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Outline

e Optimisation of localized functions
for density-matrix minimization

e Localized spherical-wave basis sets
e Real-space grids and FFTs



Density-matrix representation

p(r, ') = pa(r) PP ¢5(x)
af

Exploit the short range of the DM:

p(r,r') = 0as |[r —r'| = oo

by making:
e P’ sparse
e {p.(r)} localized

I.e. Imposing:

p(r,r") = 0 when |r — r'| > eyt



Density-matrix minimization

p(r, ') = $a(r) PP} ()
af

e Write the energy as a functional of the DM: E|[p]

e Minimize the energy w.r.t. p(r,r’):
o Optimize P*P and {¢a(r)}
o Subject to the normalization and idempotency constraints

Physical interpretation:

e {p,(r)} define a small subspace (relative to basis set) which optimally contains the occupied
Kohn-Sham eigenfunctions

e Optimizing P for a given set {¢o(r)} (subject to the constraints) is equivalent to filling up the
states according to the Pauli exclusion principle: the density-matrix commutes with the Hamiltonian

e Optimizing {¢,(r)} corresponds to solving the Kohn-Sham equations



Localized spherical-wave basis sets

Confine {¢.(r)} to spherical regions of space =
e sphere radius R,z is a variational parameter >
e boundary condition on basis functions: vanish on surface

Pseudopotential approximation and perturbation theory =

e solve free-particle Schrodinger equation

e need relatively few basis functions for a weak potential

= (GVHE)x(r) =0;  x(|r] = Rueg) =0

x(r)

Vi(r)




Basis functions

(5724 B) x0 =0 x(Irl = Ru) = 0
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where:

® 1 IS a positive integer
e / is a non-negative integer
e m is an integer: —0 < m < /

® g, is defined by jy(gneRres) = O
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Properties of basis set

e Single parameter E ., can be used to control the completeness

e Basis functions within a sphere are mutually orthogonal

e For basis functions in different spheres, analytic results can be obtained® for:
o overlap matrix elements
o kinetic energy matrix elements

o non-local pseudopotential (in Kleinman-Bylander form) matrix elements:

"y 1 PS pPsS oY ps
a\,\ _ M _%S\%NSVA@@S%S_ Im,
NL = S -
Tc
Vo
a\m&og

1p p. Haynes and M. C. Payne, Comput. Phys. Commun. 102, 17 (1997)



Truncating the basis set

e In principle, E . determines the maximum angular momentum component £t

e In practice, we truncate the basis set by introducing a second parameter £,,,.«:
o to reduce the basis set size o< (£yax + 1)°
o to reduce the computational cost
o as in Gaussian and LCAO type basis sets
o to avoid over-completeness




Convergence tests
Used a direct diagonalization method to test the basis set only and vary the:

e Number of spherical regions

e Locations of the spherical regions
e Radii of the spherical regions R,eg
e Energy cutoff E

e Maximum angular momentum component £,

For more details see:
C. K. Gan, P. D. Haynes and M. C. Payne, Phys. Rev. B 63 205109 (2001).



Iterative diagonalization

Linear-scaling = large systems => large basis sets = iterative diagonalization
Want to minimize the energy w.r.t. the wavefunctions {;(r)}:

e Expand in a basis set: ;(r) = M ztx (1)
7
e For a non-orthogonal basis set, solve the generalized eigenvalue equation:
H,,z, —e Sz, =0

e Need to distinguish contravariant and covariant quantities®

e Correct gradient is therefore:

gl = Mtvmzmaw — g;xh

2E. Artacho and L. Milns del Bosch, Phys. Rev. A 43 5770 (1991);
C. A. White, P. Maslen, M. S. Lee and M. Head-Gordon, Chem. Phys. Lett. 276 133 (1997)



Tensor property of the gradient
Chlorine molecule (278 basis functions)

— Corrected
— Uncorrected
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Kinetic energy preconditioning

e Gradient is dominated by high kinetic energy basis functions
I

e Use a preconditioner to compensate 1.0
e Preconditioned gradient is: '%

Gl = (S + T/r)" Hyeal — eiat 5°°

e Cannot use “diagonal” approximation g 0.6

with spherical-waves % 0.4

e Adjustable parameter 7 g 0"

£0

can be optimized automatically

e For more information see:

C. K. Gan, P. D. Haynes and M. C. Payne, Comput. Phys.

— Teter-Payne-Allan
— Bowler-Gillan
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Commun. 134 33 (2001).

M. P. Teter, M. C. Payne and D. C. Allan, Phys. Rev. B 40 12255 (1989)
D. R. Bowler and M. J. Gillan, Comput. Phys. Commun. 112 103 (1998)




Choice of preconditioning parameter T

Crystalline silicon (3520 basis functions)

T= 100 eV

1=10" eV
— T optimized
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Preconditioning results
Chlorine molecule (278/784 basis functions)

., = 640 e\'/, unprec'onditione'd 1
E . = 640 eV, preconditioned |

— E_, = 4800 eV, unpreconditioned

— E_, = 4800 eV, preconditioned
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Optimizing localized functions

e Optimize a set of localized functions {¢,(r)} instead of wavefunctions {;(r)}
e Can no longer impose orthogonality, so minimize:

E[{$¢s}] = Tr AmLIv

where So5 = (paldg) and Hag = (¢a|H| )

e Need to consider tensor properties of gradient with respect to:
o basis set

o localized functions



Performance of various algorithms

Crystalline silicon

— Steepest-descents
— Preconditioned steepest-descents

Unpreconditioned Polak-Ribiere

— Preconditioned Polak-Ribiere
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Effect of truncating the search direction
64-atom silicon cell (n-n bond length 2.35 A)
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The problem

e Variational error
e Slow convergence

e Conjugate gradients breaks down




Real-space grids

Represent the localized functions {¢,(r)} by their values at points on a regular grid:

Pa(r) = Z CrxrmoaDrrm(r)

KLM

where Cxra,o = 0 if rgra does not lie inside the sphere of ¢,

simulation cell

delta function centre



Delta function basis set

e Bandwidth Limited Periodic “delta” functions, D a(r). Centred on points rx s of regular grid
with the symmetry of the simulation cell

e Grid spacing determines equivalent plane-wave kinetic energy cutoff




Properties of Dy /(1)

e Centred on real-space grid points: rxry = ZkaPH + Zhkam + Zﬁwbé
o A;: primitive lattice vector
o NNi: number of points in direction 1

e An “impulse function”, i.e. a plane-wave expansion with constant amplitudes

1

g MU ®NHV_HHQ . AH. — H.Mmhivu_

G

Dgrm(r) =

Dgrm(rrar) = 0kFOrGOMHE

Orthogonality

Real-valued everywhere

Equivalent to a plane-wave basis set

The projection of f(r) on to Dga(r) is equal to the value of the bandwidth limited version
of f(r) at the centre of D pp(r)
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\‘\ Drry(r)f(r)dr = guﬁ%h?khiv

where fewi(r) = 3¢ f(G) exp[iG - r]



FFT box

Connection with plane-waves suggests the use of FFTs e.g. to calculate the kinetic energy operator:

e More accurate than finite difference methods®

e For linear-scaling, cannot use full simulation cell

Must use single size of box for all pairs of functions to ensure:

e Matrix representations of operators are Hermitian
e Consistent action of the Hamiltonian on each localized function

Also use the FFT box to construct the charge density via Fourier interpolation.

3ck. Skylaris, A. A. Mostofi, P. D. Haynes, C. J. Pickard and M. C. Payne, Comput. Phys. Commun. 140 315 (2001).



Compare accuracy of FFT box method:

o Cyclohexane in (40 ag)® cell

Test calculations

e Norm-conserving pseudopotentials

e Grid spacing 0.5 ag ( = 40 Ry)

Error in total energy: AE = E(FFT box) — E(simulation cell)

rNGWF (ap) AE (mRy)

H C total per atom
50 | 5.0 6.48 x 10~" | 3.60 x 10~~
50 | 6.0 | 3.26 x 107! | 1.80 x 1072




Convergence of energy with NGWF radius

SiHy in (40 ag)? cell
Energy converged when its rms gradient with respect to the NGWFs is < 10~°
Grid spacing 0.5 ag ( = 40 Ry)

Norm-conserving pseudopotentials

rNGWF (ag) | Energy (Ry)

5.0 -12.4192983
6.0 -12.4438340
7.0 -12.455436
3.0 -12.457244

9.0 -12.457674




Potential energy curve of LiH

Norm-conserving pseudopotentials
Kinetic energy cutoff: 40 Ry
NGWEF radii of 6.0 and 8.0 ag

Local Density Approximation

'04 T T T T T T T
ONES, sfireballs, r = 6.0 3,
-0.5 — ONES, —INGWF =6.0 & -
— ONES, INGWF =8.0 &
ui™ I — CASTEP |
>
g -0.6
c
L |
-0.7+
- 1 | 1 | 1 | 1 | 1 | 1 | 1
0'81 2 3 4 5 6 7 8

d(Li-H), a,



Conclusions

e Two schemes for optimizing localized functions:

1. Localized spherical-waves
o Systematic improvement of accuracy
o Necessity for preconditioning and care over tensor properties
o Non-orthogonality and localization cause problems with iterative methods

2. Real-space grids

o Connection with plane-waves
o Orthogonality overcomes problems with iterative methods

o FFT box method enables linear scaling



