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Real-space multigrid method for quantum simulations
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density functional equations solved directly on the grid

Multigrid techniques remove mstablhtles by workmg on one

*length scale at a time = «
Automatic preconditioning and umwr;,en(c acceleration

on all length scales

Non-periodic boundary conditions are as easy as periodic

Compact, non-diagonal '""Mehrstellen'' discretization
Allows for efficient massively parallel implementation
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Speedup nearly linear in
the number of processors
(up to 1024)

A. Speed on Cray T3E
‘Double precision code
=77 Mflops/processor
- Mixed precision code

177 Mflops/processor
42 Gflops on 256

*0 *Number of PE's T3E processors

Speadup (8 PE’s
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See E. L. Briggs, D. . Sullivan and J. Bernhole Phys, Rev. B 54, 14362 (96).



Compact Real-Space Discretization

Higher accuracy achieved by using more local information.
Local nature also important for MPP implementations.

¥4 : . . . .
Both V y and V are discretized along several grid points
in each coordinate direction (we use 3 points per direction)

| leads to a generalized eigenvalue problem o
.. Alw]+B[Vy]=eB[y]+0®)

A : Kinetic energy operator to second order in A
B : smoothing operator, I to second order in h
A and B are components of the Mehrstellen discretization.

Two dimensional stencil form: 12h*A 12B
-2]-8 |2 1
-8140|-8 11811
-2|-8 |-2 1

We derived and used a 3D Mehrstellen for orthorhombic grids:
suitable for a wide range of problems but not all.

We have niow deérived 3D Mehrstellen for additional symmetries ~* *
Hexagonal
Body-centered

Face-centered
(To be published: E. L. Briggs, J. L. Fattebert, J. Bernholc)




1D example for Poisson's equation ®''(x) = f(x)
 In central finite differences
Taylor expansion of @(x) gives:

- ®"'(x;) = h?[D(x;-h) - 2 D(x;) + D(x;+h)| + O(h*)
h?|D(x;-h) - 2 D(x;) + D(x;+h)] = f(x;) + O(h®)

‘ In Mehrstellen approach

Taylor expansion of ®(x) and f(x), and ®''(x) = f(x) leads to

h2[12®(x;-h) - 24 O(x;) + 12O(x;+h)] = f(x;-h) + 10f(x;) + f(x;-h) + O(h*)




Pseudopotential representation

* In plane wave calculations
V(G) with G > cutoff are automatically neglected

* In real-space calculations standard potentials need to be
Fourier-filtered.

e.g. Cutoff potentials in G-space with a gaussian function
Fourier-transform and remove small oscillations at

‘large r with R-space gaussian cutoff
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* General rule:
Avoid high-frequency variation on real-space meshes.

Slower convergence
Lower accuracy

Ppotentials retain the accuracy of plane-waves.,
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Outline of multigrid
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1. Select trial y,, and compute initial estimate of €,
en - <‘l’n|Hmehr'\l’n>/ <Wn|Bmehr'Wn>

2. Compute residual vector: r, = €,BmenrYn> - HmenelWn>

3. Do several steepest descents updates on the global grid
"> = ly,> + Aty

high frequency errors are efficiently removed

4. Transfer the smooth residual to a coarse grid using a weighted
average

5. Solve V?byy, = ra, on the coarse grid.
Note that the potential terms are represented only by rp.

. Interpolate by, to global grid and correct hy,> =
™" > = ly,> + At by,

Repeat for all ly,>, orthogonalize and mix density until self-
consistent.

Subspace diagonalization every 8-10 steps significantly improves
convergence.




Convergence and accuracy

e Convergence rates for steepest descents and multigrid with
and without subspace diagonalization

64 atom Diamond cell:substitutional N
Random initial wavefunctions ~ 63 Ry cutoff
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Tests for uniform grids

Effective cutoff for comparison to plane-wave calculations

for plane waves cutoff = PW Kkinetic energy
for multigrid  cutoff = n°/2h*

~results in the same FFT grid as the real-space grid

Time per scf/step comparable to Car-Parrinello, but fewer SCF
i steps needed for convergence in the multlgnd method

. Perfect crystal and vacancy in diamond (35 Ry cutoff)

64-atom cells Car-Parrinello | Multigrid | Experiment
Perfect Crystal
Band gap 4.53 eV 4.53 eV 5.50 eV
Cohesive energy 8.49 eV 8.54 eV 7.37 eV
Vacancy
Formation energy | 6.98 eV 7.07 eV
level splitting 0.32 ¢V 0.32 eV

max A(g) = 0.06 eV max A(rgomic) = 0.009 bohr

e C60 isolated molecule and solid

C60, 35 Ry cutoff | d(C=C) | d(C-C) |
‘molecule (multigrid) . |1.39A - 1,444
“solid (Car-Parrinello) =~ {139 A5 | 145 K"

* Scaling with respect to system size

Diamond, 35 Ry 8-atom cell 64-atom cell
# SCF steps 17 20

* Scaling with respect to cutoff

8-atom Diamond 25Ry |35Ry [60Ry |[110Ry
# SCF steps 22 17 21 26

see E. Briggs, D. Sullivan, and J. Bernholc, Phys. Rev. B 52, R5471 (1995).




Grid-optimized orbitals for nearly O(/N) DFT

Large-scale electronic structure calculations scale
as O(N?3)

- e Alotofcurrentresearch focuses on O(N) methods,
"~ see S. Goedecker, Rev. Mod. Phys. (1999) for
a review.

e Our approach is described in J.-L. Fattebert and
J. Bernhoilc, Phys. Rev. B 62, 1713 (2000).

e Work most related to our approach: Galli and
Parrinello (1992), Nunes and Vanderbilt (1994),
Hernandez and Gillan (1995)

We want to keep:

 Accurate ab initio results

e Efficient iterative algorithm using a good preconditioning
to relax the wavefunctions

e Inclusion of unoccupied states may increase the
convergence rate



Representation of the electrons

e Eigenfunctions:

e Basis of orthogonal functions:

X = (X1,----XN) = wuT
where U is an N x N orthogonal matrix

e Basis of non-orthogonal functions:

= (51,$N) = xG"
where G € My is a lower triangular matrix,
S = GGT (Cholesky decomposition), S = ®T'¢

“equivalent, but:

e The evaluation of the electronic density is cheaper
in the basis of the eigenfunctions.

¢ Using non-orthogonal functions allows to impose
localization constraints — lower cost.

These 3. representatlons are mathematically completely ...~



Nonorthogonal basis

Trial non-orthogonal basis: ® = ({51, .
= lterative corrections:

S =N ) Bi©y — Hey
j=1

where © = (T Bod)~"1(dTHD)

K linear preconditioning multigrid operator
- B: "Mehrstellen” operator

NO ORTHOGONALIZATION OR SUBDIAGONALIZATION
REQUIRED!

~Density:*

N
p(z) =2 Y (§71)i0i(z)8;(z), S =’
i,j=1

Energy:

E =2Tr(©) + Flp]l + Eion—ion



Multigrid preconditioning

“ K- iterative multigrid Poisson solver (V-cycle) forthe =~
Poisson problem

—V2u=d
with initial solution
ug = ad

and limited to the grids with a number of nodes
larger than N.

o approximation of the inverse of the largest eigenvalue
of H on the finest non-visited grid



Multigrid preconditioning

Main features:

e Ability to deal with components of different wavelength

‘o Linear preconditioner = independent of the basis

e parallel
e Low cost (~ 15% of total cost)

e works well for N > # of occupied orbitals

Example: Cgo, grid 64 x64x64, N = 180, Nocc =
120

- 0 coarse levels ,
=+ 1.coarse levels ;. .-
—- 2 coarse levels

error Energy/atom (Ha)ff
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Minimization with unoccupied states

N > # of occupied orbitals

E lterative relaxations of the orbitals W as if they -
were all fully occupied

e Density matrix for Ritz vectors W

N
p(x) = 2 i(x)y(2)0(p — ¢;)
i=1 .

=> Non-diagonal density matrix p, in the basis
® (N x N)

2 Z #(@)85() (P

E = 2T7‘(S@p¢)

+ F[P] + Ezon-—zon

The evaluation of the exact p4, requires the diagonalization
of a matrix N x N



Localizations constraints on ©®©

- Functions ¢; non-zero only inside spheres of radius
"R, centered on an atom

e Linear scaling to compute the corrections 6¢;

0 =N | Y B¢;O; — He;
| =

e Linear scaling to compute the density p

J=1

"

plz) = 2

e

o

e Evaluation of the density matrix pg (full) remains
O(N3) (diagonalization of a matrix N x N)




PBLAS and Scalapack for submatrices

Parallel Basic Linear Algebra Subprograms (PBLAS)

il
S,

Scalable linear algebra package (Sca La pack) e

o Computation of density matrix (O(N3)): Scalapack
to diagonalize a matrix N x N

(eigenvalues + eigenvectors).

e Memory to store submatrices (O(NN?2)): distribution
on the PEs

Timing for ScalLapack diagonalization subroutine (PSSYEV)

on T3E (Alpha EV56 processors 450 Mhz, block size=16)
[seconds] | 1 PE | 4 PEs | 16 PEs | 64 PEs
N =560 | 128 | 4.5 2.6 1.8
N =1120| 98 27 11 7
N = 2240 175 60 29




Interpretation

The method can be seen as a generalization of ab
initio methods using LCAO (linear combination of
. atomic orbitals) or Gaussians basis functions:

V= Zcz'dh'
1

The basis local functions ¢, are defined by their values
on a grid and are variationally optimized

More degrees of freedom

e Systematic increase of the accuracy by mesh
refinement or expansion of the localization domain

e Numerical integration on a grid



Importance of unoccupied states

Example: C60

-5.55 T T T
1
—-- Rc =inf., 120 states
. ~—— Rc = inf., 180 states

-5.65 |
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Example: nanotube with 160 carbon atoms

.~ Cell 32.6 x 21.8 x 21.8 a.u., Grid 96 x 64 X 64 AN

Convergence as a function of the localization radius (480 states:
2 occ. + 1 unocc. localized on each atom)

Start: random localized functions

"5.6 T T
- Rc=6a.u.’
.~ Rc=8a.u.-
= Re=inf
L -565}
E
o
g
>
4
2 -57¢ :
U

0 20 40 60 80 100 120 140
SC iterations



Eigenvalues and band gap

and the lowest unoccupied orbital

- Example: Nanotube with 160 carbon atoms

.- Electronic properties depend on the gap (eigenvalue
difference) between the highest occupied orbital (HOMO)

[eV] | Rc = 5a.u. c = 6a.u. c=8a.u. | Re =
LUMO 1.53 1.27 1.17 1.17
HOMO 0.64 0.41 0.32 0.32

gap 0.89 0.86 0.85 0.85

-|-lonic relaxation -

Successful ionic relaxation of a nanotube with 320
atoms, R. = 6a.u. (agrees with full DFT results)




Energy of a defect

Results for nanotube (10,0) with 160 atoms (with
ionic relaxation)

[Ha] R = 8a.u. | Rc = o©

Defect -911.84 -911.86
No defect -911.97 -911.99

Defect energy: 0.13 [Ha]



lllustration: carbon nanotube

Isosurface for the square of a localized function in
the plane of the nanotube, localization radius = 6
aU ; o

e Smoothly decaying functions

e Localized on the bond



ki

Timing

e Implementation in C on CRAY-T3E

e Based on BLAS, Lapack, BLACS, PBLAS, ScalLapack
and shmem libraries

" Timing for 1 SC step (T3E, DEC alpha 450 MHz
Processors, 256 MB RAM)

R, = 6.2a.u., 3 orbitals/atom, h = 0.34qa.u.: (grid 56 x 56 X
96 for 140 atoms)

# atoms 140 280 560 1120

# orbitals 420 840 1680 3360

# storage func. 237 252 255 255
CPU time/PE [s] 69 82 104 173

Subdiagonalization[s] 1.4 2.6 9 30

90 Mflops/PE for test on 128 PEs



3 h is determlned by the potential, but ais universal

Optimal localization?

L. He and D. Vanderbilt, PRL 86, 5341 (2001)
Exponential Decay of Wannier Functions and Related Quantities

In 1D, it is shown analytically and numerically that:

w(x) #x%e™

h a= 3/4 for orthonormal Wannier functions (WF)
172 for p(x,x")
1/2 for projected nonorthonormal WF (P = 2, |yi><wi)

3/2 for dual nonorthonormal WF |¢,>=_ ; S; @, >

In 3D, the initial slopes are as above, but the authors "suspect
that there might be a crossover to larger a values in the far
tails."
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Green's functions for quantum transport

1. Consider a conductor C connected to semi-infinite left (L) and
right (R) leads.

L lead conductor R lead

So= oD >

reflection transmission

2. Expand in local orbitals and divide the system in "layers," so

. that matrix elements exist only between adjacent layers. =

3. In layer "basis," the Green's function equations for the entire
Left lead — Conductor — Right lead system are:
-1

G, G, O (¢e-H,) h - 0
Gy | G, Ggi |= hey (e-H.) %
0 Gpe Gy 0 B | (6 —Hp)

4. One can separately solve for the "self-energy" of the left lead:

2, =hygh, ,

where 2; has the dimension of C and g, is the Green's function
for the semi-infinite lead.

recursively for any periodic lead by recursively doubling the
period (see also below).

S. The Green's function for the Left-lead-Conductor system
becomes

G.=(e—-H_ —ZL)_l

One can "extend" the lead by "merging" the conductor with
the lead, forming a "new"lead. This results in O(N) propagation
of Gcin the basis of layer orbitals.

4. hergi intéract only across one layer, and g; can be obtained - =5+
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