Linear Scaling Quantum Monte Carlo

Randy Hood

Andrew Williamson, Jeff Grossman, Aaron Puzder and Giulia Galli Lawrence Livermore National Laboratory

> Mike Towler and Richard Needs CASINO Code development University of Cambridge

Comparison of Methods

E _{bind}							
Method	E _{corr}	% errors	Scaling	Time for C ₁₀			
HF	0	≈ 50%	N ³	14			
LDA	N/A	15-25 %	N ³	1			
VMC	85 %	2-10 %	N ³	16			
DMC	≈ 95 %	1-4 %	N ³	300			
CCSD(T)	≈ 75 %	10-15 %	N ⁷	1500			

Traditional View of QMC

"....only applicable to atoms and small molecules...."

State of the art QMC

Quantum Monte Carlo

Variational Monte Carlo

Scaling of different terms

Elements of the determinant

Localized Wannier functions

1. Apply Unitary Transform to DFT wavefunctions

2. Truncate Wannier states to reduce computational cost

$$\varphi^{j}_{\text{Wannier}} = \sum_{i} U_{ij} \varphi^{i}_{\text{LDA}}$$

Minimize

 $\left[\left\langle \left(\mathbf{r}-\mathbf{R}_{n}\right)^{2}\right\rangle \right]^{\frac{1}{2}}$ N. Mazari and D. Vanderbilt, Phys. Rev. B **56**, 12847 (1997)

Wannier functions in bulk diamond

• Two Wannier functions per atom

• Located in the center of the C-C bonds

Wannier functions in Si₃₅H₃₆

Wannier functions provide chemical insight.

Sparse Slater Determinant

- Wannier transform leaves value of determinant unchanged
- Truncated Wannier orbitals introduces sparsity into determinant
- This introduces a controlled approximation

Effect of truncation in SiH₄

How can we predict a good R_{cut}?

Real space grid for Wannier functions

- Take advantage of the *localized* nature of the Maximally Localized Wannier orbitals expand in a *localized* basis.
- Could use Gaussians we find real space grid to be superior.
- O(N) memory requirement for the spline grids.

$N^3 \rightarrow N$ scaling

	Original N ³ Scaling	New O(N) Scaling
Number of electrons	Ν	Ν
Number of orbitals per electron	Ν	const.
Number of basis functions per orbital	∝ N	const.

Near Linear Scaling Achieved

A.J. Williamson, R. Hood, and J. Grossman, Phys. Rev. Lett. 87, 246406 (2001)

How linear is it ?

- For 1000 electrons, 10% is spent in N² and N³ routines
- Need to work on these beyond ~2000 electrons

Remaining N³ and N² terms:

- Calculating the value of the determinant (N³)
- Calculating electron-electron and electron-ion distances (N²)

Scaling of Actual Calculations

$$\mathbf{E}_{\text{mean}} = \frac{1}{N_{\text{C}}} \sum_{i}^{N_{\text{C}}} \frac{\hat{\mathbf{H}} \Psi_{\text{T}}(\mathbf{R}_{i})}{\Psi_{\text{T}}(\mathbf{R}_{i})} \qquad \boldsymbol{\sigma}_{\text{mean}} = \frac{\boldsymbol{\sigma}_{\text{intrinsic}}}{\sqrt{N_{\text{C}}}} \rightarrow \infty \sqrt{N}$$

	N _c	Cost per config.	Total Cost	Original cost
Total Energy (Optical gaps)	∝ N	N	∝ N²	∝ N ⁴
Per atom (Binding energies)	∝ N -1	N	∝ N⁰	∝ N²

Binding Energy of Carbon Fullerenes

• Cost of DMC calculation is independent of size!

rsity of Colifornia Lawrence Livermore

tional Laboratory

20

A work in progress....

- O(N) evaluation of the value of the determinant.
- Can this apply to metals?
- Are non-orthogonal Wannier functions useful?

$$\boldsymbol{\varphi}_{\text{Wannier}}^{j} = \sum_{i} U_{ij} \, \boldsymbol{\varphi}_{\text{LDA}}^{i}$$

How is this different to O(N) density functional codes?

- Similar to introducing sparsity into the overlap matrix in density functional approaches, but
- No self-consistency required:
 - No conservation of charge problem
 - No noise introduced into the Hamiltonian
- Inverting overlap matrix introduces large overhead for linear scaling in DFT, here there is no additional overhead.

Summary

- A simple transformation of the input single particle orbitals yields localized orbitals which can be truncated to introduce sparsity into the Slater determinant.
- These truncated orbitals can be stored on a cubic spline grid.
- Resulting algorithm scales nearly linearly up to 1000 electrons.
- Successfully applied to fullerenes, silicon clusters and bulk diamond.

