
Discrete Auditory

Transforms

Jack Xin and Yingyong Qi



Outline
• Invertible but Redundent Auditory Transforms (Frames).

• Orthogonal Discrete Auditory Transform (DAT).

• Comparison with FFT.

• Conclusions and Future Work.
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From Waves to Transform
Represent ear response to single input frequency f by:

U(x, f ) ei2πft + c.c.

Here t is time, x is spatial correspondance of frequency,
e.g., distance along Basilar Membrane (BM); c.c denotes
complex conjugate of preceding term. Let:

m2 = m2(f ) =

∫ L

0
|U(x, f )|2 dx. (1)
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Continuous Transform

S(t, x) =

∫
R1

dτ s(τ )

∫
R1

df
U∗(x, f )

m(f )
e2πfi(t−τ ).

∗ complex conjugate operation.

Transform is a temporal convolution of s with kernel:

K(t, x) ≡
∫
R1

df
U∗(x, f )

m(f )
e2πfit.
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Continuous Transform

S(t, x) =

∫
R1

df e2πfit
U∗(x, f )

m(f )

∫
R1

dτ s(τ ) e−2πfiτ

(2)

=

∫
R1

df ŝ(f )
U∗(x, f )

m(f )
e2πfit, (3)

hat denotes Fourier transform.
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Continuous Transform
•Transform is a superposition of time harmonics with proper
normalization.

• Transform formally reduces to wavelet transform, if
U(x,f )
m(f )

is approximated as Ψ (x− log f ), for some nonlinear function
Ψ, as observed by (I. Daubechies, 92).

• Transformed variable S contains information on both fre-
quency (in x) and time t.
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Inversion
Inversion formula:

s(t) =

∫ L

0
dx

∫
R1

dτ S(τ, x)

∫
R1
df
U(x, f )

m(f )
e2πif (t−τ ).

The integral over τ is Fourier transform of S(τ, x) in τ . In
view of (3), right hand side equals:∫ L

0
dx

∫
R1

df

m(f )
U(x, f ) e2πift

ŝ(f )

m(f )
U∗(x, f ),

(4)

=

∫
R1

df e2πift ŝ(f ) = s(t).

thanks to normalization (1).
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Energy Conservation

∫ L

0
dx

∫
R1

dt |S(t, x)|2 =

∫ L

0
dx

∫
R1

df
|ŝ(f )|2

m2(f )
|U(x, f )|2

=

∫
R1

df |ŝ(f )|2 =

∫
R1

s2(t) dt.

Transform conserves L2 norm.
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RDAT

Sj,m ≡
N−1∑
l=0

sl

N−1∑
n=0

Xm,n ei(2π(j−l)n/N),

Xm,n square sum equal to one in m (m = 1 : M , M = N/2):

M−1∑
m=0

|Xm,n|2 = 1, ∀n.

Let (Discrete Fourier Transform –DFT):

ŝk =

N−1∑
n=0

sn e
−i(2πnk/N),

Sj,m =

N−1∑
n=0

ŝnXm,n e
i(2πnj/N). (5)
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Inverse RDAT

sj =
1

N2

M−1∑
m=0

N−1∑
l=0

Sl,m

N−1∑
n=0

X∗
m,n ei(2π(j−l)n/N).

Proof: Consider the sum in l. In view of (5),

1

N

N−1∑
l=0

Sl,m e
i(2π(j−l)n/N) = e2πijn/N ŝnXm,n.

So the right hand side equals:

1

N

M−1∑
m=0

N−1∑
n=0

|Xm,n|2 e2πijn/N ŝn,

summing over m and using normalization property of Xm,n:

1

N

N−1∑
n=0

e2πijn/N ŝn = sj.
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Model and Transform Kernel
• DFT of a real vector s satisfies the symmetry property
ŝk = ŝ∗N−k, k = 1, 2 · · · , N − 1.

• Transform kernel Xm,n respects the symmetry while spec-
trally spreading.

• Discrete signal s has sampling frequency Fs (Hz). DFT
component ŝn (0 ≤ n ≤ N/2) corresponds to frequency:

fn = Fs · n/N, n ≤ N/2.

xm’s are sampled frequencies or corresponding place loca-
tions.
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Model and Transform Kernel
• For xm, 0 ≤ m ≤ N/2− 1, define Xm,n:

Xm,0 =
U∗(xm, f1)

mf (f1)
,

Xm,n =
U∗(xm, fn)
mf (fn)

, 1 ≤ n ≤ N/2− 1,

Xm,n =
U∗(xm, fN−n)
mf (fN−n)

, N/2 ≤ n ≤ N − 1,

mf function is:

mf (f ) =

N/2−1∑
m=0

|U(xm, f)|2
1/2

. (6)

• Xm,n is (1) symmetric in n with respect to N/2, (2) periodic
in n, (3) square sum to one along m.
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Other Choices of Kernel
• Use Schroeder-Atal-Hall’s psycho-acoustic spreading func-
tion, a function of f - f ′, with f and f ′ on the Bark frequency
scale.

Bark scale has a one-to-one mapping to linear frequency
scale.

• Sample this function in f = (fi), f
′ = (fj), fj linearly dis-

tributed, to form the matrix Xmn.

• Use hearing data (tuning curves) to infer Xmn.

13



Schroeder Kernel (N=128)
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Orthogonality
• Matrices Xmn constructed from physiological models con-
tain filtering charateristics of ear; however, are
far from being orthogonal, a desired mathematical property
for signal processing.

• If Xm,n were orthogonal, the transfrom simplifies to:

Tm ≡ S0,m =

N∑
n=0

ŝnXm,n.

Transform is simply DFT times auditory matrix (Xm,n). Re-

dundancy is removed, (Tm) ∈ CN .

• Question: how does one construct an
Orthogonal Auditory Matrix ?
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Schrödinger Equation
For complex scalar function u = u(x, t), consider evolution
equation (∗ convolution):

i ut = H u ≡ uxx + V (x) ∗ u, u(x, 0) = u0(x), x ∈ R1, t ≥ 0.

• Schrödinger map SM is: u0(x) −→ u(x, 1).

• If V (x) = V (−x) (even) and real, then:

d

dt

∫
R1

|u|2(x, t) dx = 0.

SM is orthogonal in L2, and time reversible.

Convolution with V captures the long range auditory spread-
ing (across critical bands).

16



Schrödinger Equation
• Schrödinger evolution has spreading (dispersive smooth-
ing) property. In the absence of V (Jensen, 86):

‖eitH‖SM(H0,k;Hk,−k) ≤ C (|t|−k + |t|k),

t 6= 0, k a positive interger,

Hm,s = {ψ ∈ L2(Rn) : ‖(1 + |x|2)s/2(1−∆)m/2ψ‖2 <∞.}

∆: n dimensional Laplacian.

Similar estimates for Schrödinger with nonlocal potential

(∈ H
k,0
∞ ) and cubic nonlinearity, Hayashi and Ozawa (89).

Self-adjoint with variable second order coefficient,
Kapitanski and Safarov (96).
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Discrete Schrödinger
For (lattice) constants σ1 > 0, σ2 > 0, coupled (ODE) system
(n = 1 : N):

i un,t = σ1 (un+1 − 2un + un−1) + σ2

N∑
m=1

Vm,n um,

or in matrix form:

iut = (σ1 A + σ1 B)u,

A, B, are real and symmetric N ×N matrices.
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Discrete Schrödinger
• Schrödinger Map is:

SM = exp{i(σ1A + σ1B)}.

SM ∗ SM
′
= exp{i(σ1A + σ1B)} exp{−i(σ1A + σ1B)} = Id.

Prime ′ is complex conjugate transpose.

• Orthogonal matrices resembling auditory responses are
also constructed based on compactly supported wavelets
(I. Daubechies, 88). However, they are not as flexible for
injecting knowledge as Schrödinger based constructions.
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Orthogonal DAT
• Let Schrödinger map SH act on ŝk, k = 2, · · · , N/2, and

the reversely rearranged Schrödinger map ŜH (unitary too)
acts on ŝk, k = N/2+2, · · · , N . Leave DC and Nyquist modes
invariant.

• Orthogonal auditory matrix in block diagonal form:

OAM = diag{1, SH, 1, ŜH∗}.

• Orthogonal DAT is the product OAM · DFT.

• Use Schroeder’s spreading function to construct Vm,n.
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