

Linear Scaling in Quantum Monte Carlo

Arne Lüchow Institut für Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf,

April 6, 2002

IPAM at UCLA

Diffusion Quantum Monte Carlo (DQMC): the idea (Fermi, 1949, Anderson, 1975)

Schrödinger equation in imaginary time:

$$rac{\partial\Psi}{\partial au} = -\hat{\mathsf{H}}\Psi = rac{1}{2\mathsf{m}}rac{\partial^2\Psi}{\partial\mathsf{x}^2} - \mathsf{V}\Psi.$$

formal solution:
$$\sum_{i=0} a_i \Phi_i e^{-\tau E_i} \implies \Psi(\tau) \rightarrow \Phi_0$$

generalized diffusion equation:

$$\frac{\partial \mathsf{C}(\mathsf{x},\tau)}{\partial \tau} = \mathsf{D} \frac{\partial^2 \mathsf{C}(\mathsf{x},\tau)}{\partial \mathsf{x}^2} - \mathsf{V}(\mathsf{x})\mathsf{C}(\mathsf{x},\tau)$$

generalized diffusion equation: $\frac{\partial C(x,\tau)}{\partial \tau} = D \frac{\partial^2 C(x,\tau)}{\partial x^2} - V(x)C(x,\tau)$ $C(x,\tau) = \frac{\partial^2 C(x,\tau)}{\partial x^2}$

$$\begin{array}{lll} \displaystyle \frac{\partial C(x,\tau)}{\partial \tau} & = & D \frac{\partial^2 C(x,\tau)}{\partial x^2} & \qquad & \mbox{Fick's 2nd law} \\ \displaystyle \frac{\partial C(x,\tau)}{\partial \tau} & = & -V(x)C(x,\tau) & \mbox{1st order kinetics} \end{array}$$

• simulation like Brownian motion with a *random walk*

What is diffusing here?

- *random walker* has dimension of Schrödinger equation: 3n-dim.
- diffusion process describes quantum mechanical kinetic energy
- potential energy as weighting or (better) drift of the random walk Drift

drift-diffusion algorithm: example He atom random walker is arrangement of *both* electrons

wave function as statistical sample (H atom)

real time t

Mathematical Formalism

wave function propagation in imaginary time

$$|\Psi(au)
angle={
m e}^{- au\hat{{
m H}}}|\Psi(0)
angle$$

in position space:

$$\Psi(\mathbf{r},\tau) = \int d\mathbf{r}' \mathsf{G}(\mathbf{r},\mathbf{r}',\tau) \Psi(\mathbf{r}',\mathbf{0}) \qquad \text{with } \mathsf{G}(\mathbf{r},\mathbf{r}',\tau) = \langle \mathbf{r} | \mathbf{e}^{-\tau \hat{\mathsf{H}}} | \mathbf{r}' \rangle$$

short time approximation (Trotter):

$$\mathbf{e}^{-\tau\hat{\mathsf{H}}} = \mathbf{e}^{-\tau(\hat{\mathsf{T}}+\mathsf{V})} = \lim_{\mathsf{n}\to\infty} \left(\mathbf{e}^{-\frac{\tau}{\mathsf{n}}\hat{\mathsf{T}}}\mathbf{e}^{-\frac{\tau}{\mathsf{n}}\mathsf{V}}\right)^{\mathsf{n}}$$

$$G_{\mathrm{exact}}(\mathbf{r}_{n},\mathbf{r}_{0};\tau) = \lim_{n \to \infty} \int d\mathbf{r}_{n-1} \cdots \int d\mathbf{r}_{1} \prod_{i=1}^{n} G_{\mathrm{diff}}(\mathbf{r}_{i},\mathbf{r}_{i-1};\Delta\tau) e^{-\Delta\tau V(\mathbf{r}_{i-1})}$$

in path integral form (Feynman-Kac):

$$G_{\mathrm{exact}}(\mathbf{x}, \mathbf{x}'; \tau) = \int_{(\mathbf{x}', \mathbf{0}) \to (\mathbf{x}, \tau)} \exp\left\{-\int_{\mathbf{0}}^{\tau} V[\mathbf{x}(t)] \, dt\right\} \mathcal{D}^{\mathsf{W}} \mathbf{x}$$

Properties

Applications

- direct quantum simulation of (almost) arbitrary Schrödinger equations
- quantum mechanical properties as statistical expectation
- statistical error like $1/\sqrt{M}$ (sample size M)
- possibly great computational effort

- high-dimensional coupled quantum systems
- correlation of electrons in molecules, solids (electronic Schrödinger equation
- coupled vibrations (Schrödinger equation for nuclear motion)

Why QMC for electron structure?

- electron correlation: binding energy
- electron cusp: requires large basis sets
- or: $\Psi \propto r_{ij}$ for $r_{ij} \rightarrow 0$
- R12 methods (Kutzelnigg, Klopper), basis set extrapolation
- or: quantum Monte Carlo

QMC: Guidance Function

guidance function $\Phi_{\mathsf{G}}(\mathbf{r})$ forces space and spin symmetry

 $\mathsf{f}(\mathbf{r},\tau) := \boldsymbol{\Psi}(\mathbf{r},\tau) \boldsymbol{\Phi}_{\mathsf{G}}(\mathbf{r})$

Importance sampled DQMC algorithm:

• diffusion step

- drift step towards large $\left|\Phi_{G}(\mathbf{r})\right|$
- weight step with $e^{-(E_L(\mathbf{r})-E_T)\tau}$

with local energy:
$$\mathsf{E}_\mathsf{L}(\mathbf{r}) = \frac{\hat{H} \Phi_\mathsf{G}(\mathbf{r})}{\Phi_\mathsf{G}(\mathbf{r})}$$

Asymptotic probability density $f(\mathbf{r}) \rightarrow \Phi_G(\mathbf{r}) \Phi_0(\mathbf{r})$

QMC: Energy Estimator

Exact lowest eigenvalue E_0 :

$$\mathsf{E}_{0} = \frac{\langle \Phi_{\mathsf{G}} | \hat{\mathsf{H}} \Phi_{0} \rangle}{\langle \Phi_{\mathsf{G}} | \Phi_{0} \rangle} = \frac{\langle \Phi_{0} | \hat{\mathsf{H}} \Phi_{\mathsf{G}} \rangle}{\langle \Phi_{0} | \Phi_{\mathsf{G}} \rangle} = \frac{\int \frac{\hat{\mathsf{H}} \Phi_{\mathsf{G}}}{\Phi_{\mathsf{G}}} \Phi_{0} \Phi_{\mathsf{G}} \, dx}{\int \Phi_{0} \Phi_{\mathsf{G}} \, dx}$$

$$\textit{mixed estimator} \qquad E_0 = \lim_{N \to \infty} \frac{\sum_{i=1}^N w_i \, E_L(i)}{\sum_{i=1}^N w_i}$$

This estimator has the *zero-variance property*, giving *exact eigenvalue without statistical error* when the guidance function is an exact eigenfunction

QMC: Guidance and Trial Functions

- good guidance functions: approximations to exact wavefunction
- Electron-electron cusp condition (Kato):

$$\Psi \propto e^{\frac{1}{2}r_{ij}} \qquad \text{for } r_{ij} \longrightarrow 0$$

• compact, physically motivated wavefunctions

Typical guidance functions $\Phi_G(\mathbf{r})$ are products of HF-SCF or small MCSCF functions with correlation functions

$$\Phi_{\mathsf{G}} = \Phi_{\mathsf{det}} \; \mathsf{e}^{\mathsf{U}}$$

QMC: Correlation functions

Many-body decomposition of the *correlation function* U:

 $\mathsf{U}=\mathsf{U}_1+\mathsf{U}_2+\mathsf{U}_3+\ldots$

with

$$\begin{split} U_1 &= \sum_i U_1(\mathbf{x}_i) \\ U_2 &= \sum_{i < j} U_2(\mathbf{x}_i, \mathbf{x}_j) \\ U_3 &= \sum_{i < j < k} U_3(\mathbf{x}_i, \mathbf{x}_j, \mathbf{x}_k) \end{split}$$

Schmidt/Moskowitz ansatz, based on transcorrelated wavefunctions of Boys/Handy:

$$U_{aij} = \sum_{k}^{N_a} c_k (\overline{r}_{ai}^{l_k} \overline{r}_{aj}^{m_k} + \overline{r}_{aj}^{l_k} \overline{r}_{ai}^{m_k}) \overline{r}_{ij}^{n_k}$$

with electrons i,j and nuclei a, and $\overline{r} := \frac{br}{1+br}$ (satisfies electron-electron cusp for b = 1/2)

- fixed node approximation: use nodes from known functions (here: ab initio)
- ullet ightarrow node location error

method: DQMC/HF

- \bullet coupling of DQMC with ab initio HF/SCF wave functions
- \bullet accuracy of DQMC/HF depends on the nodes of the ab initio function
- error cancellation is necessary if "chemical accuracy" is to be achieved
- use standard ab initio basis sets in DQMC
- all electrons, no pseudo potentials

scaling with system size

- computer time grows like n³⁻⁴ with the number of electrons n
- cf. CCSD(T) like n^7

reaction			exp	DQMC		cc-pVTZ		cc-pVDZ	
			ΔH_e	ΔH_e	$\Delta \Delta H_e$	ΔH_e	$\Delta \Delta H_e$	ΔH_e	$\Delta \Delta H_e$
$CH_2 + H_2$	\rightarrow	CH_4	-544(2)	-552(2)	-8	-537	7	-529	15
$C_2H_2+H_2$	\rightarrow	C_2H_4	-203(2)	-209(2)	-6	-207	-4	-215	-12
C_2H_2 + 3 H_2	\rightarrow	2 CH_4	-446(2)	-442(2)	4	-451	-5	-457	-11
N_2H_2	\rightarrow	N_2+H_2	-174	-192(2)	-18	-179	-5	-188	-14
$CO + H_2$	\rightarrow	H_2CO	-21(1)	-32(2)	-11	-16	5	-1	20
$N_2+3\;H_2$.	\rightarrow	2 NH_3	-164(1)	-186(2)	-22	-146	18	-101	63
$F_2 + H_2$	\rightarrow	2 HF	-563(1)	-618(2)	-55	-545	18	-510	53
$O_3+3\;H_2$.	\rightarrow	$3 H_2O$	-933(2)	-1050(2)	-117	-912	21	-850	83
$H_2CO + 2 H_2$	\rightarrow	$CH_4 + H_2O$	-251(1)	-262(2)	-11	-241	10	-217	34
$H_2O_2+H_2$	\rightarrow	$2 H_2O$	-365(2)	-384(2)	-19	-351	14	-328	37
$CO + 3 H_2$	\rightarrow	$CH_4 + H_2O$	-272(1)	-294(2)	-22	-257	15	-218	54
HCN + 3 H_2	\rightarrow	$CH_4 + NH_3$	-320(3)	-338(2)	-18	-313	7	-289	31
HNO + 2 H_2	\rightarrow	H_2O+NH_3	-444(1)	-485(2)	-41	-427	17	-381	63
HNC	\rightarrow	HCN	-64	-66(2)	-2	-63	1	-66	-2
H_2O+F_2	\rightarrow	HOF + HF	-129(4)	-141(2)	-12	-115	14	-107	22
CO_2 + 4 H_2	\rightarrow	$2\ H_2O\ +\ CH_4$	-244(1)	-272(2)	-28	-226	18	-178	66
2 CH_2	\rightarrow	C_2H_4	-844(3)	-871(2)	-27	-830	14	-815	29

reaction energies (O K) in kJ/mol calculated with DQMC/HF/cc-pVTZ and MP2/cc-pVTZ geometries

DQMC/HF calculations for carbon clusters C_{20}

methods: DQMC/MCSCF and DQMC/PNOCI

- coupling of DQMC with correlated *ab initio* wave functions
- analysis of node location error: dynamical node error and non-dynamical node error analogously to electron correlation
- use DQMC/MCSCF (DQMC/CASSCF) when nondynamical correlation important
- use DQMC/PNOCI for systematical reduction of node error

DQMC/PNOCI results in comparison to other methods

method	reference	E_0
variational results:		
DQMC/MCSCF	(this work)	-109.506(2)
ICMRCI/cc-pCV5Z	Peterson 1997	-109.5095
DQMC/PNOCI	(this work)	-109.520(3)
nonvariational results:		
ICMRCI+Q/CBS	Peterson 1997	-109.5346
CCSD(T)/cc-pCV5Z	Peterson 1997	-109.5359
r_{12} -MR-ACPF	Gdanitz 1998	-109.5370
"experimental"	_	-109.5424

Local DQMC

- electron correlation is a short-range effect (dispersion like r^{-6})
- localized MOs *and* short-range correlation functions
- improvement of scaling from n^{3-4} to n^{2-3}
- sparse matrix algorithms
- approach similar to current local *ab initio* methods

Electron QMC: Scaling

cpu time $\propto N_{
m steps} imes t_{
m local energy}$

$${f t}_{
m local energy}: \; E_{
m local}=rac{\hat{H}\Psi}{\Psi} \; {
m with} \; \Psi=\Phi_{
m Det} e^U$$

for the current electron *positions* calculate:

- 1. atomic orbitals (AOs)
- 2. molecular orbitals (MOs) from AOs
- 3. Slater determinant(s) from MOs
- 4. electron correlation function ${\sf U}$
- 5. coulomb energy

Electron QMC: Scaling

Scaling of standard implementation using canonical MOs:

- 1. AOs: n^2 , each AO for each electron
- 2. MOs: n^3 , each MO is LCAO for each electron
- 3. Determinants: n^3 , via LU decomposition
- 4. correlation: n^2 for electron pair function
- 5. coulomb: n^2

(scaling with number of electrons n assumed \propto number of basis functions N)

scaling of local energy calculation: n^3 overall scaling of DQMC: $n^3 - n^4$

Improved scaling for calculation of AOs:

AOs decay exponentially:

- calculate AO only for electrons within cutoff radius
- constant number of electrons per AO

improved scaling: $O(n^2) \rightarrow O(n)$ (linear)

AO contribution: old vs. new DQMC calculation for C_nH_{2n+2}

Localized MOs instead of canonical MOs

unitary transformation:

improved scaling for calculation of MOs

Local MOs decay exponentially:

- calculate Local MO only from AOs within a cutoff radius
- calculate Local MO only for electrons within a cutoff radius
- constant number of electrons and AOs per Local MO

improved scaling: $O(n^3) \rightarrow O(n)$ (linear)

MO contribution: old vs. new DQMC calculation for C_nH_{2n+2}

electrons

improved scaling for calculation of Slater determinants

With Local MOs, Slater determinants are sparse:

- use sparse matrix algorithm for LU decomposition
- $\bullet \rightarrow \text{linear time } O(n) \text{ per determinant}$
- But: n determinants required for $abla^2 \Psi$
- Either: sparse matrix algorithm for inverse matrix $(O(n^2))$ and updates
- \bullet Or: direct calculation of n determinants each in linear time

improved scaling: $O(n^3) \rightarrow O(n^2)$

determinant contribution: old vs. new DQMC calculation for C_nH_{2n+2}

improved scaling for calculation of electron correlation

The electron correlation term e^U is:

$$\mathsf{U} = \sum_{a} \sum_{i < j} U_{aij}$$
 with $U_{aij} = \sum_{k}^{N_a} c_{ka} (ar{r}_{ai}^{l_{ka}} ar{r}_{aj}^{m_{ka}} + ar{r}_{aj}^{l_{ka}} ar{r}_{ai}^{m_{ka}}) ar{r}_{ij}^{n_{ka}},$

(nuclei a, electrons i, j, Schmidt/Moskowitz, 1993)

- replace scaled distance $\bar{r} = r/(1 + ar)$ with exponentially decaying $\bar{r} = 1 \exp(-ar)$
- use cutoff distance
- no loss in variance of trial function!

improved scaling: $O(n^3)$ or $O(n^2) \rightarrow O(n)$ (linear)

correlation contribution: old vs. new DQMC calculation for C_nH_{2n+2}

Electron QMC: Scaling

Scaling of new Local DQMC (LDQMC) version:

- 1. AOs: *linear* (cutoff)
- 2. MOs: *linear* (cutoff, Local MOs)
- 3. determinants: n^2 , (sparse matrix algorithm)
- 4. correlation: *linear* (special form, cutoff)
- 5. coulomb: n^2 (linear possible)

(scaling with number of electrons n assumed \propto number of basis functions N)

scaling of local energy calculation: n^2 overall scaling of DQMC: $n^2 - n^3$

0 ⊾ 0

50

Electron QMC: Improved Scaling

total cpu time: old vs. new DQMC calculation for C_nH_{2n+2} → DQMC 3000 + LDQMC cpu time [s] 1000

100

electrons

150

200

contributions to LDQMC: calculation for $C_n H_{2n+2}$

