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The Schrodinger equation

The time-independent Schrodinger equation for a system of IV electrons:
HY = EV
Field-free, nonrelativistic Hamiltonian operator in atomic units:

A 1 A 1 AVA,

I>J

The wave function is a function of the 3N Cartesian spatial coordinates r;
and NV spin coordinates s; of the IV electrons:

U=y (Xl,Xg, .. .XN) =V (1‘1,81,1‘2,82, .. .I‘N,SN)

In addition, the wave function depends parametrically on the nuclear
coordinates (the Born—Oppenheimer approximation).

In the absence of magnetic fields, the Hamiltonian is spinless. Spin plays an

important role because of the symmetry requirements on the wave function.
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Some properties of exact and approximate wave functions

For bound states, the exact wave function is square-integrable:

\If|\If f \If* dX =1 < always satisfied

The exact wave function is antisymmetric in the electron coordinates:
P;;¥ = —W¥ < always satisfied
The exact wave function is variational (i.e., the energy is stable):
(UT) =0 = (SU|H|T) =0 < not always satisfied
The exact nonrelativistic wave function is a spin eigenfunction:
S20 = S(S+1)¥; S,U=DMsU < not always satisfied
The exact wave function is size-extensive, implying that:

I:I = ZZ I:IZ = FE = ZZ E; < not always satisfied



Noninteracting electronic systems: spin orbitals and orbital energies

e Consider a fictitious system of N noninteracting electrons:
Z1

HoU =EV; Hy=Y hi; hi=-1vi-
; Tir

I
e Solving the one-electron eigenvalue problem
hoi(x) = €ipi(x);  (¢ild;) = dyj,
we obtain the spin orbitals ¢; and the orbital energies ¢;.

e The exact N-particle solution may be written in the separated form

N

N
U = 121 qbz (Xz) . B = €; <— orbital energies
[ ¢ )3

: . =1
spin orbitals ’

where A is the antisymmetrization operator.

e The N-particle problem reduces to N one-particle problems.
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Interacting electronic systems: the Hartree—Fock model

For a system of interacting electrons, the exact wave function cannot be
written as an antisymmetrized product of spin orbitals.

Nevertheless, we may use the antisymmetrized product form as a useful

ansatz for an approximate electronic wave function:
A TN
S =Al[;L, di(xi);  (@ildy) = dij; (PP) =1

To make the most of this ansatz, we invoke the variation principle and

minimize the expectation value of the energy:

E = Irqlbil’l<(I)u:I ‘(I)> > Fexact ¢ Hamiltonian bounded from below

This is the Hartree—Fock (HF') approximation.

The HF model is the cornerstone of ab initio theory:
— it constitutes a useful, qualitative model on its own;

— it forms the starting point for more accurate models.
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The Hartree—Fock equations and the Fock operator

Minimization of the HF energy may be carried out by solving the
one-electron Hartree—Fock equations:

F gbp — é‘qup <— canonical orbitals and orbital energies

The effective Fock operator depends on its own eigenvectors:

F = h+j—k
5 _ ¢; (X2)Pi(x2)
]¢p (Xl) — ZZ 1 ¢ ( f 19 dxo <— Coulomb operator
l%qbp (Xl) = z 1 gbz( fd) (X2r)1¢;p (x2) dxs < exchange operator

Each electron experiences an averaged field set up by the other electrons.
The equations are solved iteratively: the self-consistent field (SCF) method.

The HF wave function is invariant to unitary transformations of the MOs
and a sufficient condition for minimum is:

<¢1‘F|¢a> =0 < ¢; occupied, ¢, unoccupied



Slater determinants and spin orbitals

e The HF wave function is often written as a Slater determinant:

¢1(x1)  Pa(x1) -+ On(x1)
1 P1(x2)  Pa(x2) -+ dn(x2)

¢1(xn)  P2(xn) -0 On(XN)

e Commonly, each spin orbital is written as a product of a spatial orbital and
a spin function:

O (X) — Pp; (I')Opi (3), Upi(S) = OA(S), ﬁ(s) <— alpha and beta spin

e From each ¢,(r), we may thus generate two orthogonal spin orbitals:

— in restricted HF (RHF) theory, the alpha and beta spin orbitals have
the same spatial part;

— in unrestricted HF (UHF) theory, there are no such constraints.
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Linear combination of atomic orbitals (LCAQ)

In atomic and diatomic work, the molecular orbitals (MOs) ¢,(r) are

sometimes represented numerically on a grid.

In molecular calculations, by contrast, the MOs are invariably expanded in

a set of n simple, analytical, square-integrable atomic orbitals (AOs):
pi(r) =2, Cuixu(r) < LCAO

There are two types of AOs in use:

— Gaussian-type orbitals (GTOs) with the radial form exp(—ar?);

— Slater-type orbitals (STOs) with the radial form exp(—ar4).
GTOs are preferred over STOs since they greatly simplity multicenter

integral evaluation.

The optimization of the HF wave function now reduces to the
determination of the MO coeflicients C;.



The Roothaan—Hall SCF equations

e Three- and six-dimensional integrals over AOs:

— overlap integrals: = [ x5 (r)x,(r)dr

— one-electron integrals: h,, = fo(r) ( -3, Z - ) Xv(r)dr
2)Xl/(r1)XU(r2) dI‘1 dr2

r12

— two-electron integrals:  guup0 = [[ X (1) (r
— integral evaluation is fairly simple with GTOs

e The LCAO RHF Fock equations may now be written in matrix form

FC = 8SCe < Roothaan-Hall equations

1 . .
F;w = hMV -+ Zpa Dpa (g/wpff — Eglwpl/) <— Fock matrix in AO basis
— a new density matrix is constructed at each SCF iteration:

Dp(, =2 Z i—1 C pi (C,; < one contribution from each occupied orbital

— a large number of integrals are calculated at each SCF iteration
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Solution of the Roothaan—Hall SCF equations

The iterative solution of the Roothaan—Hall equations is fairly robust:

— convergence improved by damping techniques such as DIIS;

— typically 10-20 iterations are needed.

The solution of the Roothaan—Hall equations produces not only a set of

occupied MOs but also a set of unoccupied (virtual) MOs:

— the virtual MOs are utilized in more accurate, post-HF treatments of
electronic structure.

The bottleneck is the calculation of the Coulomb contribution:

— formally an n* process but screening reduces it to an n? process

— linear scaling achieved by fast summation of Coulomb contributions

The diagonalization of the Fock matrix scales as n®:

— tull diagonalization not necessary

— alternatives are being explored (direct AO density optimization)
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Gaussian-type orbitals (GTOs)

e The AOs are usually (fixed linear combinations of) Cartesian GTOs
centered on the atoms:

Gijp(ta,a) = x%yizﬁ exp (_O"’“El)
rg, = r—A <— atom-centered function
a > 0 <— real orbital exponent
1,7,k = 0,1,2,... < integer quantum numbers

e Properties of Cartesian GTOs:
— separability in the Cartesian directions;
— the Gaussian product rule: a product of two Gaussians is a Gaussian;
— non-Coulomb integrals may be expressed in closed analytical form;

— Coulomb integrals may be reduced to one-dimensional integrals:

F,(x) = folexp(—a?t2)t2” d¢ < Boys function
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Solid-harmonic GTOs

e The GTOs are usually not used in Cartesian form but are linearly
combined to solid-harmonic form:

Glm(rAa Oé) — Slm(rA) exXp (—()47“124) ; l > |m‘ >0
Slm(I'A) = Z S;ﬁmgyizﬁ <— solid-harmonic function
ijk

e For a given subshell of angular momentum [ > 0, there are 2 + 1
independent, real-valued solid-harmonic GTOs (ignoring normalization):

Soo (I‘A) = 1 <— 1 s function
S1m(I‘A) = TA, ZA, YA <— 3 p functions
Som(ra) = x4 —y%, Taza, 324 — T4, YAZA, TAYa < 5 d functions

e The GTOs are always added in full subshells of 2/ + 1 functions.
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Contracted GTOs

The Gaussian radial form of the GTOs is well suited to integration but

does not resemble closely the radial form of numerical orbitals.

In practice, therefore, we mostly use contracted GTOs (CGTOs)—that is,
fixed linear combinations of GTOs of the same quantum numbers:

g%}TO(I‘AZ = > .d; glm(I‘A,Oéiz

~~

contracted GTO primitive GTO

The orbital exponents a; and the contraction coeflicients d; are usually
determined in atomic calculations in such a way that each CGTO closely

resembles an atomic orbital.

Standard compilations of CGTOs of different size and flexibility exist for

each atom in the periodic table.

The use of such universal standard basis sets ensures that the calculations
are well-defined and reproducible.

13



Gaussian basis sets

minimal or single-zeta (SZ) basis sets:
— one CGTO shell for each (partially) occupied atomic shell (2s1p)

— crude description of the electronic system

double-zeta (DZ) basis sets:
— two CGTO shells for each (partially) occupied atomic shell (4s2p)

— sufficient for qualitative work

triple-zeta (TZ), quadruple-zeta (QZ), and higher-zeta basis sets:

— necessary for quantitative work

polarization functions:
— CGTOs of angular momentum [ higher than the highest occupied AO
— necessary for polarization of the electronic charge in a molecular environment

— DZP: 4s2pld, TZP: 6s3p2d1f, and so on.
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Performance of the RHF method:

application to HyO

cc-pVDZ  cc-pVTZ  cc-pVQZ  cc-pVHZ  experiment error
E (Ep) —~76.027 —76.058 —76.066 —76.068 —~76.439%  —0.5%
AE (kJ/mol) 620 645 650 652 975  —33.1%
Rou (pm) 94.6 94.1 94.0 94.0 95.7  —1.8%
Onon (°) 104.6 106.0 106.2 106.3 104.5 1.7%
pe (D) 2.04 1.99 1.96 1.96 1.85 5.9%
w1 (cm™1) 4212 4227 4229 4231 3942 7.3%
wz (cm™1) 4114 4127 4130 4131 3832 7.8%
w3 (cm™1) 1776 1753 1751 1748 1649 6.0%
oo (ppm) 354 344 340 337 344 —1.9%
oy (ppm) 31.8 31.5 31.2 31.1 30.1 3.3%
1 Jon (Hz) —92.5 —75.1 —94.0 —97.3 —80.6 20.7%
2 Jun (Hz) —13.8 —19.7 —16.8 —18.6 —7.1  162.0%

aCCSD(T) energy
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The full configuration-interaction (FCI) wave function

The HF wave function contains a single determinant.

By contrast, the FCI wave function contains all Slater determinants

generated by distributing N electrons among n spin orbitals:

Nae : :
Vpcr = Zkilt ckPr < all possible determinants Ny

FCI thus represents the ‘exact’ solution in a given (limited) AO basis.

Unfortunately, the number of FCI determinants increases very steeply:
Naet = | |} Naet(na =ng =N =2m) ~ 2= (] )
det = | o] det(na =ng =N =2m) = —— arge m

Therefore, only very small basis sets can be used, and only very small

systems can be studied by this brute-force method.

Still, FCI is very useful for benchmarking more approximate methods.

It represents an invaluable tool for the development of new methods.
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The intractability of the FCI model

electrons orbitals FCI determinants

2 2 4
4 4 36
6 6 400
3 3 4 900
10 10 63 504
12 12 853 776
14 14 11 778 624
16 16 165 636 900
18 18 2 363 904 400

20 20 34 134 779 536
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Optimization of the FCI wave function

The FCI wave function is obtained by solving the following matrix
eigenvalue problem:

Hc = Frcie; Hy, = (9,|H|®,)

Because of the large dimensions, iterative techniques are used:
1. 6n+1 — _(HO — EnI)_l(H — EnI)Cn <— the Davidson step

2. Orthogonalize the trial vectors and diagonalize the FCI subproblem.

Moreover, eflicient, integral-driven direct CI techniques have been
developed to calculate directly matrix-vector products

b = Hc

— Essentially, the contributions of each MO integral to Hc are obtained
directly, without constructing Hamiltonian matrix elements.

In this manner, FCI wave functions containing a billion or more Slater
determinants have been determined.
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Correlation energy

So far, we have considered two approximations to the exact wave function:
Hartree—Fock: qualitatively correct, one-determinant method

FCI: exact in a given AO basis but prohibitively expensive
We need models more accurate than HF but less expensive than FCI!

In the development of such models, the concept of correlation energy plays

a central role.

It is defined as the difference between the FCI and HF energies:

Ecorr = Breor — Egp ¢ typically < 1% but of great chemical significance

Broadly speaking, there are two types of electron correlation:
static: arises from (near) degeneracy of determinants

dynamical: arises from the detailed correlated motion of the electrons

We shall consider first static correlation and next dynamical correlation.
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Static correlation: Ho in a minimal basis

In a minimal description, there are two 1s STOs, one on each atom:
1 . — 1
Isa = —= exp(—ra); lsp = NG exp(—rp)
From these AOs, two symmetry-adapted MOs may be constructed:
log = 1sp +1s; loy, = 1sp — 1sB

At equilibrium, (1o,) < ¢(10,,), and Hy is well described by a single
bonding configuration (symmetry-adapted determinant):

2y =0.9939|107) — 0.1106|10;) ~ |107)

Upon dissociation, €(1lo,) = ¢(10,), and we can no longer ignore the

antibonding configuration:

155 = 1]lo2) — L[102)

For a uniform description of the dissociation process, a multiconfigurational
treatment is needed at all separations.

20



Symmetric dissociation of Hy

-0.6¢

-0.8}

-1.0+

e Upon dissociation, the single-configuration RHF description deteriorates,

resulting in a too high dissociation energy.

e A two-configuration treatment provides a qualitatively correct, uniform

description of the dissociation process.
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Symmetric dissociation of HyO

CAS

FCl

e The difference between the FCI and CAS curves represents the dynamical

correlation energy.

e The difference between the CAS and RHF curves represents the static

correlation energy.
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Multiconfigurational self-consistent field theory

RHF fails when several configurations have (nearly) the same energy.

For qualitative agreement with the true wave function,
these degenerate or nearly degenerate configurations must all be included.

The multiconfigurational SCF (MCSCF) model is a generalization of the
HF model to several (often many) configurations:

IMC) = 3, ek det b, (x1) -+~ Py (Xn)]5 #p(1) = 20, CppXu(r)

The CI coefficients ¢ and the MO coefhicients C),,, are simultaneously
variationally determined:

— for ground states, a minimization is carried out:

. (MC|H|MC)
) — Eexac
MC = G, (MCIMC) = ¢

— for exicted states, a saddle point is determined.

The correlation recovered at the MCSCEF level is referred to as static.
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MCSCF configuration spaces

Individual selection of MCSCF configurations is impractical.

In complete-active-space (CAS) SCF theory, the configurations are
generated by distributing the electrons among orbital subspaces:

1. inactive (core) orbitals: doubly occupied in all configurations
2. secondary (virtual) orbitals: unoccupied in all configurations

3. active (valence) orbitals: all possible occupations

In a sense, we are carrying out an FCI calculation in a limited (but

variationally optimized) active orbital space.

The MCSCF optimization is more difficult than for FCI or HF', since we
optimize both the orbitals and the CI coefficients.

Second-order (Newton-based) techniques are used.
More than 16 electrons among 16 active orbitals is currently not possible.

MCSCF applicable only to rather small systems.
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Comparison of Hartree-Fock and CASSCF for Nj

Method Basis D (kJ/mol) re (pm) we (cm™')  v(em™!)
Hartree-Fock cc-pVDZ 469.3 107.73 2758.3 2735.7
cc-pVTZ 503.7 106.71 2731.7 2710.3
cc-pVQZ 509.7 106.56 2729.7 2708.1
cc-pVoZ 510.6 106.54 2730.3 2708.5
CASSCF cc-pVDZ 857.8 111.62 2354.3 2325.6
cc-pVTZ 885.3 110.56 2339.4 2312.1
cc-pVQZ 890.9 110.39 2339.5 2312.1
cc-pVoZ 891.9 110.37 2340.4 2313.0
Experiment 956.3 109.77 2358.6 2329.9
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The ground-state helium atom

e The Hylleraas ground-state wave function of the helium atom, with one
electron fixed at a distance of 0.5ag from the nucleus:

e The wave function is spherically symmetric about the nucleus.

e However, some distortion is noted in the region of coalescence.
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The Coulomb hole

e Subtracting the HF wave function from the Hylleraas wave function, we see
the Coulomb hole:

e In the ground state, there is a reduced probability of finding the two
electrons close to each other.
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Dynamical correlation and virtual excitations

In the HF description, the electrons move independently of one another.

To improve on this description, we must allow the electrons to interact

beyond the mean-field approximation.

In the orbital picture, such interactions manifest themselves through

virtual excitations.

Consider the following double excitation operator:

X?jb - tgjbazazaiaj; [ap, aql+ =0, [a;,a};h =0, [ap,a;]+ = Opq

The amplitude t%b represents the probability that the electrons in ¢; and
¢; will interact and be excited to ¢, and ¢y.

a

By applying 1 + )A(Z jb to the HF state, we obtain an improved, correlated
description of the electrons:

v ab
HF) — (1 + Xij )|HF)
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Example: dynamical correlation in Hs

e Consider the effect of a double excitation in the minimal-basis Hs:

107) = (1+ Xgg)[107) = [107) — 0.11[107)

e The one-electron density p(z) is barely affected:

2 2

0. 04 = 0. 04
S "‘A \““‘::::::'
Y= NS
S AT
‘W$“‘¢ ‘\\\
0. 00 0. 00

D
S S s
W g

RSSO S
S Sss

)8
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One- and two-electron density matrices

The quality of our description depends on the two-electron as well as on

the one-electron density matrix:
b= ZW Dywhyw + % Z/,u/pa ApvpoGuvpe + Inuc

Basis-set requirements are different for the two density matrices:
— one-electron density requires relatively few AOs for convergence;

— two-electron density requires a large number of AOs to describe the

Coulomb hole (Coulomb cusp).

In Hartree—Fock theory, only the one-electron density matrix matters:
d;ilfpa = DEVFDEJF — %DEEDEPF <— HF density matrix factorizes

Basis-set requirements are thus more stringent for correlated calculations.
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Basis-set convergence of the correlation energy

Orbital-based wave functions are ill suited for describing the Coulomb hole

and the two-electron cusp:

-90 90 -90 90 -90 90 -90 90

Very large basis sets are required for errors smaller than 1 kJ/mol:

N5 /CCSD | Dz TZ Qz 57 67 limit
corr. energy (m#FEy) ‘ —-309.3 —-371.9 —393.1 —400.6 —403.7 —408(1)

However, the convergence is very smooth:
AEx ~aX ™2 <+ X =2,3,...for DZP, TZP, ...

Extrapolations (to within 1 mFy,) are possible.

Wave functions that contain the interelectronic distances r;; explicitly
(explicitly correlated wave functions) converge much faster.
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Coupled-cluster theory

In coupled-cluster (CC) theory, we generate the correlated state from the
HF reference state by applying all possible operators 1 + X "

CC) = [Tl (14 X¢) | [TLaniy (1+ Xef) |- JHF) 5 [X,, X)) =0
It is reasonable to assume that lower-order excitations are more important

than higher-order ones.

Double excitations are particularly important, arising from pair

Interactions.

This classification provides a hierarchy of ‘truncated’ CC wave functions:
— CCSD: CC with all single and double excitations
— CCSDT: CC with all single, double, and triple excitations

Generalization to multiconfigurational reference states difficult (more

complicated algebra).

32



Connected and disconnected clusters

Expanding the CCSD product state, we obtain:

ICCSD) = [H(1 + XM+ X)) HF)
abij
= |HF) + ZX“ HF) + ) (X + X X?) [HF) +
abij

The doubly-excited determinants have two distinct contributions:
— from pure double excitations: connected doubles

— from products of single excitations: disconnected doubles

In large systems, the disconnected (i.e., independent) excitations become
more Important.

Indeed, without the disconnected excitations, the wave function would not
be size-extensive.

The CCSD wave function contains contributions from all FCI
determinants, generated by connected and disconnected excitations.
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Digression: truncated CI theory

In truncated CI theory, we retain only the connected exictations:
ICI) = (1 + 3 X+ D abij X%b T - > HF)

We then obtain the following hierarchy of truncated CI wave functions:
— CISD: CI with all singly- and doubly-excited determinants
— CISDT: CI with all singly-, doubly-, and triply-excited determinants

However, the truncated CI model is not size-extensive:
1. In CISD, for example, triple and higher excitations are forbidden.
2. In large systems, high-order (disconnected) excitations dominate.

3. CISD therefore works best for 10-electron systems.
The CI model has largely been abandoned in favor of the CC model.

Nevertheless, the CI model is important for (small) multiconfigurational
systems (MRCI), where the application of CC theory is difficult.
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The CC exponential ansatz

The CC wave function is usually written in exponential form:

CC) = exp(T)[HF); T =3, X& 4+ i X+

J

Equivalence with the product form is easily established since, for example:
exp(X?) =14+ X8+ 1 XaX¢ 4+ =1+ X2 <« XIX¢=0
For technical reasons, the CC energy is not determined variationally.
Multiplying the CC Schrodinger equation in the form
exp(—T)H exp(T)|HF) = E|HF) < similarity-transformed Hamiltonian
from the left by (HF| and the excited determinants (u|, we obtain
(HF|exp(—T)H exp(T)|[HF) = E < energy (not an upper bound)
(ulexp(=T)H exp(T)|HF) = 0 < amplitudes
From these equations, the CC energy and amplitudes are determined.
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Performance of the CC method: application to H,O

H>O HF CCSD CCSD(T) experiment
AE (kJ/mol) 652 960 976 975
Ron (pm) 94.0 95.4 95.7 95.8
Onou(®) 106.3  104.5 104.2 104.4
pe (D) 1.96 1.87 1.85 1.85
w1 (cm™1) 4231 3998 3958 3942
wo (cm™1) 4131 3893 3851 3832
w3 (cm™1) 1748 1670 1658 1649
oo (ppm) 337 337 338 344(17)
ou (ppm) 31.1 30.9 30.9 30.1
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The CC hierarchy and its approximations

The CC hierarchy represents the most successful approach to ab initio

wave-function quantum chemistry.

However, whereas the error decreases rapidly with increasing excitation

level, the increase in cost is very steep.

For vibrational frequencies, for example, we observe the following errors:
HF ~ 15% cost n*

CCSD ~ 5% cost n®
CCSDT =~ 1% cost n®
CCSDTQ < 1% cost ntY

Clearly, there is a need for more approximate, less expensive treatments.

Such approximate treatments are based on perturbation theory:
— MP2: perturbative treatment of doubles at cost n°

— CCSD(T): perturbative treatment of triples at cost n’
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Mgller—Plesset perturbation theory

When HF is reasonably accurate, we may improve on it by perturbation
theory.

In Mgller—Plesset theory, we use the Fock operator as the zero-order
operator and the HF state as the zero-order state:

HO =F, FHF)=Y.&|HF); V=H-F

To first order, we recover the HF energy and to second order we obtain (in
the spin-orbital basis):

E = Fyp — Z . 9aibj —gagbil” < cost n®
MP2 HF a>b,i>j eq4ep—e;—€;

The MP2 energy represents a highly successtul approximation to the CCSD

5

energy, at a fraction of the cost (noniterative n® vs. iterative n®).

Higher-order corrections (in particular, MP3 and MP4) may be calculated,
but convergence is often poor.

Indeed, in a sufliciently large basis, the Mgller—Plesset series often diverges.
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Convergence of the Mgller—Plesset series for the Hy molecule

MP50
RHF
0.8 —
VP4
-1.0+ FCl
MP2
-1.2 3 6 9 12
21,4
MP3
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Convergence of the Mgller—Plesset series for the HF molecule
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CCSD(T): the most accurate generally applicable ab initio model

Typically, CCSD is not sufficiently accurate and CCSDT is too expensive.

The CCSD(T) model is then often a useful alternative:
— the triples correction to CCSD is estimated by perturbation theory;

— cost is noniterative n’ rather than iterative n®;
— the triples correction is typically overestimated by 5%.

For many properties, the CCSD(T) model gives results very close to

experiment, sometimes rivalling the accuracy of measurements:

mean std. dev. mean abs. max
re (pm) —0.04 0.16 0.09 0.59
we (cm™1) 9.8 5.4 9.8 17.0
AE (kJ/mol) —0.9 2.8 1.4  10.7

Nevertheless, the CCSD(T) model benefits from error cancellation and is
less robust than CCSDT; cf. MP2 and CCSD.
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Normal distributions or errors in bond distances (pm)

HF HF HF
cc- pCvDZ cc- pCvTZ cc- pCvQZz
7 7 7 7 7 7
MP2 MP2 MP2
cc- pCvDZ cc- pCvTZ cc- pCvQZ
7 7 7 7 7 7
CCsD CCsD CCsD
cc- pCvDZ cc- pCvTZ cc- pCvQZz

CCsSD( T) CCSD( T) CCSD( T)
cc- pCvDZ cc- pCvTZ cc- pCvQz
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Normal distributions of errors in reaction enthalpies (kJ/mol)

HF HF HF
cc- pCvbDz cc- pCvTZ cc- pCvQZ
R R I I

-80 80 -80 80 -80 80
MP2 MP2 MP2
cc- pCvDZ cc- pCvTZ cc- pCvQZ

-80 80 -80 80 -80 80
CCsD CCsD CCsD
cc- pCvbDz cc- pCvTZ cc- pCvZz

-80 80 -80 80 -80 80
CCsSD( T) CCSD( T) CCSD( T)
cc- pCvDz cc- pCvTZ cc- pCvQZz

/\
-80 80 -80 80 -80 80
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Conclusions

e We have reviewed the standard models of wave-function based quantum

chemistry:

— the FCI model

— the HF and MCSCF models
— the CC models

— perturbation theory

e Within these models, hierarchies exist of increasing cost and accuracy,

allowing the true solution to be approached in a systematic manner.

e An outstanding problem is the treatment of dynamical correlation for

multiconfigurational systems.

e For these methods to be applicable to large systems, their cost and in

particular the scaling of their cost must be reduced.
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