
Cochlear modeling and its role in
human speech recognition

Miller Nicely confusions and the articulation
index
Jont Allen

Univ. of IL,
Beckman Inst., Urbana IL

Allen/IPAM – February 1, 2005 – p. 1/32



Model of human speech recognition (HSR)
The research goal is to identify elemental HSR events

An event is defined as a perceptual feature
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Modeling MaxEnt HSR
Definition of MaxEnt (a.k.a. “nonsense”) syllables:

A fixed set of { C,V } sounds are drawn from the
language of interest
A uniform distribution for each C and V is required,
to minimize syllable context (⇒ MaxEnt)
MaxEnt CV or CVC syllable score: Scv = s2, Scvc = s3

MaxEnt syllables first described in Fletcher, 1929
A set of meaningful words is not MaxEnt

Modeling non-MaxEnt syllables require the context
models of Boothroyd, 1968; Bronkhorst et al., 1993

Fletcher’s 1921 AI band independence model:
s(AI) ≡ 1− e = 1− e1e2e3 . . . e20 = 1− eAI

min (1)

accurately models MaxEnt HSR (Allen, 1994)
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Probabilistic measures of recognition
Recognition measures (MaxEnt ≡ Maximum Entropy):

kth band articulation index: AIk ∝ log(snrk)

Band recognition error: ek = e
AIk/K
min with K = 20

MaxEnt phone score: s = 1− e1e2 . . . eK = 1− eAIk
min

MaxEnt syllable score: Scv = s2, Scvc = s3
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What is an elemental event?
Miller-Nicely’s 1955 articulation matrix A measured at
[-18, -12, -6 shown, 0, 6, 12] dB SNR
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Confusion groups formed in A(snr)
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Case of /pa/, /ta/, /ka/ with /ta/ spoken
Plot of Ai,j(snr) for row i =2 and column j =2
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The case of /ma/ vs. /na/
Plots of S(snr) ≡ 1

2(A+At), /ma/, /na/ spoken
Solid red curve is total error ei ≡ 1− Si,i =

∑
j 6=i Si,j
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This 2-group of sounds is closed since
S/ma/,/ma/(snr) + S/ma/,/na/(snr) ≈ 1
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Definition of the AI
Let AIk be the kth band cochlear channel capacity

AIk ≡
10

30
log10(1 + c2snr2k), with c = 2,AIk ≤ 1,

then AI ≡ 1
K

∑
AIk (Allen, 1994; Allen, 2004)
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Long-term spectrum of female speech
Speech spectrum for female speech Dunn and White

Dashed red line shows the approximation

Slope −29 dB/decade
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Conversion from SNR to AI
Spectra for SNRs of [-18, -12, -6, 0, 6, 12] dB
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AI(SNR) for Miller Nicely’s data
AI(SNR) computed from the Dunn and White spectrum
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MN16 and the AI model
P

(i)
c (AI) for the ith consonant and Pc(AI) ≡ 1

16

∑
i P

(i)
c (AI)

Pc(AI) = 1− (1− 1
16)eAImin is the chance–corrected model
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Band independence seems a perfect fit to MN16 !!
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Log-error probability
Band-independence, corrected for chance,

Pe(AI,H = 4) ≡ 1− Pc(AI) = (1− 2−H)eAImin

This suggests linear log-error plots vs. AI:
MN16 CVs log(P

(i)
e ) = log(1− 1

16) + log(emin)AI

This relation is of the form

Y = a+ bx

Plots of log(Pe)(AI) vs. AI provide a nice test of
Fletcher’s “band independence” model

Individual sounds P (i)
e (AI) from MN16 may be tested for

band independence.
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Testing the band-independence model
CV log-error model:

log
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Testing the band-independence model
Sounds: [1, 2, 3, 5, 8, 9, 10, 12, 13, 14] pass
Sounds: [4, 8, 11, 15, 16] fail (nonlinear wrt AI)
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/ma/ and /na/ vs. AI
The multichannel model is valid for the nasals

Si,j(AI) ≈ δi,j + (−1)δi,j (1− 2−Hg) (e
(i)
min)AI for AI > AIg

emin
(i) ≡ 1− Si,i|AI=1

Hg = 1 [bit] (i.e., a 2-group)
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Case of /pa/, /ta/, /ka/ vs. AI
Fletcher’s multichannel model is valid for i = 1, 2, 3:

Si,j(AI) ≈ δi,j + (−1)δi,j (1− 2−Hg)
(
e

(i,j)
min

)AI
for AI > AIg
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Hg = log2(3), AIg = 0.15 and emin

(i,j) depends on i, j.
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Conclusions I
The AI predicts above chance performance near -20 dB
HSR performance saturates near 0 dB SNR
No overlap in ASR vs. HSR

ASR chance performance near 0 dB
ASR performance saturates near +20 dB SNR
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Conclusions II
Fletcher’s AI theory is based on band independence

e(snr) = e
1
K

AI1
min e

1
K

AI2
min e

1
K

AI3
min . . . e

1
K

AIK
min = eAI

min (2)

Recognition of MaxEnt phones satisfy 2
MaxEnt close set tests scores may be predicted by

Pc(AI,H) = 1− (1− 2−H)emin
AI

The first sign of > chance performance is grouping
The sound groups depend on the noise spectrum
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Conclusions III
The average over the 16 Miller Nicely consonant
confusions P (i)

c (snr) is accurately predicted by the
Articulation Index:

Pc(snr) ≡ 1

16

16∑

i=1

P
(i)
c (snr) = 1−

(
1− 1

16

)
eAImin

P
(i)
c is the probability of correct identification of ith CV
AI = 10

30

∑
k log10(1 + 4snr2k) where k is the AI band index

Chance error is given by (1− 1/16)

emin ≈ 0.005 ≡ 1−Pc(AI)
(1−1/16)

∣∣∣
AI=1
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Conclusions IV
The AI model, corrected for 1/16 chance guessing,
predicts the average Miller Nicely Pc quite well
There are no free parameters in this model of Pc(snr)

For the MN experiment, the AI ≤ 0.5
The AI(snr) is not linear in snr, due to the shape of the
snr(f)
The individual curves remain to be analyzed and
modeled (if possible)

How can we explain the variance across sounds?
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Conclusions V
The MN data is very close to symmetric
There are a few exceptions, but even for these, the
asymmetric part is very small
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Conclusions VI
The off-diagonal PI(AI) functions linearly decompose
error for ith sound Pc(i,AI), since ∑j Pij = 1⇒

Pe(i,AI) ≡ 1− Pi,i(AI) =
∑

j 6=i
P (j|i,AI)

In the previous figure the red curve is identically the
sum of all the blue curves
The green curve is the model

Pc(AI,H = 4) =

(
1− 1

16

)
eAI

min
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MN16 vs. MN64
Results of the MN16 and the MN64 CV experiments,
plotted as a function of both the SNR and the AI.
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Human vs. Γ-tone filters
h(t, f0) = t3e−2.22 π ERB(f0) t cos(2πf0t) (Γ-tone filter)
ERB(f0) = 24.7(4.37f0/1000 + 1)
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High frequency slope problem
Low-frequency tails are wrong
Wrong bandwidth at higher frequencies
Missing middle ear high-pass response
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Narayan et al. data
Narayan et al. 2000 (Gerbil)
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Kiang and Moxon 1979 cochlear USM
Nonlinear upward spread of masking
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Neely model for Cat 1986
Active model of the cochlea and cilia, based on the
resonant TM model.
Cat data from Liberman and Delgutte.
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Allen model 1980
Solid: Model; dashed Cat FTC (Liberman and Delgutte)
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Symmetric form S = (A +At)/2
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