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Spot — output

Spot_ID  Gmean GIQR Rmean RIQR  Gvalley Rvalley
1 13177 0.62 10327 0.47 463 1282
2 8000 0.14 5070 0.13 463 1185
3 3138 0.27 3211 0.19 481 1213
4 8433 0.25 8635 0.40 481 1265
5 4118 0.35 3776 0.22 463 1265
6 15473 0.90 5603 0.65 456 1231
7 2399 0.21 2995 0.16 481 1253
8 1245 0.27 2107 0.11 483 1265
9 35959  0.81 31807 0.73 483 1247
Gmorph  Rmorph  area  circularity ~ Gsn Rsn Iratio
260 1208 31 .88 5.62 2.92 .50
261 1174 32 .83 4.88 1.73 .99
261 1146 56 .64 3.46 0.84 48
260 1208 11 1.38 4.96 2.62 13
262 1163 16 1.03 3.88 1.14 .57
262 1144 40 74 5.86 1.95 1.77
250 1185 30 .94 3.03 0.57 .26
262 1157 20 1.12 1.91 -0.42 12
262 1164 61 .85 7.09 4.68 .22




Statistical problems involving microarray data

http://wuw.stat.Berkeley.EDU/users/terry/
zarray/Html/1list.html

Image analysis ones already mentioned.
6. Use of housekeeping genes.
7. Quality, Il: Spots.
8. Normalization within an experiment:
O when few genes change.
O when many genes change.
0 use of red-green and green-red pairs.
9. Normalization between experiments: location and scale
effects.
10. Noise.
11. Variability.
12. Bias : Use of "truth".



13. Quality, IlI: Ratios.
14. Who is up/down?
15. P-values.
16. Planning of experiments:
1. design.
2. sample sizes.
17. Analysis of factorial experiments.
18. Discrimination and allocation.
19. Clustering:
1. of samples.
2. of genes.
20. Time course experiments.
21. Gene networks.
22. Special problems.
O Mixture analyses.
[ Pooled cDNA vs amplified DNA.
We start with 9 and go on to 14.



Experiments

Goal. Identify genes with altered expression in the livers of
two lines of mice with very low HDL cholesterol levels
compared to inbred control mice.

Two experiments: (1) Apo Al knock-out mouse model and
(2) SR-BI transgenic mouse model. In each experiment:

e 8 treatment (trt) mice (apo Al ko or SR-BI tg) and 8
control (ctl) mice (C57BI /6 or FVB).

e 16 hybridizations: mRNA from each of the 16 mice is
labeled with Cy5, pooled mRNA from control mice is
labeled with Cy3.

e Probes: ~ 6,000 cDNAs, including 200 related to lipid
metabolism.



Single Slide plots

R vs G (intensity scale)
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Plotting transformed intensities

Log R vs Log G (base 2)

More informative.



M =logsR/G vs A = %(logsG + log2 R)

More informative still.



Within-slide normalization

Normalization balances red and green intensities. Imbalance may
be caused by differential incorporation of dyes, different amounts
of the two species of RNA, differential scanning, etc. In practice,
we usually need to bump up the red intensity a bit to balance
the green.

log R/G — log R/G + ¢ =logkR/G

A standard choice is to arrange that normalized log ratios have
zero mean or median. Our preference is to do this in an
A-dependent way: we choose ¢ = ¢(A) using lowess.

A proof that this is better than using a constant is currently
lacking. It certainly changes things, and we are pretty sure it
helps.



Normalization - Median

Assumption: Changes roughly symmetric

First panel: smoothed densities of logoG and logs R.
Second panel: M vs A plot with median M put to 0.



Normalization - Lowess

Global lowess. Assumption: changes roughly symmetric at
all intensities




Normalization - Print Tip Lowess

Print-tip lowess normalization. Need stronger assumption.




M vs A — after print-tip normalization




Density

Effects

of normalization |

None
Median
Lowess
Print-tip

N=6376 Bandwidih = 01125



Effects of normalization Il
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Within print-tip box plots
of print-tip normalized M

Print-tip scale effects remain: last four more variable.
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Statistical Software

Splus or R (freeware)

SHELL>R —-vsize=50M —nsize=2000k

R : Copyright 2000, The R Davelopment Care Team
Version 1.0.1 (April 14, 2000)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.

Type  "?license” or "?licence” for distribution details.

R is a collaborative project with many contributors.

Type  "?contributors” for a 1is

Type  "demw(" for some demos, "help()" for on-line help, or
"help.start()" for a HTML browser interface to help.

Type  "qO" to quit R

[Previously saved workspace restored]

> 1ibrary(Spot)
Spot> Tibrary(sma)
Spot>




Which genes have changed expression levels?

Single-slide methods

Ezisting methods Model dependent rules for deciding
whether (R, G) corresponds to a differentially expressed
gene.

Amounts to drawing two curves in the (R, G)—plane and
calling a gene differentially expressed if its (R, G) falls
outside the region between the two curves.

We probably do not know enough about the systematic and
random effects within a microarray experiment to justify
strong modeling assumptions or theory-based predictions.
Conclusion n =1 slide may not be enough.



Single-slide methods, cont’d

Existing methods differ in the distributional assumptions
they make regarding (R, G).

1. Chen et al. Each (R, G) is assumed to be normally and
independently distributed with constant CV. Decision
based on R/G only. (purple)

2. Newton et al. Gamma-Gamma-Bernoulli hierarchical
model for each (R, G). (yellow)

3. Roberts et al. Each (R, G) is assumed to be normally and
independently distributed with variance depending linearly
on the mean.

4. Sapir & Churchill. Each log R/G is assumed to be

distributed according to a mixture of normal and uniform
distributions. Decision based on R/G only . (turquoise)



Which genes have changed expression levels?




A Bayesian approach for replicated slides

Motivation To combine information in M values, taking
into account their variability within and between slides. Our
Bayesian approach is meant to be a vehicle for doing this,
but we do not take the probabilities implicit in it seriously.
Mainly, we want to avoid being misled by means involving
outliers, while taking care not to be too impressed with
unusually small variances.

Sampling model Let M;; = log(R;;/G;j) be the log ratio

of our green (G;;) and red (R;;) intensities for a gene,
i=1...m refers to the slides and j = 1...n to replicates
within slides. We suppose



~_J mi with probability p
EMi; = { 0  with probability 1 —p

We also suppose

Mij ~ pN(/Li,Oj) + (1 —p)N(O,O’2)

but with variances o between slides and o2, within slides,
o?=cl+o2. Ifi=j=2

02 + o} o2 0 0
2 2 2
o ol + o 0 0
Cov(M;;) 6” v 0 b o2 + o} o2
w w
0 0 o2 o2 + ot



Priors for 1 and 7

For an integer v and ¢ >0, ¢ > 0

avt ~ X2

N (0) (CT)—l)I -5(0)1=1 where §(0) = { (1) :i Z ;8



Technical point

It will be noted that we have chosen the standard conjugate
prior for our normal means and variances. This was with
the aim of getting a simple formula to use for the posterior
odds ratio, see below. However, there appear to be no
closed form expressions (simple or otherwise) when there
are two components of variance, even in this balanced case.
MCMC methods might work here, but we have 5,000 small
samples, and have yet to try it out.

For these technical reasons, we therefore suppose that
0121, = kjlol%, with k1 known.
In fact we use the parametrization

-1_ 2 2 2 _
Tt =05 +noy and o, = k7.



The log odds ratio R

We are interested in whether or not the gene is
differentially expressed, i.e. whether p # 0 or = 0, so we
calculate the log posterior odds ratio

o Prp0l0n)
B= logp (=0|(a))

i vimn
B P ( c >1/2 va +mnM? + SSB + kSSW :
1—p\c+mn va +mnM?2 + SSB + kSSW — (mnM.)?
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Difference (red)

Difference (green)

Difference (red)

Average red abundance within slide 1

Average red abundance within slide 2

Difference (green)

Average green abundance within slide 1

Average green

abundance within slide 2




Difference between M:s within slide 1
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Difference between M:s within slide 2
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Average normalized M

Normalized M. vs A.
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log(odds ratio)

log(odds ratio)
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