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Outline
• Motivations and Definitions

- Metals (w/ and w/o defects) require 0.1 mRy relative accuracy.
- bandgap materials able to achieve this with O(N) via localization.

• “Tutorial” on Green’s Function Multiple-Scattering Theory

- Korringa-Kohn-Rostoker  (KKR) Electronic-Structure Method

• Linear-Scaling in number of atoms per cell, N.   (Metals too?)
- Linear Scaling Green’s Fct. (LSGF) Method

- Linear Scaling Multiple Scattering(LSMS) Method
- “tight-binding” Hybrid k-space vs.  real-space

• Accuracy of real-space versus k-space methods.

• Temperature-broadening for Kinetic Energy
- Does it help with  real-space?  NO, not for improving accuracy!

• Some Applications  (e.g.  fcc, bcc Cu;  bcc Mo, hcp Co …)



Many Approaches

• Plane Wave Pseudo-potentials
• k-space: FLAPW, LMTO, KKR*, LCAO, LASTO ….
• Real-space 

• divide-and-conquer
• recursion
• density matrix
• grid-based  (finite-element, finite difference, ….)
• wavelets
• KKR  (LSMS  of Stocks et al. ORNL)

• Screened “tight-binding-like” KKR
• Hybrid (screened) k-space and real-space KKR
• Kinetic Energy Functional Approaches

*Green’s function approach allows disorder also to be considered by
configurational averagin, e.g., via  coherent-potential approximation.

Red= this work



Processing  ⇒  Structure  ⇒   Properties  ⇒  Performance
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From high to  low T: Where do atoms go and why?

Partially ordered

Short-ranged ordered

Fully ordered

Most properties can be significantly affected by STATE OF ORDER.



Synposis of our Motivation

• Fast - O(N) if possible, 

• Accurate   (~ 0.1 mRy or 1 meV)
(at least for energy difference)

• Can incorporate disorder effects (state of order)

• Checked reliability carefully 
(both band-gap and metals)

• Present honest appraisal of results

Example includes failure of T=0K at finite-T or non-perfect order
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DO3

2 non-equivalent Fe sites
via secondary ordering
(for Ternaries = L21 or “Heusler” Phase)

Fe-Al Phase Diagram:  Disordered and Partially Ordered Phases

DO3 ⇒  B2 at 38% Al  (max.)
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KKR-CPA  Energy vs. LRO Parameters (0 ≤ η ≤ 1)
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2 non-equivalent Fe sites
via secondary ordering

e.g., bcc Fe-Al
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Within a given unit cell, relative energies are: 
∆Fσ = Fσ - FA2 ≈ F(2) η2    +    terms higher-order in η

∆Fσ = Fσ - FA2 = Eσ - EA2 - T∆Sσ   ≈ Eσ - EA2  ∝  η2 + ...
(pt. entropy cancels exactly)

SRO fluctuations



Experiment vs. T=0 K DFT:      e.g.   fcc Ni3V ∆E(L12-DO22)

• T=0 K (LDA) DFT calculation

  ∆E(L12 - DO22) = 111 meV            (DO22 lower)

* present KKR-ASA results agree with all previous calculations,

see Xu et al. PRB 35, 6940 (1987); Pei et al. PRB 39, 5767 (1989);

Lin et al., PRB 45, 10863 (1992), Wolverton and Zunger PRB 52, 8813 (1995).

• Diffuse scattering measurements   (Texpt = 1373 K and Tc=1318 K)

Finel et al. NATO-ASI vol. 256 (1993) and Barrachin et al. PRB 50, 12980 (1994)

∆E(L12 - DO22) = 10±5 meV        from ∆α-1 data.

• (LDA) DFT KKR-CPA Short-range Order Calculation via Linear-Response

∆E(L12 - DO22) = 8.3 meV 

meV (or less) control ordering, temperature scale, and defect properties in metals



L12 DO22
• Only 2nd n.n. are different
in these two structures

• 5 sublattices, in general
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Consider the Effects of Partial Order

* As done in experimental analysis, make  η≡ η001= η01/21  (1 LRO parameter)
* η(T) has T-dependence that must be determined from statistical average.



Partially-Ordered (PO) States Relative to Disordered State

• T=0 K DFT get ∆E ~100meV,
    but not relevant to experiment.

• ∆E depends on configuration,
i.e., on LRO parameter, for L12.

• Configuration dependence arises
from DOS changes in L12  below εF.

• Extrapolation from high-T PO states
yields ∆E ~7-12 meV, whereas direct
ASRO calculations get ∆E ~8.3 meV.
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Partially ordered states must be considered in general
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• c-axis Layered (L10) CoPt ordering well 
described by linear extrapolation to T=0 K.

• Ni2Cr SRO and LRO highly depended
on local state of order.

• Estimated to change Tc by factor of 2
from linear-response type calculation.



Structural defects in L10

Conservative APB
 

Non-conservative APB
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•L10 forms from A1 during annealing
via nucleation and growth.

•Within individual grains of A1,
several L10 variants form antiphase
boundaries (APB) and chemical
domain boundaries (DB).

•Slight contraction of lattice along
tetragonal c axes in L10  causes
formation of twins (not pictured).



Classification of APB’s:   Diffuse have disordered

• APB can be either layer- or
interlayer-symmetric.

• Mean-field theory predicts
that APB’s become more
diffuse with decrease in η.
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Multiple-scattering

Electronic-Structure

Calculations       for

Complex

Applications

Korringa-Kohn-Rostoker Method

using 
Screened  structure constants    (sparsity)
Sparse matrix techniques (memory & size)
Iterative inversion technique     (size)
Hybrid k-space/r-space             (accuracy)
r-space only   (speed)
Coherent Potential Approx.      (disorder)



O(N) in Metals. Really?
That depends on what you want. You decide.

Reality

Speed

Myth

Accuracy

Conclusion for scaling behavior in metals
(with same level of accuracy for all N)

• For SCF Total Energy:    O(N1+ε) ε1≈ 0.0-0.5
• For DOS calculations:     O(N1+ε) ε2≈ 0.5-1.0
• For Bands:  O(N2+ε) ε3 (k)≈ 0.5-1.0

Memory scales as O(N)      N*M*(L+1)2          (Ylm basis set)

 M= atoms in screening cluster (2-6 n.n. shells)
  L=maximum angular momentum  (L ~ 3)



Definitions

N = number of atoms in system      (possibly in periodic cell)
M = number of atoms in small region around some central atom.
L = maximum index  for spherical harmonics (angular momentum)
RI - RJ = vector from atom I to J. 

N M   defines local cluster

If only local information needed, real-space give O(N*M3)

As e- scatter through collection, what is range of decay length?

I

J



Motivation:   A code that ….

• Addresses large-scale, defected materials
(e.g. GB, APB with concentration gradients, ...)

• Uses a non-spectral Green’s function
(e.g., avoids eigenvalue problem and use of unoccupied states …  transport, FS)

• Handles many inequivalent atoms in arbitrary structures

• Can obtain accurate spectral properties and energetics
(i.e. physical DOS, Fermi surfaces, bands ….  not just by T-broadening)

• Can be straightforwardly parallelized  (E, k, inverses)

• Is fast on workstations, faster on clusters, fastest on  parallel machine

• Uses a mixed real-space and k-space representation
(i.e. to optimize speed and accuracy)

• Accurate for metallic systems



KKR Multiple-Scattering Theory Method
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For l≈3 or 4, δl(E)=0, hence rather compact basis.
Matrices have rank = N*(L+1)2 ≈ N*16 or N*25.

Note: G(E) is complex and non-Hermitian.



Some advantages of non-spectral (non-wave-fct) Green’s Function

• Density of States:n E dkG k E( ) ( ; )= ∫

• Charge Density: (contour integration)ρ( ) ( ; )r dE TrG r E= ∫

• G(k;E) provides direct spectral information of any E
without knowledge of any other (un-)occupied states,
e.g. Fermi surface of metal can be obtained directly.

Fermi Energy

• Chemical disorder can be handled by averaging G.

occupied

unoccupied



Sum of the scattering

G = G0 + G0 t G = G0 + G0 t G0 + G0 t G0 t G0 + …. 
                           = G0 (1 - tG0)-1              t-matrices
 t(E)=tiLL’ (E)δij

potential dependent

The positions, Ri, of the scatterers (i.e. lattice structure) are
 given by free-space  Green’s function, G0(Rij;E).

If G0(E) decays, then G is localized.

(Origin of “Tight-binding” LMTO)
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Contour integration for SCF Total E:  G = G0 + G0 ∆V G

For a metal, as you approach real E axis, G has a range which
grows algebraically, hence M>>N, rather than M<<N. 

For material with a gap, G decays exponentially always!     

For Bulk,  D.D. Johnson et al., Phys. Rev. B30, 5508 (1984).    
For Impurities, Zeller and Dederichs PRB (1984)
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limited range an e–

can scatter.
2-5 n.n. shells.

M= 15-100 atoms
so M << N.

As range of e–  grows,

• Mathematical decay



Linear-Scaling Multiple-Scattering Methods

Real-space LSMS scales as O(N*M3).    Yang et al., PRL 75, 2867 (1995)

Visit N sites and invert an M site cluster

Advantages
• With M fixed (≈6 n.n. shells), LSMS is O(N).

Use “localization” produced by contour integration keeping ImE > 15 mRy,
 and hope errors in Fermi energy, charges, total energy are  small.

• Can be easily parallized,   N sites on N nodes.

Disadvantages
• Accurate charge density (esp. T =0 K) cannot be obtained.
• Density of states cannot be obtained.
• Spectral properties cannot be obtained.
• Large memory storage for G0 .



Ab initio “tight-binding-like” KKR or LSMS Methods

Can produce a “tight-binding-like” version of KKR or LSMS using:

(1) Reference Green’s Function
screened KKR    Zeller et al. PRB 52,  8807 1995

*Two step solution of Green’s function: use reference Gref to produce localization.

*Basically, the mathematical origin from KKR perspective of “Tight-binding” LMTO.
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Disadvantage:  
•  Accuracy (in some metallic case).



Ab initio “tight-binding-like” KKR or LSMS Methods

(2) For alloys only, coherent potential approximation
LSGF method Abrikosov et al PRL 76 4203 (1996)
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G Gref cpa≡ CPA has (strong)decay scattering, so that G can be
solved as perturbation of Gcpa in real-space.

Disadvantage:  
• Gcpa must be obtain in k-space for 1-atom per cell
• Gcpa

IJ obtained by FFT in real-space to get local correction.
•  CPA is for rigid (perfect) lattice

Let

With perfect lattice, the Gcpa can be  solved in k-space for a metal to obtain
the correct long-range behavior of the Green’s fct (algebraic decay). 

Then, using a small cluster about the I-th atom, you can solve the local 
perturbation  from the actual  local environment to get the correct G.



Localized (tight-binding) representation

Choose a reference system to solve Dyson’s Equation,  then solve for true system.

       reference G:    Gr = G0 + G0 tr Gr = G0 (1 - trG0)-1

V0
Highest E

The reference state

For Gr, κ = −E V0 so κ is pure imaginary andGr e
Ri Rj∝

−–| || |κ

For k-space, can obtain Gr(k) with a few n.n. shells of R’s  
          only advantage =>  sparse storage of Gr.

Zeller et al., Phys. Rev. 52, 8807 (1995) and Phys. Rev. 55, 9400(1997) 

• scattering decay



The real Green’s function

Obtained Gr,  get Gr(k) if needed, now solve Dyson’s Equation for true system in
      k-space or r-space depending on scattering behavior of electrons.

true G:      G = Gr + Gr ∆t G = Gr (1 - ∆t Gr)-1     , ∆t = t-tr

      =  ∆t–1 (1 - ∆t Gr)-1 – ∆t–1 

• Is G sparse?   Generally not.
But ∆t–1 is block diagonal and we only need ρ = Tr G

• Recall, for any matrix A: AA–1=1

• So 1 - ∆t Gr is sparse  (but not banded)
                                       and (1 - ∆t Gr)-1 (usually) is dense!



Matrices and k-space near real E axis
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Calculation Details of Example

• Screened G0 in real-space for sparse storage

• Screening cluster size M ≈ 27 (3 n.n. shells)

• Real-space + k-space to get proper structure of G

• With sparse matrices, use iterative methods to get (1 - ∆t Gr)-1

• All-electron, relativistic core, scalar-relativistic valence

• k-point methods

Important for scaling and maintain same accuracy from one size cell to another

• Memory       N*M*(L+1)2        (complex double precision)

               + α N2      [sparse map (integer) + Madelung (real) + aij (real)]

                       calculate (time)       <-->      store (memory)

Nk N Nk N cons t( ) ( ) ( ) ( ) tan1 1 2 2= =



That depends on what you want. You decide.

RealityMyth

Conclusion for scaling behavior in metals
(with same level of accuracy for all N)

• For SCF Total Energy:    O(N1+ε) ε1≈ 0.0-0.5
• For DOS calculations:     O(N1+ε) ε2≈ 0.5-1.0
• For Bands:  O(N2+ε) ε3 (k)≈ 0.5-1.0

Memory scales as O(N)      N*M*(L+1)2

 M= atoms in screening cluster (2-6 n.n. shells)
  L=maximum angular momentum  (2-4)

Scaling is O(N) for real-space and k-space.
Speed vs. accuracy vs. scaling.



Time per E point  (single Unix node)

~12 min. with initial pre-conditioning

A.V. Smirnov and D.D. Johnson, Phys. Rev. B 64, 235129 (2001)



Im E = 0.001 Ry 
Typical for DOS

For SCF,
Im E > 0.010 Ry

2048     atoms/cell
67 Mb  memory for inversion

128

O(N1+ε) scaling for SCF in Metals  (ε≈0-1)

A.V. Smirnov and D.D. Johnson, Phys. Rev. B 64, 235129 (2001)



For points along
E-integration contour

Ef

Errors for 
k-space vs. r-space

*  Scr-LSMS more

Reliable than LSMS.

Smaller Im E



Error in Total Energy: r-space vs. k-space

open points refer to fcc, bcc Cu, bcc Mo, hcp Co:  full real-space not accurate



Error in Band Energy: r-space vs. k-space

In metals, error are related to Thomas-Fermi error (DOS error →Ef error) from G decay.



Energy Scaling and Timings: r-space vs. k-space
not independent from accuracy requirements

• For a given small cluster size, r-space is O(N)
and always faster!  But not as accurate.

• For accurate total energies, hybrid r-space/ k-
space is necessary.

Time and scaling then controlled by k-space for a
few energies near real-E axis.

• Direct inversion (e.g. SuperLU) restricts size
and scaling but gets all atoms at once.

•For fixed accuracy, iterative solves scale energy
integration as O(N), but  per atom so effectively
O(N2).

• If using real-space but want to increase
accuracy, Ninv increases rapidly and scaling and
speed is lost.

• Can there be a pragmatic solution?



Temperature decay and Temperature Broadening

• Consider band energy

 for f(E) = Fermi function = (1 + e–(E-µ)/kT)–1

ωn=(2n+1)πkBT are Matsubara poles.

• Similar to use of temperature in other methods.
But, in contour integration, last point cannot be closer than ImE ~ ωn=1.

• At T≈ 800-1000 K (ImE ~ 15 mRy), integration is easier because
temperature has broadened spectral features some.
That is, both KKR and LSMS are more localized.

•But is accuracy maintained?
DFT Free Energy is variational not Energy!

E dE E n E f E Gband nn
= −∫ → ∑


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µ ω( ) ( ) ( )
1



Temperature Extrapolation

• Determine F(T) = E(T) – TS(T)

• But need S(T) = f(E)lnf(E) – ( 1 – f(E) ) ln( 1 – f(E) ),  which
has a singularity at ωn=(2n+1)πkBT with  infinite branch-cut. So the
farthest off for S(T) calculation is πkBT/2.

• Also, easy to show that  E(T=0) ~ E(T) – TS(T)/2.

• But does this speed up calculations and increase accuracy of the
real-space O(N) method?

No!   Need entropy within first Matsubara pole (small ImE).



Temperature Extrapolation in magnetic  hcp-Co

Hole states at Γ point control magnetism and stability. Need M→∞ for this!
That is k-space.



Pre-conditioners for Matrix Inversion of Complex non-Hermitian

• Standard iterative methods (e.g., GMRES and TF-QMR)
For Im E small, G(E) require extremely large Niter, making them slower than  direct inversion
 (if memory were available, which it is usually not for N > 400).  GMRES is too memory intensive,
while CG methods are much slower than Transpose-Free Quasi-minimal residual (QMR) methods.

•"Cluster inverse" approximation
A physical-based direct inversion of a diagonal block of the sparse (real-space) matrix  to get an
approximate Gii and has proposed recently to achieve apparent O(N) scaling.  "cluster inverse" fails
near real E because G does not just depend on the band-diagonal  elements.

• Modified Block Jacobi
A block Jacobi pre-conditioner was tried that uses the diagonal blocks of G inverse.
Use  (G-1)*T because standard block Jacobi  does not work with matrices with complex  eigenvalues, λ.
The modified method convergences because  the eigenvalues λλ* are positive  and real.
 No significant improvement in CPU requirements.

•Incomplete Block LU
Blocks along the diagonal were used in a standard LU factorization to generate a preconditioner.
This is fast and efficient, and easily distributed over parallel machines.
However, the method once again fails for small Im(Z), essentially for reasons as above.

•Inverse-Jacobian (Rank-1) iterative update (Broyden's 2nd Method)
•Approximate inverse preconditioners (minimizations)
•Embedding in Effective Medium for Approximate Inversion



Synopsis

• Through mathematics, physics, and algorithms, Green’s function,
KKR method leads to O(N) scaling, where N is really atom/cell.

• O(N) for band-gap materials,  but only if “close-packed”,
 e.g., by adding in empty spheres to cell - O(Natoms + Nholes).

• O(N) for metals, but must check reliability!
 see, Smirnov and Johnson Phys Rev B 64 235129 (2001).

• Sparse matrix method very useful.
• Iterative Schemes must include Physics (CS ↔ science)

Need method for complex non-Hermitian case  (non-Lanczos type)
Investigating methods near Real E.

• Preconditioners must include Physics    (CS ↔ science)
Investigating methods near Real E.

 see, Smirnov and Johnson, Comp. Phys. Comm  (2002).



Future

- Preconditioning of iterative inverse:
decrease time  and scaling (?)

- Iterative methods are easily parallel (MPI/PVM version)

- Forces

- Applications to large-scale defects

- Embedding into O(N) Discontinuous Galerkin-FEM


