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Gene Expression Analysis

With extensive DNA sequence data emerging,

determining the structure of gene regulatory

networks is the next great challenge in biology.

Time series microarray expression data of all

6601 yeast genes over multiple cell division cy-

cles (Spellman/Cho) facilitates identifying reg-

ulatory elements.

Given a set of time series data, we seek to

suggest possible inhibition/activation relations

between the genes.

Our methodology: using signal processing tech-

niques, reduce the time series data set to a

graph of possible pairwise gene relationships.



Cho/Spellman Data Sets

Four sets of time series, each using a di�erent

cell synchronization method.

Not all of the 6600 orfs yielded data for each

time point in each series.

Data Period obs. Period det. Æt samples full orfs
alpha 66� 11 min. 70� 7 min. 7 18 3361
cdc28 90� 10 min. 100� 10 min. 10 17 1188
cdc15 70� 10 min. 90� 10 min. 10=20 24 3453
elu | | 30 14 4753

Each series (except for elu) clearly ran for more

than one cell cycle.



Previous Work

Several teams have attempted to extract gene

regulatory data from the Cho/Spellman data:

� Eisen (PNAS '98) / Spellman (Mol. Bio.

'98) using clustering / promoter analysis.

� Chen, Skiena, Filkov (RECOMB '99) using

signal processing and combinatorial opti-

mization.

� Friedman, et.al (RECOMB '00) using Bayesian

networks.

� Di�erential equation modeling (CHC-99),

wavelets (KD-2000), and singular value de-

composition (HMMCBF-2000).

Not much has been said about the accuracy of

predictions from these systems. . .



Outline of Talk

Describe our previous system (RECOMB '99)

for proposing regulatory relations.

Assessment of the potential of inducing regu-

latory relations from Cho/Spellman data.

Improved edge detection algorithms for detect-

ing regulatory relations.

Periodicity and phase shift analysis for time-

series integration.

Comparing correlations of distinct length se-

quences

Correlation signi�cance of small alphabet se-

quences.



Phases of Regulatory Candidate
Identi�cation

� Pre-Filtering unreliable expression data.

� Clustering

� Curve Smoothing.

� Calculating regulation scores.

� Optimizing regulation assignments.
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Experimental Results

This network contains 7 proposed activators

and 8 proposed inhibitors.
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Prof. James Konopka, a yeast specialist at

Stony Brook, observed several potentially in-

teresting features in our network, including genes

involved with cell division cycle, DNA replica-

tion, and amino acid synthesis.



Correlation and Similarity

The good things about using correlation as a

similarity measure for gene expression data are

(1) it is scale invariant,and (2) it seems to work

well.
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However, there are at least two potential prob-

lems:

� Correlation is not a metric, and hence does

not satisfy the triangle inequality.

� It is not meaningful to compare correla-

tions of sequence pairs of di�erent lengths.



Correcting for Sequences of
Di�erent Lengths

We stress that the Cho/Spellman data sets

are short time series, which invalidates certain

standard assumptions.

In particular, short sequences are far more likely

to have chance high correlations than long se-

quences.
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By plotting the cumulative distribution func-

tion of positive correlation coeÆcients, we could

normalize signi�cance by length.



Inferring Cycle Lengths

Inferring cell cycle lengths involves measuring

the correlation between a pre�x of a time-series

and its suÆx.

Selecting the shift period which maximized the

highest correlation didn't work well (see left

�gure) because high correlations of short se-

quences were given too much weight.
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After normalizing to account for sequence length,

we obtain a peak at the proper place.



Inferring Cycle O�sets

Di�erent synchronization methods leave cells

in di�erent states of the cell cycle.

Interleaving the di�erent time-series requires

determining the relative phase shift of each

pair of experiments.

We seek the time shift which maximizes the

number of orfs whose correlation across the

series pair is maximized.

Data set 1 Data set 2 Shift

alpha cdc28 0� 2 samples
cdc28 cdc15 1� 2 samples
cdc15 alpha 0 samples

Our computed shifts appear basically on tar-

get which known results about the length of

di�erent phases of the cell cycle.



Correlation of Small Alphabet
Sequences

One approach to dealing with the high error

rates associated with gene expression data is

bucketing the observed values into a small num-

ber of bins.

In the limiting case, such data can be quan-

tized to 0/1, i.e. binary sequences.

The Hamming distance, or number of bit mis-

matches, provides a natural distance metric

between pairs of binary strings.

How well do the correlation coeÆcient and

Hamming distance agree in scoring binary se-

quence similarity?



Analysis

Two n-bit binary sequences can be viewed as a

single sequence of length n over the alphabet
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Let a; b; c; d denote, respectively, the counts of

character from � in the pair (X; Y ).

Clearly b+ c is the Hamming distance of the

sequence.

Analysis of the correlation coeÆcient reduces

to:

corr(X; Y ) =
a� (a+ b)(a+ c)=nq

((a+ b)� (a+ b)2=n)((a+ c)� (a+ c)2=n)

Exhaustive search over all a, b, c, and d is

tractable for large n.



Average and Extremal Values

The potential gap between Hamming distance

and correlation can be distressingly large:

Two sequences of length n which di�er in only

one position (a = 1, b = 1, c = 0, and d =

n� 2) have correlation ofq
1=2� 1=2(n� 1) � 1=

p
2 � 0:7067

Two sequences of length n can di�er in two

positions (a = 0, b = 1, c = 1, and d = n � 2)

and have a correlation of �1=(n� 1) � 0.
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Still, the average bounds fall exactly on the

desired line.



Evaluating Known Regulatory
Pairs

To analyze the potential for determining reg-

ulatory pairs from the Cho/Spellman data, we

constructed a data base of all known regula-

tions from the Yeast Protein Database YPD.

After mapping most of these names to the

Spellman/Cho data:

time
points

time
inter-
vals

genes
mapped

activations inhibitions

cdc28 17 10
min.

366 469 155

alpha 18 7 min. 335 343 96

Less than 20% of these known regulatory pairs

scored a correlation above 0.5.



Time Shift Required?

This fraction did not increase when we rela-

tively shifted the time series:
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A Ph.D biologist (Zhi) examined all known

pairs by eyeball and saw no common pattern

to indicate possible transcription regulation in

more than 20% of these cases.

Conclusion: It seems futile to hope to induce

large networks from this data.

However, it is still reasonable to identify inter-

esting pairs of expressed genes.



Improved Edge Detection

Based on our study of known regulatory pairs,

we developed an improved edge detection func-

tion.

It seeks to eliminate narrow peaks and troughs

as likely experimental error.

It ignores variation of 10% in gene expression

level as likely experimental error in de�ning lo-

cal minima and maxima.

It measures the time di�erence between peaks

relative to the longest biologically plausible de-

lay, about 15 minutes.



Edge Detection Algorithm
� Primary edges link neighboring local maxima and minima.

� Secondary edges line all primary edges whose height

height =
high point expression� low point expression

average expression of the gene

is greater than a threshold, typically 30%. This accounts for
the minimal biologically signi�cant expression level change.
Any changes below this level are probably due to experimental
error.

� Tertiary edges result from merging adjacent secondary edges
of similar direction.

� Quadrary edges result from eliminating narrow peaks or troughs.

Pairs of genes are scored solely based on their

quadrary edges.

The similarity score Sg between Ga and Gb is

given as:

Sg =
X

all e

d(1� real gap

max gap
)=
p
nanb

where d 2 f�1;1g denotes the agreement of

the slopes of ea and eb.



Results

We scored how well both measures did at iden-

tifying clearly interesting / uninteresting series

pairs, as judged by our biologist (Zhi).

Alpha Data
correlation coeÆcient edge function

thresh total good bad thresh total good bad
> 0:85 107 5 0 > 0:6 96 5 0
> 0:8 192 5 2 > 0:5 223 5 0
> 0:7 703 5 7 > 0:4 557 7 6
> 0:6 1852 9 13 > 0:3 1581 11 15

CDC 28 Data
correlation coeÆcient edge function

thresh total good bad thresh total good bad
> 0:85 289 2 2 > 0:6 146 1 0
> 0:8 628 5 4 > 0:5 398 3 0
> 0:7 1826 22 15 > 0:4 1236 11 3
> 0:6 3903 31 19 > 0:3 3401 19 20

We are making fewer mistakes at high thresh-

olds than the correlation coeÆcient.



Interesting Pairs
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Interesting regulatory pairs detected by our edge

function but not by correlation.

See http://www.cs.sunysb.edu/�skiena/gene



Network of 140 activations in
Alpha with score > 0:4
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Thanks

This has included joint work with:

� Ting Chen, Dept. of Mathematics, Univ.

of Southern California.

� Vladimir Filkov, Dept. of Computer Sci-

ence, SUNY Stony Brook.

� Jizu Zhi, Center for Biotechnology, SUNY

Stony Brook.
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