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Tumor classification

A reliable and precise classification of tumors is essential for
successful treatment of cancer.
Current methods for classifying human malignancies rely on
a variety of morphological, clinical, and molecular variables.
In spite of recent progress, there are still uncertainties in
diagnosis. Also, it is likely that the existing classes are
heterogeneous.
DNA microarrays may be used to characterize the
molecular variations among tumors by monitoring gene
expression profiles on a genomic scale.
This may lead to a more reliable classification of tumors.
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Tumor classification, cont’d

There are three main types of statistical problems
associated with tumor classification:

1. the identification of new/unknown tumor classes
using gene expression profiles - cluster analysis /
unsupervised learning;

2. the classification of malignancies into known classes -
discriminant analysis / supervised learning;

3. the identification of “marker” genes that characterize
the different tumor classes - variable selection.
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Gene expression data

Gene expression data on p genes (variables) for n mRNA
samples (observations)

Genes

Xn×p =


x11 x12 . . . x1p

x21 x22 . . . x2p

...
...

. . .
...

xn1 xn2 . . . xnp

 mRNA samples

xij = gene expression level of gene j in mRNA sample i

=

{
log
(

Red intensity
Green intensity

)
,

log(Avg. PM− Avg. MM).
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Gene expression data, cont’d

In some situations, the mRNA samples are known to belong
to certain classes (e.g. follicular lymphoma).
Label the classes by {1, 2, . . . ,K}.
Then, the data for each observation consist of:

xi =
(
xi1, xi2, . . . , xip

)
- gene expression profile / predictor variables

yi = tumor class / response.
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The prediction problem

Want to predict a response y given predictor
variables x.
Task: construct a prediction function f , such that f(x) is
an accurate predictor of y.

E.g. digit recognition for zipcodes;
prediction of binding peptide sequences;
prediction of tumor class from gene expression data.
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Predictors

A predictor or classifier for K tumor classes partitions
the space X of gene expression profiles into K disjoint
subsets, A1, . . . , AK , such that for a sample with expression
profile x = (x1, . . . , xp) ∈ Ak the predicted class is k.
Predictors are built from past experience, i.e. from
observations which are known to belong to certain classes.
Such observations comprise the learning set (LS)
L = {(x1, y1), . . . , (xn, yn)}.
Classifier built from a learning set L:

C(·,L) : X → {1, 2, . . . ,K}.

Predicted class for an observation x: C(x,L).
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Linear discriminant analysis

Suggested in 1936 by R. A. Fisher, linear discriminant
analysis (LDA) consists of

1. finding linear combinations x a of the gene expression
profiles x = (x1, . . . , xp) with large ratios of
between-groups to within-groups sum of squares -
discriminant variables;

2. predicting the class of an observation x by the class
whose mean vector is closest to x in terms of the
discriminant variables.
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Linear discriminant analysis, cont’d

First discriminant variable
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Nearest neighbor classifier

These methods are based on a measure of distance between
observations, such as the Euclidean distance or one minus
the correlation between two gene expression profiles.
The k nearest neighbor rule, due to Fix and Hodges
(1951), classifies an observation x as follows:

1. find the k observations in the learning set that are
closest to x;

2. predict the class of x by majority vote, i.e., choose
the class that is most common among those k
observations.

The number of neighbors k is chosen by cross-validation.
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Nearest neighbor classifier, cont’d
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Classification trees

Binary tree structured classifiers are constructed by
repeated splits of subsets (nodes) of the measurement
space X into two descendant subsets, starting with X
itself. Each terminal subset is assigned a class label and the
resulting partition of X corresponds to the classifier.
Three main aspects of tree construction: (i) the selection of
the splits; (ii) the decision to declare a node terminal or to
continue splitting; (iii) the assignment of each terminal
node to a class.
Different tree classifiers use different approaches to deal
with these three issues. Here, we use CART -
Classification And Regression Trees - of Breiman et
al. (1984).
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Classification trees, cont’d

New observation: x = (x1, ...., xp)
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Aggregating predictors

Breiman (1996, 1998) found that gains in accuracy could
be obtained by aggregating predictors built from
perturbed versions of the learning set. In classification, the
multiple versions of the predictor are aggregated by voting.
Let C(·,Lb) denote the classifier built from the bth
perturbed learning set Lb and let wb denote the weight
given to predictions made by this classifier. The predicted
class for an observation x is given by

argmaxk
∑
b

wb I(C(x,Lb) = k).
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Bagging

Breiman (1996).

In the simplest form of bagging - bootstrap aggregating
- perturbed learning sets of the same size as the original
learning set are formed by forming non-parametric
bootstrap replicates of the learning set, i.e. by drawing at
random with replacement from the learning set.

Predictors are built for each perturbed dataset and
aggregated by plurality voting (wb = 1).
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Variants on bagging

Parametric bootstrap. Perturbed learning sets are
generated according to a mixture of multivariate normal
(MVN) distributions.
Convex pseudo-data. Breiman (1996)
Each perturbed learning set is generated by repeating the
following n times:

1. select two instances (x, y) and (x′, y′) at random
from the learning set;

2. select at random a number v from the interval [0, d],
0 ≤ d ≤ 1, and let u = 1− v;

3. define a new instance (x′′, y′′) by y′′ = y and
x′′ = ux + vx′.

16



Boosting

Freund and Schapire (1997), Breiman (1998).
The data are re-sampled adaptively so that the weights
in the re-sampling are increased for those cases most often
misclassified.
The aggregation of predictors is done by weighted
voting.

For a learning set L = {(x1, y1), . . . , (xn, yn)}, let
{p1, . . . , pn} denote the re-sampling probabilities, initialized
to be equal. For bth step of the boosting algorithm
(adaptation of AdaBoost):
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Boosting, cont’d

1. generate a perturbed learning set Lb of size n by sampling
with replacement from L using {p1, . . . , pn};

2. build a classifier C(·,Lb) based on Lb;
3. run the learning set L through the classifier C(·,Lb) and

let di = 1 if the ith case is classified incorrectly and
di = 0 o.w.;

4. define

εb =
∑
i

pidi, βb = (1− εb)/εb and wb = log(βb)

and update the re-sampling probabilities for the (b+ 1)st
step by

pi =
piβ

di
b∑

i piβ
di
b

.
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Vote margins

For aggregate classifiers, vote margins assessing the
strength of a prediction may be defined for each
observation.
The vote margin for an observation x is defined to be

M(x) =
maxk

∑
b wb I(C(x,Lb) = k)∑

b wb
.

When the perturbed learning sets are given equal weights,
i.e. wb = 1, the vote margin is simply the proportion of
votes for the “winning” class, regardless of whether it is
correct or not.
Margins belong to [0, 1].
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Gene voting, Golub et al. (1999)

For binary classification, each gene casts a vote for class 1 or 2,
and the votes are aggregated over genes. Gene j’s vote for a
test set observation x = (x1, . . . , xp) is given by

vj = aj(xj − bj),

where

aj =
x̄(1)
.j − x̄

(2)
.j

sd(1)
j + sd(2)

j

, bj =
1

2
(x̄(1)
.j + x̄(2)

.j ).

Let V1 and V2 denote the sum of positive and negative votes,
respectively. The predicted class is 1 if V1 ≥ V2 and 2 otherwise.

This is a minor variant on the sample ML discriminant
rule for multivariate normal class densities with constant
diagonal covariance matrices.
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Datasets - Lymphoma

Study of gene expression in the three most prevalent adult
lymphoid malignancies using a specialized cDNA
microarray, the Lymphochip (Alizadeh et al., 2000).

• n = 81 mRNA samples, three classes:
B-cell chronic lymphocytic leukemia (B-CLL) 29 cases
Follicular lymphoma (FL) 9 cases
Diffuse large B-cell lymphoma (DLBCL) 43 cases

• p = 4, 682 genes.
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Datasets - Leukemia

Study of gene expression in two types of acute leukemias
using Affymetrix high-density oligonucleotide arrays (Golub
et al., 1999).

• n = 72 mRNA samples, three classes:
B-cell acute lymphoblastic leukemia (B-cell ALL) 38 cases
T-cell acute lymphoblastic leukemia (T-cell ALL) 9 cases
Acute myeloid leukemia (AML) 25 cases

• p = 6, 817 genes.
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Data pre-processing

• Imputation. k-nearest neighbor imputation, where
genes are “neighbors” and the similarity measure
between two genes is the correlation in their
expression profiles.

• Standardization. Standardize observations
(arrays) to have mean 0 and variance 1 across
variables (genes).
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Study design

The original datasets are repeatedly randomly divided into a
learning set and a test set, comprising respectively 2/3 and
1/3 of the data. For each of N = 150 runs:

• Select a subset of p genes from the learning set based
on their ratio of between to within-groups sum of
squares, BSS/WSS. p = 50 for lymphoma, p = 40
for leukemia.

• Build the different predictors using the learning sets
with p genes.

• Apply the predictors to the observations in the test
set to obtain test set error rates.
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Results

• In the main comparison, the nearest neighbor
predictor has the smallest error rates, while LDA has
the highest error rates.

• Aggregating predictors improves performance, the
largest gains being with boosting and bagging with
convex pseudo-data.

• For the binary class leukemia data, “diagonal” LDA
as in Golub et al. performs similarly to nearest
neighbors, boosting and bagging with convex
pseudo-data.
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• For the lymphoma or leukemia datasets, increasing
the number of variables to p = 200 doesn’t affect
much the performance of the various predictors.

• A more careful selection of a small number of genes
(p = 10) improves the performance of LDA
dramatically.
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Discussion

• “Diagonal” LDA vs. “correlated” LDA: ignoring
correlation between genes helps here.

• Unlike classification trees and nearest neighbors,
“diagonal” or “correlated” LDA is unable to take into
account gene interactions.

• Although nearest neighbors are simple and intuitive
classifiers, their main limitation is that they give very
little insight into mechanisms underlying the class
distinctions.

• Classification trees are capable of handling and
revealing interactions between variables.
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• Useful by-product of aggregated predictors: vote
margins.

• The relative performance of the different predictors
may vary with variable selection.
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Open questions

• Variable selection. A crude criterion such as
BSS/WSS may not identify the genes that
discriminate between all the classes and may not
reveal interactions between genes.
Statistical vs. biological significance.

• Cluster analysis. Identification and validation of
new tumor classes.
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