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Our Two Approaches to the Modelling of Large Systems

1. Linear Scaling Quantum Mechanical Methods: Divide-and-conquer
Method Phys. Rev. Lett., 66, 1438(1991)

• For the first time, it shows that linear scaling is possible for electronic structure
calculations

• Applications of the divide-and-conquer method to enzymes and protein dynamics

2. QM/MM: –Combined QM and Molecular Mechanics

JCP, 110, 46(1999). JCP, 112, 3483(2000). JACS, 122, 6560(2000).

O(1) in practice!

• A Pseudobond Approach to Combining Quantum Mechanical and Molecular
Mechanical Methods

• Optimization and a Free-energy Perturbation Method

• Applications to enzyme reaction mechanism



–Before our work on the Divide-and Conquer, electronic structure calculations
scaled at least as N3.

–Our divide-and-conquer approach (1991) is linear scaling, O(N).

–Computational effort ∝ the size of molecule

It broke the bottleneck for quantum mechanical calculations of large systems.

Key to linear scaling algorithms: the use of the localized electronic degrees of
freedom.

Review: Yang and Perez-Jorda, ”Linear Scaling Methods for Electronic Structure
Calculations”, Encyclopedia of Computational Chemistry, edited by Schleyer, John
Wiley & Sons (1998).

For a latest review: Wu and Jayanthi, Phys. Rep., 2002



The Divide-and-Conquer Approach

–the first linear scaling method for electronic structure calculations

Yang, Phys. Rev. Lett., 66, 1438 (1991),
Lee and Yang, J. Chem. Phys., 163, 5674(1995).

• semiempirical QM approaches

Lee York and Yang, J. Chem. Phys. 105, 2744(1996).
Dixon, and Merz, J. Chem. Phys. 104, 6643 (1996).

• solids and surfaces

Zhu, Pan and Yang, Phys. Rev. B., 53, 12713( 1996).
Warschkow, Dyke, & Ellis, J. Comp. Phys., 143, 70(1998)

• electrostatic problems

Gallant and St-Amant, Chem.Phys. Lett. 256, 569 (1996)



Diagonalization: there are three general categories:

• Local Hamiltonian Approaches

– Divide-and-conquer

Yang (1991), Yang & Lee (1995)

– Recursion

Baroni (1992)
Jayanthi, Wu, Cocks, Luo, Xie, Menon and Yang (1997)

– Chebyshev polynomial expansion

Godecker & Colombo (1994)
Baer & Head-Gordon, (1997)



• Variational Principles Approaches

– Density Matrix

Li, Nunes & Vanderbilt (1993), Daw (1993)
Kohn (1996)
Hernandez, E. & Gillan (1994)
Xu & Scuseria (1996)
Challacombe (1999)

– Localized Molecular Orbitals

Mauri, Galli & Car (1993)
Ordejon, Drabold, Grumbach & Martin (1993)
Kim, Mauri & Galli (1995)

– Non-orthogonal Localized Molecular Orbitals

Hierse & Stechel (1994)
Yang (1997)

• Other: Pseudo-diagonalization, Stewart (1996), Density matrix, Helgaker (2000),
Mazzioti(2001).



Martix Construction

Head Gordon

Scuseria

Challacombe

SIESTA

Perez-Jorda and Yang

O(N) for matrix element integration: CPL, 241,469(1995).

O(N) for electrostatic interaction

CPL, 247, 484(1995), JCP, 104, 8003(1996),JCP, 107, 1218(1997)



In DFT, the first-order reduced density operator ρ̂ determines the electron
density ρ(r),

ρ(r) = 2 〈r |ρ̂| r〉 , ρ(r′, r) = 〈r′ |ρ̂| r〉 =
N/2∑
i=1

ψi(r
′)ψ∗

i (r) = 〈r′| η(µ− h) |r〉

The total electronic energy functional of ρ̂ is

E[ρ̂] = Ts[ρ̂] +
∫
vext(r)ρ(r)dr

+ Exc[ρ(r)] +
1
2

∫
ρ(r)ρ(r

′
)∣∣r − r′∣∣ drdr

′
,

Exc[ρ(r)], the exchange-correlation energy functional

Ts[ρ̂] = 2Tr(t̂ρ̂), the kinetic energy functional



The conventional approach represents ρ̂ in terms of a set of N/2 orthogonal
and normalized orbitals {ψ} :

ρ̂ =
N/2∑
i

|ψi〉〈ψi| .

The Kohn-Sham equation:

ĥψi(r) = [−1
2
∇2 + veff(r)]ψi(r) = εiψi(r),

veff(r) : is the Kohn-Sham effective potential,

veff(r) = vext(r) + v(r) + vxc(r),

v(r): the electrostatic potential

vxc(r) the exchange-correlation potential



In LCAO

ψi(r) =
Nbasis∑
γ

Cγiχγ(r)

ρ(r′, r) =
N/2∑
i=1

ψi(r
′)ψ∗

i (r)

=
Nbasis∑
γδ

ργδχδ(r′)χ∗γ(r)

which calculates the ρ for the entire molecule with the same expression on the
Hamiltonian matrix h.

ργδ =
N/2∑
i=1

(cγi)∗cδi

=
∑
i

fβ(µ− εi)(cγi)∗cδi



The idea of divide and conquer

H H

ρρρ = +
↓↓

Divide↓

Approximate



Divide-and-Conquer Method-exploring the local nature of physical systems.

Molecular properties of a part of a molecule, described by the density matrix ρ
associated with that part, depends locally on the atoms nearby.

one subsystem at a time.

• Partition functions are used to divide the density matrix into subsystem
contributions (Mulliken population analysis)

• Each subsystem density matrix is determined separately with a local Hamiltonian.

• There is a common µ for the entire system to enable the electron flow between
different subsystems and to ensure proper normalization of the density matrix.



Divide

We can define a partition matrix pαγδ for the subsystem α in the space of atomic
orbitals. The partition matrix pαγδ needs to satisfy the normalization condition

∑
α

pαγδ = 1.

There is a simple way to construct such matrices; namely,

pαγδ =




1 if γ ∈ α, δ ∈ α
1/2 if γ ∈ α, δ /∈ α
0 if γ /∈ α, δ /∈ α

,

The density matrix, can be divided into subsystem contributions as follows:

ργδ =
∑
α

pαγδργδ =
∑
α

ραγδ,

The Mulliken population analysis is thus used here in a reversed way—to
construct the density matrix from subsystem contributions.



Approximate

The subsystem can be approximated efficiently with a local Hamiltonian that
depends on the local physical space.

ραγδ = p
α
γδ

∑
i

fβ(µ− εαi )(cαγi)∗cαδi,

cαγi and ε
α
i are local eigenvectors and eigenvalues of the subsystem:

(hα − sεαi )c
α
i = 0

The density matrix of the entire system is then,

ργδ =
∑
α

ραγδ =
∑
α

pαγδ
∑
i

fβ(µ− εαi )(cαγi)∗cαδi,

and the chemical potential µ is determined by the normalization condition:

N = 2Tr(ρs) = 2
Nbasis∑
γδ

ργδsγδ



Use of the local Hamiltonian matrices hα for a subsystem α, introduces a
truncation error.

In numerical implementation, hα consist of the Hamiltonian matrix elements
associated with the atoms in the subsystem and the neighboring atoms. These
neighboring atoms are called buffer atoms.

• Buffer atoms create a buffer zone for the better representation of the density
matrix.

• A truncation radius Rb can be defined. Increasing Rb improves systematically the
accuracy of the method.



The energy and gradient errors of divide-and-conquer method for the RP71955
protein molecule. The heat of formation of the original MOPAC calculation is
-743.13604 Kcal/mole.

Rh is the distance used to cutoff the matrices h .

Rb is the distance used to define the buffer atoms.

Rb Rh =6.0 Rh =7.0 Rh =8.0 Rh =9.0
4.0 7.33E-03 -1.75E-01 -3.87E-01 -7.43E-01

8.80E-01 2.14E+00 2.12E+00 2.11E+00
5.0 1.38E-02 -2.10E-02 -4.28E-02 -4.62E-02

2.34E-01 2.40E-01 2.06E-01 3.04E-01
6.0 4.23E-03 3.20E-03 3.11E-03 3.10E-03

8.95E-02 9.07E-02 9.08E-02 9.08E-02
7.0 2.01E-03 7.69E-04 6.39E-04 6.23E-04

1.76E-02 1.30E-02 1.29E-02 1.29E-02
8.0 1.78E-03 5.02E-04 3.56E-04 3.37E-04

1.38E-02 6.97E-03 6.77E-03 6.77E-03



Features

• Use the Mulliken population analysis in a reverse way to synthesize density matrix
from fragments. Conventional usage is to analyze a density matrix.

• Linear scaling: the computational cost of a subsystem is independent of size of
the entire system.

• can be applied to methods based on density matrix, like the Hartree-Fock,
semiempirical, and DFT..
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Applications with two models of solvent

• Modelling solvent with a continuum dielectric model

– Calculation of solvation free energies of proteins and DNAs: Solvent
polarization
York, Lee and Yang, JACS Comm.,1996.

– Solvent effects on the electronic Structure of Proteins and DNA
York, Lee and Yang, Phys. Rev. Lett., 1998.

– Catalytic reaction mechanism of cytidine deaminase
Lewis, Carter, Hermans and Yang ,JACS,1998.

• Modeling solvent with molecular mechanics

– Long Time Molecular dynamics simulations of proteins in water



Quantum Mechanics Simulation of Protein Dynamics on Long Time Scale

Haiyan Liu, Marcus Elstner, Efthimios Kaxiras, Thomas Frauenheim, Jan
Hermans and Weitao Yang

PROTEINS:Structure, Function, and Genetics 44:484-489(2001)

Protein structure and dynamics are the keys to a wide range of problems in
biology. A molecular dynamics simulation of a protein, crambin, in solution for 350
ps has been performed.

• The divide-and-conquer linear scaling approach.

• A hybrid quantum mechanical/molecular mechanical scheme that allows use of
an explicit solvation model without an increase of the size of the quantum
mechanical system.

• An efficient and accurate self-consistent-charge density functional theory-based
tight-binding scheme (SCC-DFTB).

• The explicit incorporation of the long-range van der Waals energy and forces left
out by the quantum mechanical model.
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• Comparison with a recent very high resolution crystal structure of crambin (Jelsch
et al., Proc Natl Acad Sci USA 2000;102:2246-2251) shows that geometrical
detail is better reproduced in this simulation than when several alternate
molecular mechanics force fields are used to describe the entire system of protein
and solvent, even though the structure is no less flexible.

• Individual atomic charges deviate in both directions from ”canonical” values,
and some charge transfer is found between the N and C-termini.

• Importance of van der Waals attractions.

• The capability of simulating protein dynamics on and beyond the few hundred ps
time scale with a demonstrably accurate quantum mechanical model will bring
new opportunities to extend our understanding of a range of basic processes in
biology such as molecular recognition and enzyme catalysis.



Non-orthogonal Localized Molecular Orbital (NOLMO) Approach to O(N)

The DFT ground state energy is given by the absolute energy minimum
principle,

E(N) = min
ρ̂
E[ρ̂]

ρ̂ has to satisfy the following three conditions:

Hermitian : ρ̂ = ρ̂†

idempotency : ρ̂2 = ρ̂,

normalization : 2Tr(ρ̂) = N.

Or
ρ̂ = η(µ− ĥ)



The conventional approach represents ρ̂ in terms of a set of N/2 orthogonal
and normalized orbitals {ψ} :

ρ̂ortho =
N/2∑
i

|ψi〉〈ψi| .

The density operator ρ̂ortho obeys all the three required conditions. Thus
the minimization of energy over ρ̂ can be achieved by minimization over the N/2
MO orbitals {ψ}, under the orthonormal constraint for the orbitals,

〈ψi|ψj〉 = δij.



One Way to Achieve Linear Scaling

1. Truncation of the density matrix in the real space representation.

ρ(r′, r) = 2
Nbasis∑
γδ

ργδχδ(r′)χ∗γ(r)

ρ(r′, r) ∼ 0, if |r′ − r| > Rc

ργδ ∼ 0, if two atoms γ and δ are far apart.

The number of non zero elements in ργδ are only O(N).

2.Reformulation of the variational principle to eliminate the idempotency
constraint, ρ̂2 = ρ̂.

The original variational principle has the idempotency constraint—difficult to
impose.

3. Conjugate gradient minimization.



Local Energy Minimum Principle: Density Matrix

Li, Nunes and Vanderbilt, and Daw

McWeeny transformation ρ̂m = 3ρ̂2 − 2ρ̂3

Input a trial density operator ρ̂, output a purified version ρ̂m, which is more
idempotent.

For a noninteracting N -electron system with a Hamiltonian ĥ:

ELNV [ρ̂] = 2Tr
[
ρ̂m

(
ĥ− µ

)]
+ µN = 2Tr

[(
3ρ̂2 − 2ρ̂3

) (
ĥ− µ

)]
+ µN,

If εN/2 < µ < εN/2+1, then this functional has two properties:

(i) with the exact ground state ρ̂o, ELNV [ρ̂o] delivers the ground state energy

Eo(N) = 2
N/2∑
i

εi,

(ii) ΩLNV [ρ̂] has a local minimum at Eo(N) for variation with a Hermitian ρ̂.



Local Energy Minimum Principle: Localized Orbitals

Mauri, Galli & Car, Ordejón, Drabold, Martin & Grumbach, Kim, Mauri & Galli

The functional is defined for a N -electron system described by a non-self-
consistent Hamiltonian ĥ and a chemical potential µ.

In terms of a set ofM (possibly linearly-dependent) orbitals {ψi,i = 1, . . . ,M},
where M ≥ N/2, it is

EKMG[{ψ}] = 2Tr[(H − µS)(2− S)] + µN,
where H and S are the (M ×M) Hamiltonian and overlap matrix defined in the
representation of the {ψ},

Hij = 〈ψi | ĥ | ψj〉, Sij = 〈ψi|ψj〉

• The chemical potential is chosen such that εN/2 < µ < εN/2+1,and the energy
functional has a local minimum at the ground state energy.

• Uses more localized orbitals than occupied states and has the chemical potential
µ to allow the transfer of electrons. Free of the multi-minimum problem.



Improvements Needed

• All deal with non-interacting electron systems–repeated minimization needed
for a self-consistent calculations.

• Local minimum principles only for the localized orbitals approaches

Absolute energy minimum principles

Yang, Phys. Rev. B. 56, 9294-9297 (1997).

• Two absolute energy minimum principles are developed for first-principle
linear-scaling electronic structure calculations.

• One is with a normalization constraint and the other without any constraint.

• The density matrix is represented by a set of non-orthogonal localized orbitals
and an auxiliary matrix.

• The number of localized orbitals is allowed to exceed the number of occupied
orbitals.



Well Known:

Given a set of N/2 linearly-independent orbitals {ψ}, which are not necessarily
orthonormal, then

ρ̂N/2 =
N/2∑
i,j

| ψi〉
(
S−1

)
ij
〈ψj |,

where S−1 is the inverse of the overlap matrix S, Sij = 〈ψi | ψj〉.
ρ̂N/2 obeys all the above three constraints.



New:

Build a density operator from a set of arbitraryM (possibly linearly-dependent)
orbitals {ψi,i = 1, . . . ,M}, where M � N/2.

ρ̂ =
M∑
i,j

| ψi〉
(
S−)

ij
〈ψj |,

• S− is the (1)-inverse of the overlap matrix S, defined by

SS−S = S.

The (1)-inverse is the simplest one of the several generalized inverses for a
singular matrix.

• ρ̂ defined is idempotent and Hermitian (two of the three constraints).



The only remaining constraint for the density operator is the normalization
condition

2 Tr(ρ̂) = 2 Tr(S−S) = N ,

or

2 rank(S) = N

rank(S) is the rank of the S matrix

and rank(S) =Tr(S−S)

rank is the number of independent column or row vectors of S.



Consider non-interacting electrons here,

E(N) = min
{ψ}, 2 rank(S)=N

2Tr
[
ĥρ̂

]

with

ρ̂ =
M∑
i,j

| ψi〉
(
S−)

ij
〈ψj |

Problem with S− : difficult to determine.



Solution: A variational approach.

Tr(BS−) = min
X=X†

Tr[B(2X − XSX)]

That is, S− is replaced by its variational estimate, quadratic in X

(2X − XSX)

• any negative definite matrix B such that

Bij = 〈ψi | b̂ | ψj〉

with some operator b̂.

• The auxiliary M ×M matrix X is Hermitian.



Then, take η as a constant such that B =(H−ηS) is a negative definite matrix.

We obtain the first variational principle:

E(N) = min
{ψ}, 2 rank(S)=N

2Tr
[
ĥρ̂

]

= min
{ψ}, 2 rank(S)=N

2Tr
[
(ĥ− η)ρ̂

]
+ ηN

ρ̂ =
M∑
i,j

| ψi〉
(
S−)

ij
〈ψj |

E(N) = min
{ψ}, 2 rank(S)=N

2Tr
[
(H − ηS)S−]

+ ηN

= min
{ψ}, 2 rank(S)=N

min
X=X†

2Tr [(H − ηS)(2X − XSX)]

+ ηN

using 2X − XSX for S−.



The only constraint is

2 rank(S) = N

implemented also by the variational expression:

rank(S) =Tr(SS−) = − min
X=X†

Tr[(−S)(2X − XSX)]



The first variational principle is

E(N) = min
{ψ}, 2 rank(S)=N

min
X=X†

2Tr [(H − ηS)(2X − XSX)]

+ ηN

The second variational principle is for fixed-µ, obtained by releasing the
constraint on the number of electrons.

E(N) = min
{ψ}

{min
X=X†

2Tr [(H − ηS)(2X − XSX)]

+ 2(η − µ)rank(S)}+ µN



Features:

• absolute minimum principles: can provide more robust minimization algorithms.

• extension to self-consistent calculations.

• the number of localized orbitals is permitted to exceed the number of occupied
orbitals.

• the minimizing orbitals are also allowed to be non-orthogonal, which makes
optimal localization.

• for accurate calculations, NLMO has much less number of variables than density
matrix.

• In the special case of M = N/2, the orbitals {ψi, i = 1, . . . , N/2} are linearly
independent. we obtain the variational principle of Mauri et al. and Ordejon et
al.

• ignoring the minimization procedures, the second variational principle becomes
the local-minimum variational expression of Kim et al. with generalization
allowing the orbitals to be non-orthogonal.



Results for alanine 24
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The spread of the Nonorthogonal Localized Molecular Orbitals (NOLMO) φi

Liu and Yang, J. Chem. Phys., 112, 1634–1644(2000).

Ω =
N/2∑
i

〈φi|(r̂ − ri)
2|φi〉

where

ri = 〈φi|̂r|φi〉.

–minimize Ω while keeping the orbitals linear independent.



Molecule Spread (a.u.)

Canonical MO OLMO (%) NOLMO (%)

CH4 17.50 10.58(39.5) 9.54(9.8)

NH3 14.13 11.12(21.1) 8.40(24.5)

C2 22.88 11.83(48.3) 9.47(19.9)

H2O 10.11 8.18(19.1) 6.35(22.1)

C2H2 30.87 15.47(49.9) 13.24(14.4)

C2H4 41.94 18.42(56.1) 16.63(9.8)

C2H6 55.44 19.55(64.7) 16.70(14.6)

N2H2 29.98 15.18(49.4) 13.10(13.7)

N2H4 43.31 18.73(56.7) 14.48(22.7)

CH3OH 34.94 16.40(53.1) 11.38(30.5)

CH3NH2 38.63 17.95(53.5) 14.36(20.0)

C6H6 231.4 54.58(76.4) 41.33(24.3)

CO 14.02 12.41(11.5) 9.62(22.5)

CO2 57.21 18.45(67.8) 14.90(19.2)

LiF 8.74 7.69(12.0) 6.57(14.6)

N2 19.71 11.73(40.5) 9.32(20.5)

B2H6 59.76 19.14(68.0) 17.59(8.9)

C3H6(cycle) 73.13 25.88(64.6) 22.25(14.0)

SF6 275.47 46.12(83.3) 40.31(12.6)

CH3CH2CH3 109.23 29.04(73.4) 24.26(16.5)

CH3CH2CH2CH3 182.83 39.59(78.3) 33.20(16.1)

CH3CONHCH3 168.56 40.30(76.1) 35.21(12.6)

Average % 54.5 17.2




