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Gene Expression Analysis

With extensive DNA sequence data emerging,
determining the structure of gene regulatory
networks is the next great challenge in biology.

Time series microarray expression data of all
6601 yeast genes over multiple cell division cy-
cles (Spellman/Cho) facilitates identifying reg-
ulatory elements.

Given a set of time series data, we seek to
suggest possible inhibition/activation relations
between the genes.

Our methodology: using signal processing tech-
niques, reduce the time series data set to a
graph of possible pairwise gene relationships.



Cho/Spellman Data Sets

Four sets of time series, each using a different
cell synchronization method.

Not all of the 6600 orfs vielded data for each
time point in each series.

Data Period obs. Period det. ot samples full orfs
alpha 66+ 11 min. 70 £ 7 min. 7 18 3361
cdc28 | 90 £ 10 min. 100+ 10 min. 10 17 1188
cdcls5 | 70 £ 10 min. 90 4+ 10 min. 10/20 24 3453
elu — — 30 14 4753

Each series (except for elu) clearly ran for more
than one cell cycle.



Previous Work

Several teams have attempted to extract gene
regulatory data from the Cho/Spellman data:

e Eisen (PNAS '98) / Spellman (Mol. Bio.
'98) using clustering / promoter analysis.

e Chen, Skiena, Filkov (RECOMB '99) using
signhal processing and combinatorial opti-
mization.

e Friedman, et.al (RECOMB '00) using Bayesian
networks.

e Differential equation modeling (CHC-99),
wavelets (KD-2000), and singular value de-
composition (HMMCBF-2000).

Not much has been said about the accuracy of
predictions from these systems. ..



Outline of Talk

Describe our previous system (RECOMB '99)
for proposing regulatory relations.

Assessment of the potential of inducing regu-
latory relations from Cho/Spellman data.

Improved edge detection algorithms for detect-
ing regulatory relations.

Periodicity and phase shift analysis for time-
series integration.

Comparing correlations of distinct length se-
quences

Correlation significance of small alphabet se-
quences.



Phases of Regulatory Candidate
Identification

e Pre-Filtering unreliable expression data.
e Clustering

e Curve Smoothing.

e Calculating regulation scores.

e Optimizing regulation assignments.
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Inhibitee: 102 f---

Candidate activator (L) / inhibitor (R) pairs.



Experimental Results

This network contains 7 proposed activators
and 8 proposed inhibitors.
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Prof. James Konopka, a yeast specialist at
Stony Brook, observed several potentially in-
teresting features in our network, including genes
involved with cell division cycle, DNA replica-
tion, and amino acid synthesis.



Correlation and Similarity

The good things about using correlation as a
similarity measure for gene expression data are
(1) it is scale invariant,and (2) it seems to work
well.

corr(X,Y) = DTy = ) wi ) yi/n

(1)

However, there are at least two potential prob-
lems:

e Correlation is not a metric, and hence does
not satisfy the triangle inequality.

e It is not meaningful to compare correla-
tions of sequence pairs of different lengths.



Correcting for Sequences of
Different Lengths

We stress that the Cho/Spellman data sets
are short time series, which invalidates certain

standard assumptions.

In particular, short sequences are far more likely
to have chance high correlations than long se-

quences.

n)

Probability (frequency/meal

By plotting the cumulative distribution func-
tion of positive correlation coefficients, we could
normalize significance by length.



Inferring Cycle Lengths

Inferring cell cycle lengths involves measuring
the correlation between a prefix of a time-series
and its suffix.

Selecting the shift period which maximized the
highest correlation didn’'t work well (see left
figure) because high correlations of short se-
quences were given too much weight.

After normalizing to account for sequence length,
we obtain a peak at the proper place.



Inferring Cycle Offsets

Different synchronization methods leave cells

in different states of the cell cycle.

Interleaving the different time-series requires
determining the relative phase shift of each

pair of experiments.

We seek the time shift which maximizes the
number of orfs whose correlation across the

series pair is maximized.

Data set 1 | Data set 2 | Shift
alpha cdc28 0 — 2 samples
cdc28 cdcl5s 1 — 2 samples
cdcl5s alpha 0 samples

Our computed shifts appear basically on tar-
get which known results about the length of

different phases of the cell cycle.




Correlation of Small Alphabet
Sequences

One approach to dealing with the high error
rates associated with gene expression data is
bucketing the observed values into a small num-
ber of bins.

In the limiting case, such data can be quan-
tized to 0/1, i.e. binary sequences.

The Hamming distance, or number of bit mis-
matches, provides a natural distance metric
between pairs of binary strings.

How well do the correlation coefficient and
Hamming distance agree in scoring binary se-
quence similarity?



Analysis

Two n-bit binary sequences can be viewed as a
single sequence of length n over the alphabet

A =1(1). (o) (1) ()

Let a,b,c,d denote, respectively, the counts of
character from A in the pair (X.,Y).

Clearly b + ¢ is the Hamming distance of the
sequence.

Analysis of the correlation coefficient reduces
to:

corr(X,Y) = a—(atb)latc)/n

V(@ +b) = (a+)2/m)((a+ ) = (a+c)?/n)

Exhaustive search over all a, b, ¢, and d is
tractable for large n.



Average and Extremal Values

T he potential gap between Hamming distance
and correlation can be distressingly large:

Two sequences of length n which differ in only
one position (a =1, b =1, ¢ = 0, and d =
n — 2) have correlation of

J1/2—1/2(n—1) = 1/V2 ~ 0.7067

Two sequences of length n can differ in two
positions (a =0, b=1,¢c=1, and d=n— 2)
and have a correlation of —1/(n—1) = 0.
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Still, the average bounds fall exactly on the
desired line.



Evaluating Known Regulatory
Pairs

To analyze the potential for determining reg-
ulatory pairs from the Cho/Spellman data, we
constructed a data base of all known regula-
tions from the Yeast Protein Database YPD.

After mapping most of these names to the
Spellman/Cho data:

time | time genes | activations | inhibitions
points inter- mappec
vals
cdc28 | 17 10 366 469 155
min.
alpha | 18 7 min. | 335 343 96

Less than 20% of these known regulatory pairs
scored a correlation above 0.5.




Time Shift Required?

This fraction did not increase when we rela-
tively shifted the time series:
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A Ph.D biologist (Zhi) examined all known
pairs by eyeball and saw no common pattern
to indicate possible transcription regulation in
more than 20% of these cases.

Conclusion: It seems futile to hope to induce
large networks from this data.

However, it is still reasonable to identify inter-
esting pairs of expressed genes.



Improved Edge Detection

Based on our study of known regulatory pairs,
we developed an improved edge detection func-
tion.

It seeks to eliminate narrow peaks and troughs
as likely experimental error.

It ignores variation of 10% in gene expression
level as likely experimental error in defining lo-
cal minima and maxima.

It measures the time difference between peaks
relative to the longest biologically plausible de-
lay, about 15 minutes.



Edge Detection Algorithm

e Primary edges link neighboring local maxima and minima.

e Secondary edges line all primary edges whose height

, high_point_expression — low_point_expression
height =

average_expression_of _the_gene

is greater than a threshold, typically 30%. This accounts for
the minimal biologically significant expression level change.
Any changes below this level are probably due to experimental
error.

e Tertiary edges result from merging adjacent secondary edges
of similar direction.

e (Quadrary edges result from eliminating narrow peaks or troughs.

Pairs of genes are scored solely based on their
quadrary edges.

‘The similarity score S; between G, and Gy is
given as:

real_gap
Sqg = d(1 — ) /\/Tanyp
’ a%:e max-gap ’

where d € {—1,1} denotes the agreement of
the slopes of eq and ey,




Results

We scored how well both measures did at iden-
tifying clearly interesting / uninteresting series
pairs, as judged by our biologist (Zhi).

Alpha Data

correlation coefficient edge function
thresh total good bad | thresh total good bad
> 0.85 107 5 0 > 0.6 96 5 0
> 0.8 192 5 2 > 0.5 223 5 0
> 0.7 703 5 7 > 0.4 557 7 6
> 0.6 1852 9 13 > 0.3 1581 11 15

CDC 28 Data

correlation coefficient edge function
thresh total good bad | thresh total good bad
> 0.85 289 2 2 > 0.6 146 1 0
> 0.8 628 5 4 > 0.5 398 3 0
> 0.7 1826 22 15 > 0.4 1236 11 3
> 0.6 3903 31 19 > 0.3 3401 19 20

We are making fewer mistakes at high thresh-
olds than the correlation coefficient.




Interesting Pairs

Interesting regulatory pairs detected by our edge
function but not by correlation.

See http://www.cs.sunysb.edu/~skiena/gene



Network of 140 activations in
Alpha with score > 0.4
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