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Outline

e The locality properties of interacting Fermion systems

e Hypersparsity of the independent particle density
matrix

e Linear scaling geometry optimization



Basic strategy for achieving linear
scaling

S. Goedecker: Rev. of Mod. Phys. 71, (1999)

e Formulate the electronic structure problem in terms
of localized quantities

— Wannier functions W;(r)
centered at point R;

|R7;—I'|—>OO
— Density matrix F(r,r’)
F(r,r") — 0
lr—r'| =00

Both decay exponentially in insulator

e Do not calculate exponentially small parts of
the Wannier functions and density matrix.
Calculate them only in the "localization
region” where they are big enough.



Definition of Wannier functions

Periodic solid with Bloch functions ¥, \(r)
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Wi(r) =
1= Ri,n

Definition of Density matrix

At zero temperature (2N electrons)

F(r,r) = 22\1;;(1-)\1;7;(1-')

= 2 Z Wi (r)Wi(r')



Localization of the density matrix
and Wannier functions in the many
body context

E. Koch and S. Goedecker, Sol. State Comm., 119 105 (2001)

Questions:

e Does the one-particle reduced density matrix D(r,r’)

D(x},x1) :/.../dx2...de\Il(x'1,x2,...,XN)

U(X1,X2, ..., XN)

decay in the same way as the independent particle
density matrix F'(x,x’)

e Can one construct one-particle Wannier functions
from a many body wave function ¥(xq,Xs, ..., Xn)



Analogies

In a periodic solid D(x,x’) has the same symmetry
properties as an independent particle Hamiltonian H;

Blochs theorem applies
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Decay Properties of D

Postulate:
In an insulator all k dependent quantities are analytic
with respect to k, in a metal they are discontinuous at

the Fermi level.

Paley-Wiener theorem:
D(r,r’) decays exponentially

Numerical results for decay constant in the
Hubbard model
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Figure 1: Decay constant ya of the density matrix for
the Hubbard chain as function of the gap Ej,.
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Natural Wannier function

e Decay exponentially

e Virtual natural Wannier functions are presumably
better localized than their independent particle
counterparts

e Virtual natural Wannier functions have never been
calculated for a realistic system

One can distinguish an insulator form a metal
by looking only at ground state properties



Sparsity of I/ and F for
independent particle schemes

How sparse are W and F7?

e The number of significant elements of F' and W is
small enough to be stored if small basis sets such as
Gaussian type orbitals (GTO's) are used

e Problems arise if large high quality basis sets such as
finite elements are used

Example: A system near the crossover point:
100 atoms each contributing 2 electrons: N = 100
1000 basis functions per atom: M = 100 000

Localization region contains all the 100 atoms

— W: N x M, i.e. 10 million elements, feasible
— F: M x M, i.e. 10 billion elements, unfeasible



Hyper-sparsity of the density
matrix

S. Goedecker and O. Ivanov, PRB 59 7270 (1999)

Initial observation:

To get the best possible sparsity for the density matrix
of the homogeneous electron gas we have to use plane
waves

Hope:

e By using a basis set that is localized both in real and
in Fourier space we can obtain a better sparsity for
F' for any system. A basis set with this property are
wavelets.

e Obtain linear or close to linear scaling for metals at
zero temperature



Frequency localization properties

Daubechies Degree 8 wavelets

Fourier power spectrum of 3 wavelets on neighboring

resolution levels

E(k)




Results: One dimensional insulator:

Scaling function basis: F; ; = ff¢z E(r,r)g;(r')
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Figure 2: Structure of the density matrix in a scaling
function representation. FElements larger than 1.e-3
are denoted by green areas elements larger than 1.e-2
by blue areas.
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Figure 3. Structure of the density matriz in a wavelet
representation



Results: One dimensional metal:

Scaling function basis: elements o atoms?
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Compression rates
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Figure 4. The error in the density matrix
versus the size of the data set mnecessary for its
representation. Solid lines correspond to a scaling
function representation, dashed lines to a wavelet
representation. The two red curves are for a metallic
system, the two green curves for an insulator and the
two blue curves for an insulator where the density
matrix was constructed indirectly via the Wannier
functions.



Geometry optimization

Basic steps of iteration #t:

e Calculate forces on all the atoms £},
We assume linear scaling for this part

e Calculate deplacements d;; from the forces
f;

— Steepest descent:
d;; = ofy;
— Conjugate gradient:
d;; = linear combination of {fy, f5, ..., f;;}

e Update atomic positions: r;;4; = r;; + dg;



O(N) geometry optimization
S. Goedecker et al., Rap. Comm. in Phys. Rev. B 64, 161102-1 (2001)

Problem: number of iterations n;; increases with system

size

Pictorial derivation:
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For a chain of N,; atoms at least IV,; iteration steps are
required

For faster relaxation long wavelengths have to be excited



Mathematical analysis of n;;:

e Conjugate gradient:

Nz X Hmaz log(€) ox Ny

me’I’L

e Steepest descent:

2
Nt X (wmam> log(€) o< N,

Wmin

Wmaz highest phonon frequency
Wmin lowest phonon frequency
e convergence threshold

N Number of atoms in chain

Three-dimensional bulk materials:
Conjugate gradient: n;y o< L = N;t/?’
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Algorithm
e high frequencies: ordinary steepest descent

e low frequencies: Elasticity theory

fi d;
A

Conti |nuize Discre| tize

Elastici ty

f(x,y,2) ——— d(X,y,2)

Elasticity equations are solved by multi-grid or
Fourier techniques



Results for periodic systems

Table 1: Number of force evaluations ns and CPU time
T in seconds for the conjugate gradient (CG) and the
linear scaling (SC) method for a divacancy in silicon.

number of atoms || ns(CG) | ng(LS) | T(CG) | T(LS)
510 102 106 41 50
998 124 106 90 93
1726 146 109 1.7 1.6
4094 184 115 5.1 4.2
13822 260 115 24. 14.
110592 502 115 373. 135.
3884734 934 117 5586. | 1147.

Results for non-periodic systems

Table 2:

Number of force evaluations ns for the

conjugate gradient (CG) and the linear scaling (SC)
for the relaxation of a Si quantum dot.

number of atoms | ns(CG) | ns(LS)
172 132 156
992 198 162
4158 294 210




Method also applicable to
non-uniform systems

Comparison of 3 systems:
A: 1dim crystal with acoustic modes only
B: 1dim crystal with acoustic and optic modes

C: 1dim quasi crystal

Table 3: Number of iterations with the linear scaling
method

number of atoms

64 /55

128,144

256,233

512/610

System A

7

7

7

7

System B

11

11

11

11

System C

12

13

12

13




Conclusions

e Single particle Wannier functions
can also be constructed in the
many body context. These natural
Wannier functions and the one-
particle reduced density matrix decay
exponentially in an insulator

e By exploiting the Fourier space
localization  properties additional
sparsity (hypersparsity) of the density
matrix can be obtained.

e Linear scaling geometry optimization
allows for the efficient relaxation of
large systems



