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Electron Correlation
The Wavefunction for small interelectronic distances zo — z1:

Hartree-Fock

Exact

3 -2 -1 1 2 3
e Hartree-Fock Mean Field Approximation:
Electrons with opposite spin move independently
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The Wavefunction for small interelectronic distances zo — 21:

Hartree-Fock

Exact

3 -2 -1 1 2 3
e Hartree-Fock Mean Field Approximation:
Electrons with opposite spin move independently

e In Reality: correlated movement coupled by Coulomb repulsion
= Coulomb hole, cusp

e Present in all chemical systems

e Short-range effect
x R~ (dispersive forces in intermolecular perturbation theory)
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Canonical Electron Correlation Methods

Dynamical Electron Correlation described by Pair-Excitations from occupied
Into unoccupied (virtual) Molecular Orbitals.

Simplest Theory of Electron Correlation:

Mgller-Plesset Perturbation Theory of 2nd Order

U = Uyp + %Z > Ty

1] ab

<I>;‘jb Doubly excited Determinants: i, 7 — a, b
T Amplitudes (Coefficients, determined by perturbation theory)
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Canonical Electron Correlation Methods

Dynamical Electron Correlation described by Pair-Excitations from occupied
Into unoccupied (virtual) Molecular Orbitals.

Simplest Theory of Electron Correlation:

Mgller-Plesset Perturbation Theory of 2nd Order

U = Uyp + %Z > Ty

1] ab

®¢>  Doubly excited Determinants: i, j — a, b
T Amplitudes (Coefficients, determined by perturbation theory)

e Number of Amplitudes grows with 4th power of molecular size: O(N*)

e Computational cost increases with 5th power of molecular size: O(N?)
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The Scaling Problem of Electron Correlation Methods
Hierarchy of Electron Correlation Methods:

Method Nominal with Prescreening CPU(2N)/CPU(N)

HF N* N — N~ 2—-14
MP2 N N? 8
CCSD N N 64
CCSD(T) N7 N7 128
CCSDT-1b N7 N7 128
CCSDT NE NE 256

e Computational Cost (CPU, Memory, Disk) increases dramatically with
Molecular Size ! ( N'* Scaling Wall)

e The more accurate the method, the higher the scaling.

e Even the largest Supercomputers provide no solution to this problem:

512 nodes = Factor of 2.45in \/
1024 nodes = Factor of 2.69 in \/
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Why Local Correlation Methods ?

e Dynamical Correlation Effects are Short Range (Dispersion energy o %)

e Scaling problem of conventional methods is an artifact of the canonical
(delocalized) Molecular Orbitals that are used to describe occupied and
virtual MO spaces...

= SOLUTION: Use of local basis to span occupied and virtual MO spaces
e Short range nature of dynamical correleation effects can be fully exploited
e O(N) Algorithms become possible

e Molecules with 50-100 atoms in application range of present high-accuracy
local correlation methods
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Distance Histogram of Correlation Energy
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= For R=0 — 98.26 % of the correlation energy is obtained!
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Brief History of Local Correlation Methods

Sinanoglu (1964), Nesbet (1965), Kutzelnigg, Ahlrichs (1968)
Otto and Ladik (1982), Laidig, Purvis, Bartlett (1982-1985)
Kapuy and Kozmuta (1983, 1991)

Pulay (1983), Saebg and Pulay (1985-1988)

Kirtman and Dykstra (1986)

Stollhoff, Fulde, Vasilopoulos (1986)

Murphy, Beachy, Friesner, Rignalda (1995)

Reynolds, Martinez, Carter (1996)

Knab, Forner, Cicek, Ladik (1996)

Maslen and Head-Gordon (1998)

local CCSD: Hampel, Werner (1996)
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The Local Basis for the Occupied Space

e Localized Molecular Orbitals (LMOs):
generated from occupied Hartree-Fock orbitals by Unitary Transformation
= Mutual Orthogonality is preserved

e Various Localization Procedures (presently two implemented):

— Boys:
Maximize distances between centers of charge
— Pipek-Mezey:
Minimize number of atoms with significant LMO contributions

e Localization procedure has hardly any influence on the outcome of a Local
Correlation calculation !
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Glycine Molecule: Canonical MOs...

e ...entirely delocalized...

e destroys local character of dynamical correlation
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Glycine Molecule: ... and Localized MOs (LMOSs)

e Typically localized on one or two atoms...

= appropriate for description of dynamical correlation effects
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The projected AO Basis for the virtual space (PAOS)

e Localization of virtual MOs (by unitary transformation) not possible

= Mutual orthogonality has to be abandonned
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Pulay (1983):

The original, inherently local AO basis is used

The occupied space is projected out
br) = (1 - Z ¢z‘><¢z‘> Xr)
=1
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Properties of PAOs

e PAOs can be assigned
to individual atoms

e Inherently local
e Not orthogonal

e Linear dependencies
(# PAOs = # AQOSs)
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(Gly),-Peptide PAOs
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Excitation Domains

(¢, — &;: Exponential decay with respect to separation between ¢; and ¢,

e To each LMO ¢; an Orbital Domain [:] is assigned.

— (comprises all PAOs ¢, of atoms spatially close to the related LMO ¢;)
— Orbital Domains are generated fully automatically (Boughton-Pulay)

e Single Excitations @] restricted to Orbital Domains r € [i]
e Pair Excitations @} restricted to Pair Domains r, s € [ij] = [i] U [j]
e Triple Excitations @2/ restricted to Triple Domains r, s, t € [ijk] = [ij] U [k]

e The sizes of all domains are O(1) !

= Number of amplitudes per Orbital/Paar/Triple  O(1) !
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Domain Sizes for [Gly] ,, Polypeptide chain (cc-pVDZ Basis)
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e The domain sizes are O(1) !

e Number of amplitudes per Orbital/Paar/Triple is O(1) !
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Domain Sizes for [Gly] ,, Polypeptide chain (cc-pVDZ Basis)
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e The domain sizes are O(1) !

e Number of amplitudes per Orbital/Paar/Triple is O(1) !
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Strong and Weak Electron Pairs
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Strong aarot \Whéssek EH Gt toon FRarss

e LMOs have at least one atom in common

e Cover 90-95% of the correlation energy

e Treatment at highest correlation level: LCCSD, LCCSD(T)
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Strong and WeskkHidettoonFRaiss

e LMOs separated by at least one chemical bond
e Cover 5-10% of the correlation energy

e Treatment at the LMP2 level
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Hierarchy of the Electron Pairs

very distant
pairs

e Number of Pairs entering each correlation level (LMP2/LCCSD) are O(N)

e Only the number of very distant Pairs are O(N?) (these are dropped from

the calculation)
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Local MP2

R7 = K9Y+FTYS+STVF - ) S[FTH + F,;T*]S;= 0
k
2 — Z Z QTZJ T@J K%J
1] rs€lij]

e Fock Matrix is NOT diagonal, amplitudes are coupled via F
e virtual orbitals NOT orthogonal = Couplings via S

= Linear equation system, has to be solved iteratively = T%
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e Fock Matrix is NOT diagonal, amplitudes are coupled via F
e virtual orbitals NOT orthogonal = Couplings via S

= Linear equation system, has to be solved iteratively = T%
e Number of amplitudes T is O(N)!

e Number of relevant Electron Repulsion Integrals

K}, = /¢r r1)$i(r1) : $j(r2)Ps(r2)dridrsy = (riljs)

\2—1|

equal to number of amplitudes, thus O(N)!
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e Fock Matrix is NOT diagonal, amplitudes are coupled via F
e virtual orbitals NOT orthogonal = Couplings via S

= Linear equation system, has to be solved iteratively = T%
e Number of amplitudes T is O(N)!

e Number of relevant Electron Repulsion Integrals

K}, = /¢r r1)$i(r1) : $j(r2)Ps(r2)dridrsy = (riljs)

\2—1|

equal to number of amplitudes, thus O(N)!
= Computational cost O(N)!
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Screening of Electron Repulsion Integrals

ff r dr dr

—"

elektron (2)

elektron (1)

e cheap estimate of integral based on Schwarz inec1|uality
[(nplvo)| < [(pplpp)(volvo))?

e (up|vo) decreases exponentially with distance between x, & x,. X & Xo

e (up|vo) decreases slowly with distance R;5 (between centers of charges

= Number of relevant integrals scales with O(N?).
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Screening of Electron Repulsion Integrals

ff r dr dr

I ]

D (sparse)

elektron (1) elektron (2)

e cheap estimate of integral based on Schwarz inequality
[(pplvo)| < [(uplpp)(volvo))?

e (up|vo) decreases exponentially with distance between x, & x,. X & Xo

e (up|vo) decreases slowly with distance R;5 (between centers of charges

= Number of relevant integrals scales with O(N?).

= With Integral/Density product prescreening
— O(N) scaling for exchange-type contractions
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CPU time /s

LMP2 Scaling behaviour, CPU-time

System: Glycine-Polypeptid [Gly],, / VDZ Basis ([Gly]s2: 1586 BF/492 El.)
Hardware: Linux Pentium 11/450 MHz
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Iterative Solution of Amplitude Equations Direct Integral Transformation
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LMP2 CPU-times for 3-D Water Clusters
System: (H,0O),,, n = 30,60 /VDZ Basis:

n=30/ 720 BF n=60 / 1440 BF

Memory: 9.92 MW Memory: 27.21 MW (1.49)
t(KY) =4.3h t(K%)=15.7 h (1.84)
t(iter) = 12 min t(iter)=39 min (1.29)

For comparison: LinK in linear scaling SCF i
Scaling between (HQO)50 and (HQO)log: 1.83

1 Ochsenfeld, White and Head-Gordon, J.Chem.Phys. 109, 1663 (1998)
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Coupled Cluster Theory

e CC wave function generated from reference wave function &, by an
exponential excitation operator:

A A A AN AA A

TOC = exp(T)®g, exp(T) = 1—|—T—|—§TT—|—§TTT...

e Products of excitation operators = size consistency
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e CC wave function generated from reference wave function &, by an

exponential excitation operator:

A A A AN

TCC = exp(T) Py, exp(T):1—|—T—|——TT—|—§TTT...

2!

e Products of excitation operators = size consistency
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Coupled Cluster Theory

e CC wave function generated from reference wave function &, by an
exponential excitation operator:

A A A AN AA A

TCC = exp(T) Py, exp(T):1—|—T—|—§TT—|—§TTT...

e Products of excitation operators = size consistency

e Excitation operator 7" is decomposed into excitation classes: A
(for CCSD model: Truncation after double excitations = 1" =17 + 15)

e CC Equations: Projection of the Schrodinger eq. onto subspaces of(Zero-,
One-, Two-. .. fold excitations)

E = <(I)()|IA{ GXp(Tl —1— T2)|(I)0>,
ri = (OF|(H — E)exp(Ty + T2)|®o) = 0,
R (@15|(H — E) exp(Th + T2)|®o) = 0.
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Coupled Cluster Theory

e CC wave function generated from reference wave function &, by an
exponential excitation operator:

A A A AN AA A

TCC = exp(T) Py, exp(T):1—|—T—|—aTT—|—§TTT...

e Products of excitation operators = size consistency

e Excitation operator 7' is decomposed into excitation classes: A
(for CCSD model: Truncation after double excitations = T = T3 + 15)

e CC Equations: Projection of the Schrodinger eq. onto subspaces of(Zero-,
One-, Two-. .. fold excitations)

E = <(I)()|IA{ GXp(Tl —1— T2)|(I)0>,
ri = (®F|(H — E)exp(Ty + T2)|®o) = 0,
R (@15|(H — E) exp(Th + T2)|®o) = 0.
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Scaling of CPU-time for for Local Coupled Clusters

System: Glycine-Polypeptide [Gly],, / VDZ Basis: ([Gly]1: 1160 BF/360 EI.)
Hardware: 1 GHz Athlon PC
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CCSD lteratio :

35000 (~N©) —
30000

25000 [~

me/s
|

‘= 20000 —
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Scaling of CPU-time for for Local Coupled Clusters

System: Glycine-Polypeptide [Gly],, / VDZ Basis: ([Gly]1: 1160 BF/360 EI.)
Hardware: 1 GHz Athlon PC

40000

I I I I I I

| T
CCSD lteration -
35000 (~N©®) —
30000

25000

me/s

‘= 20000

U

o
O 15000

LCCSD lteration _|
(=N) -

L(T) (=N) -
I $v L J{E I h 1 —’F{,— | ;E |
6 8 10 12 14 16

10000

5000

Y\oLPRO / M. Schiitz / April 3, 2002 GOTO INDICQ




Scaling of CPU-time for Integral Transformations

System: Glycine-Polypeptide [Gly],, / VDZ Basis: ([Gly]1: 1160 BF/360 EI.)
Hardware: 1 GHz Athlon PC
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16000 — | o——o D2EXT Transformation --> (ri|js) ]
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H—A DAEXT Transformation
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External Exchange Matrices in LCCSD
K(CY),., Z I(rt|su), mit C¥ =TY + 't
e Single contribution of 4-ext integrals
e No couplings of amplitudes via K (C¥),.

e Has to be build in each CC iteration
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External Exchange Matrices in LCCSD
K(CY),., Z I (rt|su), mit CY =TY + 't

e Single contribution of 4-ext integrals

e No couplings of amplitudes via K(C%),.,

e Has to be build in each CC iteration

Canonical case:

Computational complexity: o m?2N* oc N/©
# of 4-ext integrals: o N* oc N4
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External Exchange Matrices in LCCSD
K(CY),., ZC” (rt|sw), mit C* = T + ¢'t

e Single contribution of 4-ext integrals

e No couplings of amplitudes via K(C%),.,

e Has to be build in each CC iteration

Canonical case:

Computational complexity: o m2N* oc @
# of 4-ext integrals: o N* oc N4

Local case:

e \ery compact set of 4-ext integrals, oc N/
(Number of external exchange matrices = Number of Strong Pairs)
(r, s, t, u restricted to Pair Domain [ij])

e Computational complexity oc np L% oc N
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An example: Indinavir 865 BF (VDZ2)

Filesize:

2-ext 150 MB (1.35 GB w/o Multipoles)
3-ext 4.41 GB
4-ext 1.84 GB

1GHz Athlon PC

LCCSD DTRAF: 23.0 h
D3EXT: 17.7 h
DAEXT (new): 25.8 h
KEXT_4EXT (new): 47  slit
(DKEXT (old): 15.5 hlit)
LCCSD one it: 36.7 min

L(TO)  -0.221283(96.9%) 2.1 h
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The “Resolution of the Identity” (RI) Approximation i
Example: Exchange integrals (as used in LMP2):

L (ra)ds(ra)drydrs
_ 1‘1‘

Kl = (rilis) = [ 6n(r)outra)

T2

20. Vahtras, J.AImlof, M.W. Feyereisen, CPL 213, 514 (1993)
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The “Resolution of the Identity” (RI) Approximation i
Example: Exchange integrals (as used in LMP2):

1
vy — 1

¢;(r2)¢s(ra)dridrs

Kl = (riljs) = [ 6. (m0)0u(r)
Approximate expansion of the orbital products in an auxiliary Basis

pir(T) = 9i(r)Xr(r) = Pir (T Z dw

and minimization of the Coulomb self-repulsion of the residual p — p leads to

the equation system
Z d't(A|B) = (ir|B)

and the integral approximation

Ky, = (riljs) ~ (ri|A)(A|B)~*(B|js)

20. Vahtras, J.AImIof, M.W. Feyereisen, CPL 213, 514 (1993)

Y\oLPRO / M. Schiitz / April 3, 2002 GOTO ACCUR




The “Resolution of the Identity” (RI) Approximation i
Example: Exchange integrals (as used in LMP2):

1
vy — 1

¢;(r2)ps(r2)dridrs

Kl = (rilis) = [ 6n(r)outra)
Approximate expansion of the orbital products in an auxiliary Basis

pir(T) = @s(T)Xr ~ Pir (T Z dw

and minimization of the Coulomb self-repulsion of the residual p — p leads to

the equation system
Z d't(A|B) = (ir|B)

and the integral approximation

Ky, = (riljs) = (ri|A)(A|B) " (Bljs)

20. Vahtras, J.AImIof, M.W. Feyereisen, CPL 213, 514 (1993)
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Linear Scaling with RI-Approximation
e (A|B) and (ri|A) are two- and three-index Coulomb integrals = o« O(N?)

e For O(N) scaling via density prescreening:

— sparse test densities must involve auxiliary index A.
— not available for RI-LMP2 (available for RI-LMP2 gradients though)

3ER. Manby, P.J. Knowles, A.W. Lloyd, JCP 115, 9144 (2001)
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Linear Scaling with RI-Approximation
e (A|B) and (ri|A) are two- and three-index Coulomb integrals = o« O(N?)

e For O(N) scaling via density prescreening:

— sparse test densities must involve auxiliary index A.
— not available for RI-LMP2 (available for RI-LMP2 gradients though)

e Alternative: Use of Poisson functions as auxiliary basis?

_ Pf(rs)
7,7" ’LTP‘_‘ _ 172 / _
Di Zd —(4m)” V7, -~ dry = f(ry)
= (ri|A) and (A|B) become short range integrals:= O(N) scaling restored
(A|B) = [E4 P_B (r)dr (like kinetic energy integrals)
(ri]A) = [E4 (r)¢;(r)dr  (three-index overlap integrals)

3ER. Manby, P.J. Knowles, A.W. Lloyd, JCP 115, 9144 (2001)
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e For O(N) scaling via density prescreening:

— sparse test densities must involve auxiliary index A.
— not available for RI-LMP2 (available for RI-LMP2 gradients though)

e Alternative: Use of Poisson functions as auxiliary basis?

— Pf(rz)
7,7" ZTP._. _ 172 / _
Di Zd —(4m)” V7, - dro = f(ry)
= (ri|A) and (A]B) become short range integrals:= O(N') scaling restored
(A|B) = [E4 P_B (r)dr (like kinetic energy integrals)
(ri]A) = [E4 (r)¢;(r)dr  (three-index overlap integrals)
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Linear Scaling with RI-Approximation
e (A|B) and (ri|A) are two- and three-index Coulomb integrals = o« O(N?)

e For O(N) scaling via density prescreening:

— sparse test densities must involve auxiliary index A.
— not available for RI-LMP2 (available for RI-LMP2 gradients though)

e Alternative: Use of Poisson functions as auxiliary basis?
N : p
pir(r) = deZ{PEA(r)? P = —(47T)_1V2, / f(ra)
A

12
= (ri]A) and (A|B) become short range integrals:= O(N) scaling restored
(A|B) = [ E4(r)PEp(r)dr (like kinetic energy integrals)
(ri|A) = [ Za(r)x,(r)di(r)dr (three-index overlap integrals)
e Catch: The fitted Poisson density does not carry any charge or multipole
moments

= Mixed auxiliary basis (Poisson plus few ordinary Gauss functions)

drz = f(r1)

3ER. Manby, P.J. Knowles, A.W. Lloyd, JCP 115, 9144 (2001)
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RI-Local MP2

Indinavir 865 BF (VDZ), # fitting functions: 3920

CPU times on single Processor Athlon/1GHz:

LMP2 2.6 h
RI-LMP2 1.5h
RI-MP2  6.5h
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RI-Local MP2

Indinavir 865 BF (VDZ2), # fitting functions: 3920

CPU times on single Processor Athlon/1GHz:

LMP2 2.6 h
RI-LMP2 1.5h
RI-MP2  6.5h

e Implemented very recently: Analytical gradients for RI-LMP2

— Computational savings (relative to “conventional” local formalism) much

more dramatic than for energy
— MP2 geometry optimizations for large molecules now become feasible

— Focus of future applications: Molecular clusters

e Under development: Use of RI-Ansatz in local Coupled Cluster Theory
(Elimination of costly initial integral transformations)

GOTO ACCUR
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Indinavir 865 BF (VDZ2), # fitting functions: 3920

CPU times on single Processor Athlon/1GHz:

LMP2 2.6 h
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RI-MP2  6.5h

e Implemented very recently: Analytical gradients for RI-LMP2

— Computational savings (relative to “conventional” local formalism) much

more dramatic than for energy
— MP2 geometry optimizations for large molecules now become feasible

— Focus of future applications: Molecular clusters

e Under development: Use of RI-Ansatz in local Coupled Cluster Theory
(Elimination of costly initial integral transformations)
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Accuracy of the Local Approximation

Test Suite: Reaction Energies of 50 different chemical Reactions
(compiled by Dr. A. Schafer, BASF AG)

e DFT (Becke-Perdew, B3-LYP) for geometries and (harmonic) vibrational
frequencies (ZPE and finite Temperature corrections)

e Single point energies for electronic contribution to reaction energies, using
CCSD(T), LCCSD(T), LCCSD(T)|LMP2

e Basis set: cc-pVTZ(f/p) (without d-functions on Hydrogen)
e Comparison with canonical reference calculations and experimental values

e Basis set truncation errors investigated for critical cases
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Reaction Energies Coupled Clusters (Testset50)

O o o o o o e I I

Energie/ kcal/mol

e cc(M-BO

o b T

1 5 10 15 20 25 30 35 40

e Deviation CCSD(T) from Experiment

45 48

Y\oLPRO / M. Schiitz / April 3, 2002 GOTO INTERMOL|

GOTO CONCLUSIONS




Reaction Energies Coupled Clusters (Testset50)
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e Deviation CCSD(T) from Experiment

e Deviation LCCSD(T)|LMP2 from Experiment
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Reaction Energies DFT (Testset50)
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Energie/ kcal/mol
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e Deviation DFT (Becke-Perdew functional) from Experiment
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Reaction Energies DFT (Testset50)

Energie/ kcal/mol

4 S BAYP-Bp
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1 5 10 15 20 25 30 35 40 45 48

e Deviation DFT (Becke-Perdew functional) from Experiment

e Deviation DFT (B3-LYP functional) from Experiment
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(H20)2: Partitioning of the LMP2 Interaction Energy
1. Separation of intra- and intermolecular Electron Pairs

2. For intermolecular Pairs: Partitioning of the amplitude matrices T* along
Orbital Domain Boundaries

e dispersive components
e iONic components
e exchange-disperison

forbidden excitation classes
[i][i] [']U] O O O O O O O O O O O O
[0 | | G )& \ \\ /
~ O O O O O O O O O O O O
T intra.  disp. disp-exch ionic BSSE ionic

e Double excitations from one molecule to the other are forbidden
= No Basis Set Superposition Error (BSSE) for local correlation methods!
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2. For intermolecular Pairs: Partitioning of the amplitude matrices T* along
Orbital Domain Boundaries

e dispersive components

e iONic components
([

forbidden excitation classes
[i][i] [']U] O O O O O O O O O O
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~ O O oNe O O O O O O
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e Double excitations from one molecule to the other are forbidden
= No Basis Set Superposition Error (BSSE) for local correlation methods!
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(H20)2: Partitioning of the LMP2 Interaction Energy
1. Separation of intra- and intermolecular Electron Pairs

2. For intermolecular Pairs: Partitioning of the amplitude matrices T* along
Orbital Domain Boundaries

e dispersive components
e iONic components
e exchange-disperison

forbidden excitation classes
[i][i] ['][l] O O O O O O O O O O O O
[0 | | G )& \ \ /
~ O O O O O O O O O O O O
T intra disp. disp-exch ionic BSSE  ionic

e Double excitations from one molecule to the other are forbidden
= No Basis Set Superposition Error (BSSE) for local correlation methods!
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(H20)2: Components of the LMP2 Interaction Energy
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(H20)2: Components of the LMP2 Interaction Energy
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e LMP2 Interaction Energy quasi free of BSSE (no CP correction needed) !
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(H20)2: Components of the LMP2 Interaction Energy
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e LMP2 Interaction Energy quasi free of BSSE (no CP correction needed) !

intramolecular component  (repulsiv)
e Energy Partitioning: dispersive component (attractive, decaying as o -5

lonic component (attractive, decaying as < e %%
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Conclusions
e Correlated methods with O(N) scaling are possible

e Orthogonal Localized MOs for occupied space, and
Non-orthogonal projected AOs for virtual space

= Hierarchy of electron pairs and excitation domains
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e implemented: LMP2, LCCSD(T), LCCSDT-1b, RI-LMP2, RI-LMP2 Gradient

= Coupled Cluster calculations (with triples) > 1000 BF/300 EI./C,
feasible on PCs

e Testset of 50 reactions: Same accuracy as for canonical parent method
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Conclusions
e Correlated methods with O(N) scaling are possible

e Orthogonal Localized MOs for occupied space, and
Non-orthogonal projected AOs for virtual space

= Hierarchy of electron pairs and excitation domains
e implemented: LMP2, LCCSD(T), LCCSDT-1b, RI-LMP2, RI-LMP2 Gradient

= Coupled Cluster calculations (with triples) > 1000 BF/300 EI./C,
feasible on PCs

e Testset of 50 reactions: Same accuracy as for canonical parent method

Problems:

e Delocalized systems

e Bigger basis sets: VDZ — VTZ: factor of 16 in computational cost
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