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Example

o M =L>(X,m), 7(f) = [ f dm, where m probability measure
e M= M,(C), = %tr

Definition (7-symmetric quantum Markov semigroup)
(T¢)e>0 weak™ continuous semigroup of unital, completely positive

operators on M such that

T((Tex)y) = 7(xTry)
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Theorem (Cipriani—-Sauvageot)
The generator of a T-symmetric QMS (with carré du champ) is of

the form O*0 for derivation O with values in normal M-bimodule H.
Example

e (T:) heat semigroup on complete Riemannian manifold (M, g)
~ H=L2(M; TM), 0 =V

e (T;) T-symmetric QMS on M,(C) ~~ generator L has
Lindblad form £ = 27, [vj, [}, -]] ~ H = [2(Ma(C), )¢,
9A = ([v;, Al);
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(Complete) gradient estimate

N\ operator mean ~~

€12 = (A(L(p), R(p))E, &), E€H,pe My

Gradient estimate
10Tex|2 < e ||0x|1%,, (GE(K, 0))

(T:) satisfies if (T: ® idyr) satisfies GE(K, oco) for all
tracial (\V, 1)

The(_)rem ;W.,_Zha_ng ‘20) _ _ _

If \ is the logarithmic mean (and minor technical assumptions),
then GE(K, o) implies MLSI(2K). The same is true for

CGE(K, o0) and CLSI(2K).



Gradient estimate through intertwining

Theorem (Carlen, Maas ‘17, 20, W., Zhang ‘20)
If there exists semigroup (T:) on H such that



Gradient estimate through intertwining

Theorem (Carlen, Maas ‘17, 20, W., Zhang ‘20)
If there exists semigroup (T:) on H such that

(i) T.0 =0T,



Gradient estimate through intertwining

Theorem (Carlen, Maas ‘17, 20, W., Zhang ‘20)
If there exists semigroup (T:) on H such that

(i) T.0 =0T,
(i) L(p)TeL(p) < e 2KtL(Typ),



Gradient estimate through intertwining

Theorem (Carlen, Maas ‘17, 20, W., Zhang ‘20)
If there exists semigroup (T:) on H such that
(i) T.0=0T,,
(i) L(p)TeL(p) < e 2KEL(Tep),
(i}) R(p)TeR(p) < e 2 R(Tep),



Gradient estimate through intertwining

Theorem (Carlen, Maas ‘17, 20, W., Zhang ‘20)
If there exists semigroup (T:) on H such that
(i) T.0=0T,,
(i) L(p)TeL(p) < e 2KEL(Tep),
(i}) R(p)TeR(p) < e 2 R(Tep),



Gradient estimate through intertwining

Theorem (Carlen, Maas ‘17, 20, W., Zhang ‘20)
If there exists semigroup (T:) on H such that

(i) T.0 =0T,
(i) L(p)TeL(p) < e 2KtL(Typ),
(i) R(p)TeR(p) < e 2KtR(Tep),

then (T;) satisfies GE(K, o0).



Gradient estimate through intertwining

Theorem (Carlen, Maas ‘17, 20, W., Zhang ‘20)
If there exists semigroup (T:) on H such that
(i) T.0=0T,,
(i) L(p)TeL(p) < e 2KEL(Tep),
(i}) R(p)TeR(p) < e 2 R(Tep),

then (T;) satisfies GE(K, o0).

Remark X
If GRic > K (Li, Junge, LaRacuente), then T, = e~ t(L+Re)

satisfies (i)—(iii).



Gradient estimate through intertwining

Theorem (Carlen, Maas ‘17, 20, W., Zhang ‘20)
If there exists semigroup (T:) on H such that
(i) T.0 =0T,
(i) L(p) TeL(p) < e K L(Tep),
(i) R(p)TR(p) < e 2KR(Top),
then (T;) satisfies GE(K, o0).

Remark X

If GRic > K (Li, Junge, LaRacuente), then T, = e t(£+Rc)
satisfies (i)—(iii).

Example

e g-Ornstein-Uhlenbeck semigroup on I'4(H) satisfies
CGE(1, 00)
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Proposition (W., Zhang ‘20)
If (5¢), (T¢) satisfy CGE(K, 00), then (5: ® T:) and (S¢ * Ty)

satisfy CGE(K, 00).

Proposition (W., Zhang ‘20)
If the generator of (T;) has the Lindblad form

L= Z[pjv [pja ]
J

with commuting projections p;, then (T;) satisfies CGE(1, 00).

Example
G finite group, (H,m, b) cocycle, (e;) ONB of H,

Tidg = e_t”b(g)Hz)‘g L= Zj[‘/ja [vj, -] with v;og = (b(g), &j)dg
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Now G = Fy, ¢(g) =combinatorial distance of g from e in Cayley
graph ~ T\, = e (&) )\, is QMS on L(F,)

Theorem (W., Zhang ‘20, Brannan, Gao, Junge ‘20)
(Tt(d)) satisfies CL.SI(2), constant is optimal

Corollary
(e—t(—A)l/z) on L>=(TY) satisfies CLSI(2).
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Proof Sketch

Prove CGE(1, c0) for (Tt(d)):
e Use free product structure to reduce to G = Z:
7@ _ 0, 7
—_———
d times

e Use amenability of Z to reduce to finite-dimensional case:
L(z) = [[ B(({-n,...,n}))
nU
e Use Lindblad form of generator on My,11(C):
L= [pp ]l
J

with commuting projections p; (exploits cocycle for ¢)

11



Some open questions

e Does GE(K, o) imply CGE(K, c0), at least for classical
Markov semigroups?

12



Some open questions

e Does GE(K, o) imply CGE(K, c0), at least for classical
Markov semigroups?

e Can one weaken the assumption of tracial symmetry?

12



Some open questions

e Does GE(K, o) imply CGE(K, c0), at least for classical
Markov semigroups?

e Can one weaken the assumption of tracial symmetry?

e Does every QMS on a finite-dimensional von Neumann algebra
satisfy GE(K, 00) for some K € R?

12



Some open questions

e Does GE(K, o) imply CGE(K, c0), at least for classical
Markov semigroups?

e Can one weaken the assumption of tracial symmetry?

e Does every QMS on a finite-dimensional von Neumann algebra
satisfy GE(K, 00) for some K € R?

e |s there a finite-dimensional improvement GE(K, N)?
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