V]_{i,j} \cdot D_{q,q}^2 g(x_{i,j}, [D_h U^n]_{i,j}) [D_h W]_{i,j}.$$

From the convexity of g, \tilde{E}_n is positive if $M^{n-1} \ge 0$. **Th.** If V is strictly monotone and if $M^{n-1} \ge 0$, then the Jacobian matrix

$$\left(\begin{array}{cc} A_{U,U} & A_{U,M} \\ A_{M,U} & A_{M,M} \end{array}\right)$$
 is invertible.

The chosen procedure is as follows:

1. solve first $A_{U,U}\widetilde{\mathcal{U}} = G_U$. This is done by sequentially solving

$$D_k \widetilde{U}^k = -L_k \widetilde{U}^{k-1} + G_U^k, \tag{1}$$

i.e. marching in time in the forward direction. (1) are solved with efficient direct solvers.

2. Introducing $\overline{\mathcal{U}} = \mathcal{U} - \widetilde{\mathcal{U}}$,

$$\begin{pmatrix} A_{U,U} & A_{U,M} \\ A_{M,U} & A_{M,M} \end{pmatrix} \begin{pmatrix} \overline{\mathcal{U}} \\ \mathcal{M} \end{pmatrix} = \begin{pmatrix} 0 \\ G_M - A_{M,U} \widetilde{\mathcal{U}} \end{pmatrix},$$

which implies

$$\left(A_{M,M} - A_{M,U}A_{U,U}^{-1}A_{U,M}\right)\mathcal{M} = G_M - A_{M,U}\widetilde{\mathcal{U}}.$$
 (2)

(2) is solved by an iterative method, e.g. BiCGStab.

$$\nu = 1, \quad T = 1, \quad \Delta t = h = 1/50,$$

$$m(T) = 1$$

$$H(x, p) = \sin(2\pi x_2) + \sin(2\pi x_1) + \cos(4\pi x_1) + |p|^2,$$

$$F(x, m) = m^2, \quad V_0[m](x) = m^2 + \cos(\pi x_1)\cos(\pi x_2).$$

Convergence of the Newton method(left) and of a linear solver (right)

Same test except

$$\nu = 0.01, \quad \Delta t = 1/200.$$

Convergence of the Newton method(left) and of a linear solver (right) 500,000 m unknowns in the nonlinear system.

$$\nu = 0.2, V(m) = -\log(m)$$

V. Optimal planning problem

$$\begin{cases} \frac{\partial u}{\partial t} - \nu \Delta u + H(x, \nabla u) &= V(m(x)), \quad \text{ in } (0, T) \times \mathbb{T}, \\ \frac{\partial m}{\partial t} + \nu \Delta m + \operatorname{div} \left(m \frac{\partial H}{\partial p}(x, \nabla u) \right) &= 0, \quad \text{ in } (0, T) \times \mathbb{T}, \end{cases}$$

with the initial and terminal conditions

$$m(0,x) = m_0(x), \quad m(T,x) = m_T(x), \quad \text{in } \mathbb{T},$$

and

$$m \ge 0,$$
 $\int_{\mathbb{T}} m(t, x) dx = 1.$

- \mathbb{T} unit torus of \mathbb{R}^d
- $\nu \ge 0$
- *H* is a smooth Hamiltonian (convex):

$$H(x,p) = \sup_{\gamma \in \mathbb{R}^d} \left(p \cdot \gamma - L(x,\gamma) \right), \quad \text{with} \quad \lim_{|\gamma| \to \infty} \inf_x \frac{L(x,\gamma)}{|\gamma|} = +\infty$$

- $V : \mathbb{R} \to \mathbb{R}$ is a smooth function
- m_0 and m_T are probability densities on \mathbb{T} .

Existence results (P-L. Lions)

- Ok if $\nu = 0$, if H coercive, if V is a strictly increasing function and if m_0 and m_T are smooth positive functions.
- OK if $\nu = 0$, if V = 0 (optimal transport) and if m_0 and m_T are smooth positive functions.
- Ok if $\nu > 0$ and if $H(p) = \nu |p|^2$, if V is a strictly increasing function and if m_0 and m_T are smooth positive functions.
- If $\nu > 0$ and $H(p) \neq \nu |p|^2$?
- Non-existence if H is sublinear, $m_0 \neq m_T$ and T small enough.

Optimal control approach

Assumption: V = W' where $W : \mathbb{R} \to \mathbb{R}$ is a strictly convex function.

A weak form of the MFG system can be found by considering the optimal control problem:

minimize
$$(m,\gamma) \to \int_0^T \int_{\mathbb{T}} \left[m(t,x) L(x,\gamma(t,x)) + W(m(t,x)) \right] dt dx,$$

subject to the constraints

$$\begin{cases} \partial_t m + \nu \Delta m + \operatorname{div}(m \gamma) &= 0, \quad \operatorname{in} (0, T) \times \mathbb{T}, \\ m(T, x) &= m_T(x) \quad \operatorname{in} \mathbb{T}, \\ m(0, x) &= m_0(x) \quad \operatorname{in} \mathbb{T}. \end{cases}$$

This approach does not work completely, i.e. one may find the existence of a pair $(m, z \sim \gamma m)$, but the question is to recover the MFG system.

The semi-implicit scheme

$$\begin{cases} \frac{U_{i,j}^{n+1} - U_{i,j}^{n}}{\Delta t} - \nu(\Delta_{h}U^{n+1})_{i,j} + g(x_{i,j}, [D_{h}U^{n+1}]_{i,j}) &= V(M_{i,j}^{n}), \\ \frac{M_{i,j}^{n+1} - M_{i,j}^{n}}{\Delta t} + \nu(\Delta_{h}M^{n})_{i,j} + \mathcal{B}_{i,j}(U^{n+1}, M^{n}) &= 0, \\ M^{n} \in \mathcal{K}, \\ M_{i,j}^{N_{T}} = (m_{T})_{i,j}, \qquad M_{i,j}^{0} &= (m_{0})_{i,j}. \end{cases}$$

We will see that convex programming yields the existence of (M, U) under rather general assumptions.

Existence of (M, U) via convex programming **Theorem:**

If

- V = W' where W is a strictly convex and coercive C^2 function.
- The discrete Hamiltonian is convex and coercive:

$$\lim_{q_1 \to -\infty} \frac{g(x, q_1, q_2, q_3, q_4)}{|q_1|} = \lim_{q_2 \to +\infty} \frac{g(x, q_1, q_2, q_3, q_4)}{q_2} = +\infty,$$

$$\lim_{q_3 \to -\infty} \frac{g(x, q_1, q_2, q_3, q_4)}{|q_3|} = \lim_{q_4 \to +\infty} \frac{g(x, q_1, q_2, q_3, q_4)}{q_4} = +\infty.$$

$$\bullet m_0, m_T \in \mathcal{K} \text{ with } (m_0)_{i,j} > 0,$$

then a solution of the discrete MFG system can be found by solving a saddle-point problem. The primal problem is the discrete analogue of the optimal control of pdes problem above. Moreover M is unique (same usual proof).

Proof

- Call χ the indicator function of the set \mathbb{R}_+ .
- Call Θ the convex and continuous functional:

$$\Theta(\alpha,\beta) = \sum_{n=1}^{N_T} \sum_{i,j} (W+\chi)^* \left(\alpha_{i,j}^n + g(x_{i,j}, [\beta^n]_{i,j})\right),$$

where $\alpha = (\alpha_{i,j}^n), \beta = ([\beta^n]_{i,j})$ and $[\beta^n]_{i,j} = (\beta_{i,j}^{1,n}, \beta_{i,j}^{2,n}, \beta_{i,j}^{3,n}, \beta_{i,j}^{4,n}).$

• The cost function of the primal problem is defined as

$$\Theta^*(M,Z) = \sum_{n=0}^{N_T-1} \sum_{i,j} (W+\chi)(M_{i,j}^n) + \sup_{\beta} \left\{ \sum_{n=0}^{N_T-1} \sum_{i,j} \langle [Z_{i,j}^n], [\beta^{n+1}]_{i,j} \rangle - M_{i,j}^n g(x_{i,j}, [\beta^{n+1}]_{i,j}) \right\}.$$

• Here $\alpha \sim \partial_t u - \nu \Delta u$, $\beta \sim \nabla u$, $Z \sim m\gamma$.

The primal problem is to

where

$$\operatorname{div}_{\mathrm{h}}(Z)_{i,j} = (D_1^+ Z^1)_{i-1,j} + (D_1^+ Z^2)_{i,j} + (D_2^+ Z^3)_{i,j-1} + (D_2^+ Z^4)_{i,j}.$$

This is an optimal control problem for a discrete density driven by a discrete Fokker-Planck equation.

Convex programming

The primal problem can be written: minimize $\Theta^*(M, Z) + \Sigma^*(-M, -Z)$, where :

$$\Sigma(\alpha,\beta) = \begin{cases} \mathcal{F}(\Psi) & \text{ if } \exists \Psi \quad \text{s.t.} \quad (\alpha,\beta) = \Lambda(\Psi) \text{ and } \sum_{i,j} \Psi_{i,j}^0 = 0, \\ +\infty & \text{ otherwise.} \end{cases}$$

with

$$(\alpha, \beta) = \Lambda(\Psi) \quad \Leftrightarrow \quad \begin{cases} \alpha_{i,j}^{n+1} = \frac{\Psi_{i,j}^{n+1} - \Psi_{i,j}^{n}}{\Delta t} - \nu(\Delta_h \Psi^{n+1})_{i,j}, \\ [\beta^{n+1}]_{i,j} = [D_h \Psi^{n+1}]_{i,j}, & 0 \le n < N_T, \end{cases}$$

and

$$\mathcal{F}(\Psi) = \frac{1}{\Delta t} \left(\sum_{i,j} m_{0,i,j} \Psi_{i,j}^0 - \sum_{i,j} m_{T,i,j} \Psi_{i,j}^{N_T} \right).$$

Lemma: constraint qualifications

• Θ and Σ are convex and resp. continuous, LSC and there exists $(\tilde{\alpha}, \tilde{\beta})$ such that

$$\Sigma(\tilde{\alpha}, \tilde{\beta}) < +\infty.$$

• Θ^* and Σ^* are convex and LSC and there exists $(\widetilde{M}, \widetilde{Z})$ such that

$$\begin{cases} \Theta^*(\widetilde{M},\widetilde{Z}) < +\infty, \quad \Sigma^*(-\widetilde{M},-\widetilde{Z}) < +\infty, \\ \Theta^* \text{ is continuous near } \widetilde{M},\widetilde{Z}. \end{cases}$$

Fenchel-Rockafeller duality theorem There exists a saddle point:

$$\min\left(\Theta + \Sigma\right) = -\min\left(\Theta^*(M, Z) + \Sigma^*(-M, -Z)\right).$$

Optimality conditions for the saddle point \rightarrow the discrete MFG.

Open question Find bounds on M and U independent of h, Δt .

A penalized scheme

$$\begin{cases}
\frac{U_{i,j}^{\epsilon,n+1} - U_{i,j}^{\epsilon,n}}{\Delta t} - \nu(\Delta_h U^{\epsilon,n+1})_{i,j} + g(x_{i,j}, [D_h U^{\epsilon,n+1}]_{i,j}) = V(M_{i,j}^{\epsilon,n}), \\
\frac{M_{i,j}^{\epsilon,n+1} - M_{i,j}^{\epsilon,n}}{\Delta t} + \nu(\Delta_h M^{\epsilon,n})_{i,j} + \mathcal{B}_{i,j}(U^{\epsilon,n+1}, M^{\epsilon,n}) = 0, \\
M^{\epsilon,n} \in \mathcal{K},
\end{cases}$$

with the final time and initial time conditions

$$U_{i,j}^{\epsilon,0} = \frac{1}{\epsilon} (M_{i,j}^{\epsilon,0} - (m_0)_{i,j}), \qquad M_{i,j}^{\epsilon,N_T} = (m_T)_{i,j}, \quad \forall \, 0 \le i,j < N_h.$$

Theorem As $\epsilon \to 0$, $M^{\epsilon} \to M$, given by the discrete MFG system.

 $T = 1, \nu = 1, V(m) = m^2, H(p) = \sin(2\pi x_2) + \sin(2\pi x_1) + \cos(4\pi x_1) + |p|^2$

T = 0.01

 $T = 0.01, \nu = 0.1, H(p) = \sin(2\pi x_2) + \sin(2\pi x_1) + \cos(4\pi x_1) + |p|^3$

 $T = 0.1, \nu = 0.125, V(m) = -\log(m)$

