Linear-scaling DFT using localized spherical-waves and real-space grids

Peter Haynes

Theory of Condensed Matter, Cavendish Laboratory, Cambridge, UK

pdh1001@cam.ac.uk http://www.tcm.phy.cam.ac.uk/~pdh1001/

Acknowledgements

- Dr Chee Kwan Gan
- Dr Chris-Kriton Skylaris
- Arash Mostofi
- Dr Oswaldo Diéguez
- Prof Mike Payne

Outline

- Optimisation of localized functions for density-matrix minimization
- Localized spherical-wave basis sets
- Real-space grids and FFTs

Density-matrix representation

$$\rho(\mathbf{r},\mathbf{r}') = \sum_{\alpha\beta} \phi_{\alpha}(\mathbf{r}) P^{\alpha\beta} \phi_{\beta}^{*}(\mathbf{r}')$$

Exploit the short range of the DM:

$$ho({f r},{f r}')
ightarrow 0$$
 as $\left|{f r}-{f r}'
ight|
ightarrow\infty$

by making:

- $P^{\alpha\beta}$ sparse
- $\{\phi_{lpha}(\mathbf{r})\}$ localized

i.e. imposing:

$$ho({f r},{f r}')=0$$
 when $\left|{f r}-{f r}'
ight|>{f r}_{
m cut}$

Density-matrix minimization

$$ho({f r},{f r}')=\sum_{lphaeta}\phi_lpha({f r})P^{lphaeta}\phi^*_eta({f r}')$$

- Write the energy as a functional of the DM: E[
 ho]
- Minimize the energy w.r.t. $ho({f r},{f r}')$:
- o Optimize $P^{lphaeta}$ and $\{\phi_lpha({f r})\}$
- Subject to the normalization and idempotency constraints

Physical interpretation:

- $\{\phi_lpha({f r})\}$ define a small subspace (relative to basis set) which optimally contains the occupied Kohn-Sham eigenfunctions
- Optimizing $P^{lphaeta}$ for a given set $\{\phi_{lpha}({f r})\}$ (subject to the constraints) is equivalent to filling up the states according to the Pauli exclusion principle: the density-matrix commutes with the Hamiltonian
- Optimizing $\{\phi_{lpha}({f r})\}$ corresponds to solving the Kohn-Sham equations

Localized spherical-wave basis sets

Confine $\{\phi_{\alpha}(\mathbf{r})\}$ to spherical regions of space \Rightarrow

- sphere radius $R_{
 m reg}$ is a variational parameter
- boundary condition on basis functions: vanish on surface

Pseudopotential approximation and perturbation theory \Rightarrow

- solve free-particle Schrödinger equation
- need relatively few basis functions for a weak potential
- ₩ $\left(\frac{1}{2}\nabla^2 + E\right)\chi(\mathbf{r}) = 0;$ $\chi\left(|\mathbf{r}| = R_{\rm reg}\right) = 0$

Basis functions

$$\begin{pmatrix} \frac{1}{2} \nabla^2 + E \end{pmatrix} \chi(\mathbf{r}) = 0; \qquad \chi(|\mathbf{r}| = R_{\text{reg}}) = 0$$

$$\Rightarrow \chi(\mathbf{r}) = \begin{cases} j_{\ell}(q_{n\ell}r)Y_{\ell m}(\vartheta,\varphi), & r < R_{\text{reg}} \\ 0, & r \ge R_{\text{reg}} \end{cases}$$

where:

- *n* is a positive integer
- ℓ is a non-negative integer
- m is an integer: $-\ell \leq m \leq \ell$
- $q_{n\ell}$ is defined by $j_\ell(q_{n\ell}R_{\mathrm{reg}})=0$
- $E = \frac{1}{2}q_{n\ell}^2$

Properties of basis set

- Single parameter $E_{\rm cut}$ can be used to control the completeness
- Basis functions within a sphere are mutually orthogonal
- For basis functions in different spheres, analytic results can be obtained¹ for:
- o overlap matrix elements
- o kinetic energy matrix elements
- non-local pseudopotential (in Kleinman-Bylander form) matrix elements:

Truncating the basis set

- In principle, $E_{
 m cut}$ determines the maximum angular momentum component $\ell_{
 m cut}$
- In practice, we truncate the basis set by introducing a second parameter ℓ_{\max} :
 - $\circ\,$ to reduce the basis set size $\propto\,(\ell_{\rm max}+1)^2$
 - to reduce the computational cost
 - as in Gaussian and LCAO type basis sets
 - to avoid over-completeness

Convergence tests

Used a direct diagonalization method to test the basis set only and vary the:

- Number of spherical regions
- Locations of the spherical regions
- Radii of the spherical regions $R_{
 m reg}$
- Energy cutoff $E_{\rm cut}$
- Maximum angular momentum component $\ell_{
 m max}$

For more details see:

C. K. Gan, P. D. Haynes and M. C. Payne, Phys. Rev. B 63 205109 (2001).

Iterative diagonalization

Want to minimize the energy w.r.t. the wavefunctions $\{\psi_i(\mathbf{r})\}$: Linear-scaling \Rightarrow large systems \Rightarrow large basis sets \Rightarrow iterative diagonalization

- Expand in a basis set: $\psi_i({f r}) = \sum x_i^\mu \chi_\mu({f r})$
- For a non-orthogonal basis set, solve the generalized eigenvalue equation:

$$H_{\mu\nu}x_i^{\nu} - \varepsilon_i S_{\mu\nu}x_i^{\nu} = 0$$

- Need to distinguish contravariant and covariant quantities²
- Correct gradient is therefore:

$$g_i^{\mu} = S^{\mu\nu} H_{\nu\xi} x_i^{\xi} - \varepsilon_i x_i^{\mu}$$

C. A. White, P. Maslen, M. S. Lee and M. Head-Gordon, Chem. Phys. Lett. 276 133 (1997) ²E. Artacho and L. Miláns del Bosch, Phys. Rev. A 43 5770 (1991);

Kinetic energy preconditioning

- Gradient is dominated by high kinetic energy basis functions
- Use a preconditioner to compensate
- Preconditioned gradient is:

$$G_i^{\mu} = (S + T/\tau)^{\mu\nu} H_{\nu\xi} x_i^{\xi} - \varepsilon_i x_i^{\mu}$$

- Cannot use "diagonal" approximation with spherical-waves
- Adjustable parameter au

can be optimized automatically

• For more information see:

C. K. Gan, P. D. Haynes and M. C. Payne, Comput. Phys. Commun. 134 33 (2001).

- M. P. Teter, M. C. Payne and D. C. Allan, Phys. Rev. B 40 12255 (1989)
- D. R. Bowler and M. J. Gillan, Comput. Phys. Commun. 112 103 (1998)

Optimizing localized functions

- Optimize a set of localized functions $\{\phi_{\alpha}(\mathbf{r})\}$ instead of wavefunctions $\{\psi_i(\mathbf{r})\}$
- Can no longer impose orthogonality, so minimize:

$$E[\{\phi_{\alpha}\}] = \operatorname{Tr}\left(\mathsf{S}^{-1}\mathsf{H}\right)$$

where $S_{\alpha\beta} = \langle \phi_{\alpha} | \phi_{\beta} \rangle$ and $H_{\alpha\beta} = \langle \phi_{\alpha} | \hat{H} | \phi_{\beta} \rangle$

- Need to consider tensor properties of gradient with respect to:
- o basis set
- o localized functions

Effect of truncating the search direction 64-atom silicon cell (n-n bond length 2.35 Å)

The problem

- Variational error
- Slow convergence
- Conjugate gradients breaks down

Real-space grids

Represent the localized functions $\{\phi_{\alpha}(\mathbf{r})\}$ by their values at points on a regular grid:

$$\phi_{\alpha}(\mathbf{r}) = \sum_{KLM} C_{KLM,\alpha} D_{KLM}(\mathbf{r})$$

where $C_{KLM, lpha} = 0$ if \mathbf{r}_{KLM} does not lie inside the sphere of ϕ_{lpha}

Delta function basis set

- Bandwidth Limited Periodic "delta" functions, $D_{KLM}(\mathbf{r})$. Centred on points \mathbf{r}_{KLM} of regular grid with the symmetry of the simulation cell
- Grid spacing determines equivalent plane-wave kinetic energy cutoff

Properties of $D_{KLM}(\mathbf{r})$

- Centred on real-space grid points: $\mathbf{r}_{KLM} = \frac{K}{N_1}\mathbf{A}_1 + \frac{L}{N_2}\mathbf{A}_2 + \frac{M}{N_3}\mathbf{A}_3$
- o A_1 : primitive lattice vector
- o N_1 : number of points in direction 1
- An "impulse function", i.e. a plane-wave expansion with constant amplitudes

$$D_{KLM}(\mathbf{r}) = \frac{1}{N_1 N_2 N_3} \sum_{\mathbf{G}} \exp[\mathrm{i}\mathbf{G} \cdot (\mathbf{r} - \mathbf{r}_{KLM})]$$

- $D_{KLM}(\mathbf{r}_{FGH}) = \delta_{KF}\delta_{LG}\delta_{MH}$
- o Orthogonality
- o Real-valued everywhere
- Equivalent to a plane-wave basis set
- 0 of $f(\mathbf{r})$ at the centre of $D_{KLM}(\mathbf{r})$ The projection of $f({f r})$ on to $D_{KLM}({f r})$ is equal to the value of the bandwidth limited version

$$\int_{V} D_{KLM}(\mathbf{r}) f(\mathbf{r}) d\mathbf{r} = rac{V}{N_1 N_2 N_3} f_{BWL}(\mathbf{r}_{KLM})$$

where $f_{BWL}(\mathbf{r}) = \sum_{\mathbf{G}} \tilde{f}(\mathbf{G}) \exp[\mathrm{i}\mathbf{G} \cdot \mathbf{r}]$

FFT box

Connection with plane-waves suggests the use of FFTs e.g. to calculate the kinetic energy operator:

- More accurate than finite difference methods³
- For linear-scaling, cannot use full simulation cell

Must use single size of box for all pairs of functions to ensure:

- Matrix representations of operators are Hermitian
- Consistent action of the Hamiltonian on each localized function

Also use the FFT box to construct the charge density via Fourier interpolation.

³C.-K. Skylaris, A. A. Mostofi, P. D. Haynes, C. J. Pickard and M. C. Payne, Comput. Phys. Commun. 140 315 (2001).

Test calculations

Compare accuracy of FFT box method:

- Cyclohexane in $(40 a_0)^3$ cell
- Norm-conserving pseudopotentials
- Grid spacing 0.5 a_0 (= 40 Ry)

Error in total energy: $\Delta E = E(\text{FFT box}) - E(\text{simulation cell})$

1.80×10^{-2}	3.26×10^{-1}	6.0	<u>5</u> 0
3.60×10^{-2}	6.48×10^{-1}	5.0	5 <u>.</u> 0
per atom	total	С	Н
(mRy)	ΔE ($WF(a_0)$	rNG\

Convergence of energy with NGWF radius

- SiH $_4$ in (40 a $_0$) 3 cell
- Energy converged when its rms gradient with respect to the NGWFs is $< 10^{-6}$
- Grid spacing 0.5 a_0 (= 40 Ry)
- Norm-conserving pseudopotentials

-12.457674	0 <u>.</u> 0
-12.457244	0 <u>.</u> 8
-12.455436	7.0
-12.448340	<u>6.</u> 0
-12.419298	<u>5.</u> 0
Energy (Ry)	rNGWF (a_0)

Potential energy curve of LiH

- Norm-conserving pseudopotentials
- Kinetic energy cutoff: 40 Ry
- NGWF radii of 6.0 and 8.0 a_0
- Local Density Approximation

Conclusions

- Two schemes for optimizing localized functions:
- 1. Localized spherical-waves
- Systematic improvement of accuracy
- Necessity for preconditioning and care over tensor properties
- Non-orthogonality and localization cause problems with iterative methods
- 2. Real-space grids
- Connection with plane-waves
- Orthogonality overcomes problems with iterative methods
- FFT box method enables linear scaling