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Outline

Gene functional classification using support vector machines.

e |earning from gene expression data.
e Learning from promoter region sequences.

e Learning from two types of data.
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Separating hyperplane
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e Each vector in the gene expression matrix may be
thought of as a point in a 79-dimensional input space.

e A simple way to build a binary classifier is to con-
struct a hyperplane separating class members from
non-members in this space.

e Thisisthe approach taken by perceptrons, also known
as single-layer neural networks.



Gaussian decision boundary
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A radial basis kernel function yields a Gaussian decision
boundary in the input space.



SVMs for gene functional classification
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Classification performance

Method TCA Resp Ribo Prot Hist HTH
D-p 1 SVM 6 31 224 35 18 -56
D-p 2 SVM 9 39 229 48 18 -3
D-p 3 SVM 12 38 229 51 18 -1
Radial SVM| 11 33 226 52 18 0

Parzen 6 18 220 39 14 -14
FLD 5 30 217 39 16 -14
C4.5 -7 8 169 33 16 -2
MOC1 -1 -4 164 26 10 -6

e Values reported are cost savings relative to the null
procedure that classifies all examples as negatives.

e Cost is defined as the number of false positives plus
twice the number of false negatives.



Promoter region analysis
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Motif occurences in the nucleosomal promoters.

e Each line corresponds to a 1000-base pair nucleosomal

promoter region.

e Boxes and diamonds represent motif occurrences.



Meta-MEME
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e Meta-MEME combines gapless motif models in a hid-
den Markov model framework.

e Meta-MEME models have fewer parameters than stan-

dard profile HMMs.

e The completed connected model topology allows for
the repetition or shuffling of motifs or domains.



A model of ribosomal protein promoters
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Visualizing Fisher score vectors




Nucleosomal prediction
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The final line is a promoter from a gene (YOR084W) iden-
tified by the Meta-MEME + SVM method.



Phylogenetic profiles

Synechocystis sp.
M. pneumoniae

S. cerevisiae
H. influenzae

M. genitalium
H. pylori

M. jannaschi
E. coli

YALOO1C 1223 43.44 1454 0.000 22.08 63.08 0.000 4.345
YALOO2W 0.000 0.000 0.000 2.243 0.000 2.909 0.000 0.000
YALOO3W 0.000 37.94 0.000 67.98 1234 1476 1234 2.345
YALOOSC 1443 2345 1.211 0.000 1987 67.00 0.000 13.45

e For a given pair of genes, a similar pattern of inheri-
tance across species may imply a functional link.

e Each profile entry is the negative log E-value of the
top-scoring sequence from a BLAST search of a com-
plete genome.

e Negative values (corresponding to E-values greater
than 1) are set to zero.



Similar patterns of inheritance

- Log E-value

Species

Phylogenetic profiles of 22 amino acid transporter genes.
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Phylogenetic profiles of 22 randomly selected genes.



Learning from heterogeneous data
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Comparison of data integration methods

Method Cost savings Best Non-learnable
Gene expression 0.19£0.02 10 4
Phylogenetic profiles 0.21 £0.04 12 6
Early integration 0.27 £0.03 17 3
Intermediate integration 0.31 £0.03 21 2
Late integration 0.24 £0.03 8 3

e 27 classes are included.

e Cost savings of 1 is perfect; 0 is comparable to clas-
sifying everything as negative.
e "Best’: cost savings is within one standard deviation

of the best cost savings.

e "Non-learnable”: cost savings is within one standard
deviation of zero.
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