Cochlear modeling and its role in human speech recognition

Miller Nicely confusions and the articulation index

Jont Allen

Univ. of IL, Beckman Inst., Urbana IL

Allen/IPAM – February 1, 2005 – p. 1/3

Model of human speech recognition (HSR

- The research goal is to identify elemental HSR events
 - An event is defined as a perceptual feature

Modeling MaxEnt HSR

- Definition of MaxEnt (a.k.a. "nonsense") syllables:
 - A fixed set of { C,V } sounds are drawn from the language of interest
 - A uniform distribution for each C and V is required, to minimize syllable context (⇒ MaxEnt)
 - MaxEnt CV or CVC syllable score: $S_{cv} = s^2$, $S_{cvc} = s^3$
 - MaxEnt syllables first described in Fletcher, 1929
- A set of meaningful words is not MaxEnt
 - Modeling non-MaxEnt syllables require the context models of Boothroyd, 1968; Bronkhorst et al., 1993
- Fletcher's 1921 AI band independence model:

$$s(AI) \equiv 1 - e = 1 - e_1 e_2 e_3 \dots e_{20} = 1 - e_{\min}^{AI}$$
 (1)

accurately models MaxEnt HSR (Allen, 1994)

Probabilistic measures of recognition

- Recognition measures (MaxEnt \equiv Maximum Entropy):
 - k^{th} band articulation index: $AI_k \propto \log(snr_k)$
 - Band recognition error: $e_k = e_{\min}^{Al_k/K}$ with K = 20
 - MaxEnt phone score: $s = 1 e_1 e_2 \dots e_K = 1 e_1 \overline{AI_k}$
 - MaxEnt syllable score: $S_{cv} = s^2$, $S_{cvc} = s^3$

What is an elemental event?

Miller-Nicely's 1955 articulation matrix A measured at [-18, -12, -6 shown, 0, 6, 12] dB SNR

				 b		A		<u>د</u>					*		7		
STIMULUS	p L k	80 71 66	43 84 76	64 55 107	17 5 12	14 9 8	6 3 9	2 8 4		<u></u> 1	5	1	1 1 1	2	3		3
	f θ s S	18 19 8 1	12 17 5 6	9 16 4 3	175 104 23 4	48 64 39 6	11 32 107 29	1 7 45 195	7 5 4	2 4 2 3	1 5 3	2 6 1	2 4 1	5 3	2		1 1
	b d g	1			5	4 2	4	8	136 5 3	10 80 63	9 45 66	47 11 3	16 20 19	6 20 37	1 26 56	5	4 3
	ນ ວັ 2 3				2	6 1	2 1	1	48 31 7 1	5 6 20 26	5 17 27 18	145 86 16 3	45 58 28 8	12 21 94 45	5 44 129		4 1 2
	m n	1				4			4 1	5	2	4	1 7	 3 1	6	177 47	46 163
-	<							→ VOICED RESPONSE									SAL
C	Con	fusic	on (grou	ups 1	for	me	d in	$\mathcal{A}(s$	snr)							

TABLE III. Confusion matrix for S/N = -6 db and frequency response of 200-6500 cps.

Case of /pa/, /ta/, /ka/ with /ta/ spoken

Plot of $A_{i,j}(snr)$ for row i = 2 and column j = 2

• Solid red curve is total error $e_2 \equiv 1 - A_{2,2} = \sum_{j \neq 2} A_{2,j}$

The case of /ma/ vs. /na/

Plots of $S(snr) \equiv \frac{1}{2}(\mathcal{A} + \mathcal{A}^t)$, /ma/, /na/ spoken

• Solid red curve is total error $e_i \equiv 1 - S_{i,i} = \sum_{j \neq i} S_{i,j}$

• This 2-group of sounds is closed since $S_{/ma/,/ma/}(snr) + S_{/ma/,/na/}(snr) \approx 1$

Definition of the *A*/

• Let AI_k be the k^{th} band cochlear channel capacity

$$AI_k \equiv \frac{10}{30} \log_{10}(1 + c^2 snr_k^2)$$
, with $c = 2$, $AI_k \le 1$,

then $AI \equiv \frac{1}{K} \sum AI_k$ (Allen, 1994; Allen, 2004)

Long-term spectrum of female speech

- Speech spectrum for female speech Dunn and White
 - Dashed red line shows the approximation

Conversion from SNR to AI

Spectra for SNRs of [-18, -12, -6, 0, 6, 12] dB

Speech: -18 to +12, Noise: 0 [dB]

snr_k is determined for K = 20 cochlear critical bands

AI(SNR) for Miller Nicely's data

AI(SNR) computed from the Dunn and White spectrum

• Conversion from SNR_k to AI [Allen 2005, JASA]: $AI \equiv \overline{AI_k} = \frac{1}{60} \sum_{k=1}^{20} \log_{10}(1 + c^2 \operatorname{snr}_k^2), \quad c = 2, \operatorname{AI}_k \le 1$

MN16 and the AI model

• $P_c^{(i)}(AI)$ for the *i*th consonant and $P_c(AI) \equiv \frac{1}{16} \sum_i P_c^{(i)}(AI)$ • $P_c(AI) = 1 - (1 - \frac{1}{16})e_{\min}^{AI}$ is the chance–corrected model

Band independence seems a perfect fit to MN16 !!

Log-error probability

Band-independence, corrected for chance,

$$P_e(AI, \mathcal{H} = 4) \equiv 1 - P_c(AI) = (1 - 2^{-\mathcal{H}})e_{\min}^{AI}$$

This suggests linear log-error plots vs. AI:

- MN16 CVs $\log(P_e^{(i)}) = \log(1 \frac{1}{16}) + \log(e_{\min})AI$
- This relation is of the form

$$Y = a + bx$$

- Plots of $log(P_e)(AI)$ vs. AI provide a nice test of Fletcher's "band independence" model
- Individual sounds $P_e^{(i)}(AI)$ from MN16 may be tested for band independence.

Testing the band-independence model

CV log-error model:

$$\log\left(P_e^{(i)}(AI)\right) = \log\left(1 - 2^{-4}\right) + \log\left(e_{\min}^{(i)}\right) AI$$

• AI Model; MN16 $P_c(AI)$; - - -, - -: CV sounds

Testing the band-independence model

Sounds: [1, 2, 3, 5, 8, 9, 10, 12, 13, 14] pass

Sounds: [4, 8, 11, 15, 16] fail (nonlinear wrt AI)

/ma/ and /na/ vs. AI

• The multichannel model is valid for the nasals $S_{i,j}(AI) \approx \delta_{i,j} + (-1)^{\delta_{i,j}} (1 - 2^{-\mathcal{H}_g}) (e_{\min}^{(i)})^{AI}$ for $AI > AI_g$

•
$$e_{\min}^{(i)} \equiv 1 - S_{i,i}|_{AI=1}$$

• $\mathcal{H}_g = 1$ [bit] (i.e., a 2-group

Case of /pa/, /ta/, /ka/ vs. AI

• Fletcher's multichannel model is valid for i = 1, 2, 3:

$$S_{i,j}(AI) \approx \delta_{i,j} + (-1)^{\delta_{i,j}} (1 - 2^{-\mathcal{H}_g}) \left(e_{\min}^{(i,j)} \right)^{AI} \text{ for } AI > AI_g$$

Band independence holds for the [/pa/, /ta/, /ka/] group: $\mathcal{H}_g = \log_2(3)$, $\mathcal{A}_g = 0.15$ and $e_{\min}^{(i,j)}$ depends on i, j.

Conclusions I

- The AI predicts above chance performance near -20 dB
- HSR performance saturates near 0 dB SNR
- No overlap in ASR vs. HSR
 - ASR chance performance near 0 dB
 - ASR performance saturates near +20 dB SNR

Conclusions II

- Fletcher's AI theory is based on band independence $e(snr) = e_{\min}^{\frac{1}{K}AI_1} e_{\min}^{\frac{1}{K}AI_2} e_{\min}^{\frac{1}{K}AI_3} \dots e_{\min}^{\frac{1}{K}AI_K} = e_{\min}^{AI}$
- Recognition of MaxEnt phones satisfy 2
- MaxEnt close set tests scores may be predicted by $P_c(AI, \mathcal{H}) = 1 (1 2^{-\mathcal{H}}) e_{\min}{}^{AI}$
- The first sign of > chance performance is grouping
- The sound groups depend on the noise spectrum

(2)

Conclusions III

• The average over the 16 Miller Nicely consonant confusions $P_c^{(i)}(snr)$ is accurately predicted by the Articulation Index:

$$\overline{P_c}(\textit{snr}) \equiv \frac{1}{16} \sum_{i=1}^{16} P_c^{(i)}(\textit{snr}) = 1 - \left(1 - \frac{1}{16}\right) e_{\min}^{AI}$$

- $P_c^{(i)}$ is the probability of correct identification of i^{th} CV
- $AI = \frac{10}{30} \sum_k \log_{10}(1 + 4snr_k^2)$ where k is the AI band index
- Chance error is given by (1 1/16)

•
$$e_{\min} \approx 0.005 \equiv \left. \frac{1 - P_c(AI)}{(1 - 1/16)} \right|_{AI = 1}$$

Conclusions IV

- The AI model, corrected for 1/16 chance guessing, predicts the average Miller Nicely P_c quite well
- There are no free parameters in this model of $\overline{P_c}(snr)$
- For the MN experiment, the $AI \leq 0.5$
- The AI(snr) is not linear in snr, due to the shape of the snr(f)
- The individual curves remain to be analyzed and modeled (if possible)
 - How can we explain the variance across sounds?

Conclusions V

- The MN data is very close to symmetric
- There are a few exceptions, but even for these, the asymmetric part is very small

Conclusions VI

• The off-diagonal PI(AI) functions linearly decompose error for i^{th} sound $P_c(i, AI)$, since $\sum_j P_{ij} = 1 \Rightarrow$

$$P_e(i, \mathbf{AI}) \equiv 1 - P_{i,i}(\mathbf{AI}) = \sum_{j \neq i} P(j|i, \mathbf{AI})$$

- In the previous figure the red curve is identically the sum of all the blue curves
- The green curve is the model

$$P_c(AI, \mathcal{H}=4) = \left(1 - \frac{1}{16}\right) e_{\min}^{AI}$$

MN16 vs. MN64

Results of the MN16 and the MN64 CV experiments, plotted as a function of both the SNR and the AI.

Human vs. Γ **-tone filters**

- $\int h(t, f_0) = t^3 e^{-2.22 \pi \operatorname{ERB}(f_0) t} \cos(2\pi f_0 t) \qquad (\Gamma \text{-tone filter})$
- **•** $\mathsf{ERB}(f_0) = 24.7(4.37f_0/1000 + 1)$

- High frequency slope problem
- Low-frequency tails are wrong
- Wrong bandwidth at higher frequencies
- Missing middle ear high-pass response

Narayan et al. data

Narayan et al. 2000 (Gerbil)

Kiang and Moxon 1979 cochlear USM

Nonlinear upward spread of masking

Neely model for Cat 1986

- Active model of the cochlea and cilia, based on the resonant TM model.
- Cat data from Liberman and Delgutte.

Allen model 1980

Solid: Model; dashed Cat FTC (Liberman and Delgutte)

References

- Allen, J. B. (1994). How do humans process and recognize speech? *IEEE Transactions on speech and audio*, 2(4):567–577.
- Allen, J. B. (2004). The articulation index is a Shannon channel capacity. In Pressnitzer,
 D., de Cheveigné, A., McAdams, S., and Collet, L., editors, *Auditory signal processing: physiology, psychoacoustics, and models*, chapter Speech, pages 314–320. Springer
 Verlag, New York, NY.
- Boothroyd, A. (1968). Statistical theory of the speech discrimination score. *J. Acoust. Soc. Am.*, 43(2):362–367.
- Bronkhorst, A. W., Bosman, A. J., and Smoorenburg, G. F. (1993). A model for context effects in speech recognition. *J. Acoust. Soc. Am.*, 93(1):499–509.
- Fletcher, H. (1929). Speech and Hearing. D. Van Nostrand Company, Inc., New York.
- Miller, G. A. and Nicely, P. E. (1955). An analysis of perceptual confsions among some english consonants. *J. Acoust. Soc. Am.*, 27(2):338–352.

title

Latest from Sandeep

