From Entropic Curvature Bounds to Logarithmic Sobolev Inequalities

Melchior Wirth (joint work with Haonan Zhang) February 8, 2021

 \bullet classical tool to quantify return to equilibrium (Gross, $\dots)$

- classical tool to quantify return to equilibrium (Gross, ...)
- useful in mathematical physics, differential geometry, quantum information . . .

- classical tool to quantify return to equilibrium (Gross, ...)
- useful in mathematical physics, differential geometry, quantum information . . .
- dimension-independent bounds (tensorization ...)

- classical tool to quantify return to equilibrium (Gross, ...)
- useful in mathematical physics, differential geometry, quantum information . . .
- dimension-independent bounds (tensorization ...)

Heat semigroup on Riemannian manifold: Ricci curvature bounded below by K implies log-Sobolev inequality with constant 2K

Heat semigroup on Riemannian manifold: Ricci curvature bounded below by K implies log-Sobolev inequality with constant 2K

(At least) two approaches

Heat semigroup on Riemannian manifold: Ricci curvature bounded below by K implies log-Sobolev inequality with constant 2K

(At least) two approaches

Optimal transport approach uses geodesic convexity of the entropy in Wasserstein space to characterize $\mathrm{Ric}_g \geq K$

Heat semigroup on Riemannian manifold: Ricci curvature bounded below by K implies log-Sobolev inequality with constant 2K

(At least) two approaches

Optimal transport approach uses geodesic convexity of the entropy in Wasserstein space to characterize $\mathrm{Ric}_g \geq K$

Bakry-Émery approach uses Bochner's identity to characterize $\mathrm{Ric}_{\mathbf{g}} \geq K$

Heat semigroup on Riemannian manifold: Ricci curvature bounded below by K implies log-Sobolev inequality with constant 2K

(At least) two approaches

Optimal transport approach

uses geodesic convexity of the entropy in Wasserstein space to characterize $\mathrm{Ric}_{g} \geq K$

Heat semigroup on Riemannian manifold: Ricci curvature bounded below by K implies log-Sobolev inequality with constant 2K

(At least) two approaches

Optimal transport approach

uses geodesic convexity of the entropy in Wasserstein space to characterize $\mathrm{Ric}_g \geq K$

- diffusions: Otto-Villani . . .
- graphs: Maas, Mielke, Chow-Li-Zhou . . .
- QMS: Carlen-Maas, Mielke-Mittnenzweig . . .

Heat semigroup on Riemannian manifold: Ricci curvature bounded below by K implies log-Sobolev inequality with constant 2K

(At least) two approaches

Optimal transport approach

uses geodesic convexity of the entropy in Wasserstein space to characterize $\mathrm{Ric}_g \geq K$

- diffusions: Otto-Villani . . .
- graphs: Maas, Mielke, Chow-Li-Zhou . . .
- QMS: Carlen-Maas, Mielke-Mittnenzweig . . .

Heat semigroup on Riemannian manifold: Ricci curvature bounded below by K implies log-Sobolev inequality with constant 2K

(At least) two approaches

Optimal transport approach

uses geodesic convexity of the entropy in Wasserstein space to characterize $\mathrm{Ric}_g \geq K$

- diffusions: Otto-Villani . . .
- graphs: Maas, Mielke, Chow-Li-Zhou . . .
- QMS: Carlen-Maas, Mielke-Mittnenzweig . . .

Heat semigroup on Riemannian manifold: Ricci curvature bounded below by K implies log-Sobolev inequality with constant 2K

(At least) two approaches

Optimal transport approach

uses geodesic convexity of the entropy in Wasserstein space to characterize $\mathrm{Ric}_{g} \geq K$

- diffusions: Otto-Villani . . .
- graphs: Maas, Mielke, Chow-Li-Zhou . . .
- QMS: Carlen-Maas,
 Mielke-Mittnenzweig . . .

 ${\mathcal M}$ von Neumann algebra, $\tau\colon {\mathcal M} o {\mathbb C}$ normal faithful tracial state

 ${\mathcal M}$ von Neumann algebra, $au\colon {\mathcal M} o {\mathbb C}$ normal faithful tracial state

Example

• $\mathcal{M}=L^{\infty}(X,m)$, $au(f)=\int f\ dm$, where m probability measure

4

 ${\mathcal M}$ von Neumann algebra, $au\colon {\mathcal M} o {\mathbb C}$ normal faithful tracial state

Example

- $\mathcal{M}=L^{\infty}(X,m)$, $\tau(f)=\int f\ dm$, where m probability measure
- $\mathcal{M} = M_n(\mathbb{C}), \ \tau = \frac{1}{n} \operatorname{tr}$

 ${\mathcal M}$ von Neumann algebra, $au\colon {\mathcal M} o {\mathbb C}$ normal faithful tracial state

Example

- $\mathcal{M}=L^{\infty}(X,m)$, $\tau(f)=\int f\ dm$, where m probability measure
- $\mathcal{M} = M_n(\mathbb{C}), \ \tau = \frac{1}{n} \operatorname{tr}$

4

 ${\mathcal M}$ von Neumann algebra, $au\colon {\mathcal M} o {\mathbb C}$ normal faithful tracial state

Example

- $\mathcal{M}=L^{\infty}(X,m)$, $\tau(f)=\int f\ dm$, where m probability measure
- $\mathcal{M} = M_n(\mathbb{C}), \ \tau = \frac{1}{n} \operatorname{tr}$

Definition (τ -symmetric quantum Markov semigroup) $(T_t)_{t\geq 0}$ weak* continuous semigroup of unital, completely positive operators on $\mathcal M$ such that

 ${\mathcal M}$ von Neumann algebra, $au\colon {\mathcal M} o {\mathbb C}$ normal faithful tracial state

Example

- $\mathcal{M}=L^{\infty}(X,m)$, $\tau(f)=\int f\ dm$, where m probability measure
- $\mathcal{M} = M_n(\mathbb{C}), \ \tau = \frac{1}{n} \operatorname{tr}$

Definition (τ -symmetric quantum Markov semigroup) $(T_t)_{t\geq 0}$ weak* continuous semigroup of unital, completely positive operators on $\mathcal M$ such that

$$\tau((T_t x) y) = \tau(x T_t y)$$

4

Modified logarithmic Sobolev inequality

Entropy

$$D(\rho \| \sigma) = \tau(\rho(\log \rho - \log \sigma))$$

Modified logarithmic Sobolev inequality

Entropy

$$D(\rho \| \sigma) = \tau(\rho(\log \rho - \log \sigma))$$

Modified logarithmic Sobolev inequality

$$\lambda D(\rho || E(\rho)) \le \tau((\mathcal{L}\rho) \log \rho),$$
 (MLSI(λ))

where \mathcal{L} generator of (T_t) , E conditional expectation onto fixed point algebra

Modified logarithmic Sobolev inequality

Entropy

$$D(\rho \| \sigma) = \tau(\rho(\log \rho - \log \sigma))$$

Modified logarithmic Sobolev inequality

$$\lambda D(\rho || E(\rho)) \le \tau((\mathcal{L}\rho) \log \rho),$$
 (MLSI(λ))

where \mathcal{L} generator of (T_t) , E conditional expectation onto fixed point algebra

 (T_t) satisfies $CLSI(\lambda)$ if $(T_t \otimes id_{\mathcal{N}})$ satisfies $MLSI(\lambda)$ for all tracial $(\mathcal{N}, \tau_{\mathcal{N}})$

First-order Differential Calculus

Theorem (Cipriani-Sauvageot)

The generator of a τ -symmetric QMS (with carré du champ) is of the form $\partial^* \partial$ for derivation ∂ with values in normal \mathcal{M} -bimodule \mathcal{H} .

First-order Differential Calculus

Theorem (Cipriani-Sauvageot)

The generator of a τ -symmetric QMS (with carré du champ) is of the form $\partial^* \partial$ for derivation ∂ with values in normal \mathcal{M} -bimodule \mathcal{H} .

Example

• (T_t) heat semigroup on complete Riemannian manifold (M,g) $\rightsquigarrow \mathcal{H} = L^2(M;TM), \ \partial = \nabla$

First-order Differential Calculus

Theorem (Cipriani-Sauvageot)

The generator of a τ -symmetric QMS (with carré du champ) is of the form $\partial^* \partial$ for derivation ∂ with values in normal \mathcal{M} -bimodule \mathcal{H} .

Example

- (T_t) heat semigroup on complete Riemannian manifold (M,g) $\rightsquigarrow \mathcal{H} = L^2(M;TM), \ \partial = \nabla$
- (T_t) τ -symmetric QMS on $M_n(\mathbb{C}) \leadsto$ generator \mathcal{L} has Lindblad form $\mathcal{L} = \sum_{j=1}^d [v_j, [v_j, \cdot]] \leadsto \mathcal{H} = L^2(M_n(\mathbb{C}), \tau)^d$, $\partial A = ([v_j, A])_j$

6

 Λ operator mean \rightsquigarrow

$$\|\xi\|_{\rho}^2 = \langle \Lambda(L(\rho), R(\rho))\xi, \xi \rangle, \qquad \xi \in \mathcal{H}, \rho \in \mathcal{M}_+$$

 Λ operator mean \rightsquigarrow

$$\|\xi\|_{\rho}^2 = \langle \Lambda(L(\rho), R(\rho))\xi, \xi \rangle, \qquad \xi \in \mathcal{H}, \rho \in \mathcal{M}_+$$

Gradient estimate

$$\|\partial T_t x\|_{\rho}^2 \le e^{-2Kt} \|\partial x\|_{T_t \rho}^2 \qquad (\mathsf{GE}(K, \infty))$$

 Λ operator mean \rightsquigarrow

$$\|\xi\|_{\rho}^2 = \langle \Lambda(L(\rho), R(\rho))\xi, \xi \rangle, \qquad \xi \in \mathcal{H}, \rho \in \mathcal{M}_+$$

Gradient estimate

$$\|\partial T_t x\|_{\rho}^2 \le e^{-2Kt} \|\partial x\|_{T_t \rho}^2 \tag{GE}(K, \infty)$$

 (T_t) satisfies $\mathrm{CGE}(K,\infty)$ if $(T_t\otimes\mathrm{id}_{\mathcal{N}})$ satisfies $\mathrm{GE}(K,\infty)$ for all tracial (\mathcal{N},τ)

 Λ operator mean \rightsquigarrow

$$\|\xi\|_{\rho}^2 = \langle \Lambda(L(\rho), R(\rho))\xi, \xi \rangle, \qquad \xi \in \mathcal{H}, \rho \in \mathcal{M}_+$$

Gradient estimate

$$\|\partial T_t x\|_{\rho}^2 \le e^{-2Kt} \|\partial x\|_{T_t \rho}^2 \qquad (\mathsf{GE}(K, \infty))$$

 (T_t) satisfies $\mathrm{CGE}(K,\infty)$ if $(T_t \otimes \mathrm{id}_{\mathcal{N}})$ satisfies $\mathrm{GE}(K,\infty)$ for all tracial (\mathcal{N},τ)

Theorem (W., Zhang '20) If Λ is the logarithmic mean (and minor technical assumptions), then $GE(K,\infty)$ implies MLSI(2K). The same is true for $CGE(K,\infty)$ and CLSI(2K).

(i)
$$\vec{T}_t \partial = \partial T_t$$
,

(i)
$$\vec{T}_t \partial = \partial T_t$$
,

(ii)
$$L(\rho)\vec{T}_tL(\rho) \leq e^{-2Kt}L(T_t\rho)$$
,

(i)
$$\vec{T}_t \partial = \partial T_t$$
,

(ii)
$$L(\rho)\vec{T}_tL(\rho) \leq e^{-2Kt}L(T_t\rho)$$
,

(iii)
$$R(\rho)\vec{T}_tR(\rho) \leq e^{-2Kt}R(T_t\rho)$$
,

(i)
$$\vec{T}_t \partial = \partial T_t$$
,

(ii)
$$L(\rho)\vec{T}_tL(\rho) \leq e^{-2Kt}L(T_t\rho)$$
,

(iii)
$$R(\rho)\vec{T}_tR(\rho) \leq e^{-2Kt}R(T_t\rho)$$
,

Theorem (Carlen, Maas '17, '20, W., Zhang '20) If there exists semigroup (\vec{T}_t) on \mathcal{H} such that

(i)
$$\vec{T}_t \partial = \partial T_t$$
,

(ii)
$$L(\rho)\vec{T}_tL(\rho) \leq e^{-2Kt}L(T_t\rho)$$
,

(iii)
$$R(\rho)\vec{T}_tR(\rho) \leq e^{-2Kt}R(T_t\rho)$$
,

then (T_t) satisfies $GE(K, \infty)$.

Gradient estimate through intertwining

Theorem (Carlen, Maas '17, '20, W., Zhang '20) If there exists semigroup (\vec{T}_t) on \mathcal{H} such that

- (i) $\vec{T}_t \partial = \partial T_t$,
- (ii) $L(\rho)\vec{T}_tL(\rho) \leq e^{-2Kt}L(T_t\rho)$,
- (iii) $R(\rho)\vec{T}_tR(\rho) \leq e^{-2Kt}R(T_t\rho)$,

then (T_t) satisfies $GE(K, \infty)$.

Remark

If $\mathrm{GRic} \geq \mathcal{K}$ (Li, Junge, LaRacuente), then $\vec{\mathcal{T}}_t = e^{-t(\hat{\mathcal{L}}+\mathrm{Rc})}$ satisfies (i)–(iii).

Gradient estimate through intertwining

Theorem (Carlen, Maas '17, '20, W., Zhang '20) If there exists semigroup (\vec{T}_t) on \mathcal{H} such that

- (i) $\vec{T}_t \partial = \partial T_t$,
- (ii) $L(\rho)\vec{T}_tL(\rho) \leq e^{-2Kt}L(T_t\rho)$,
- (iii) $R(\rho)\vec{T}_tR(\rho) \leq e^{-2Kt}R(T_t\rho)$,

then (T_t) satisfies $GE(K, \infty)$.

Remark

If $GRic \geq K$ (Li, Junge, LaRacuente), then $\vec{\mathcal{T}}_t = e^{-t(\hat{\mathcal{L}}+Rc)}$ satisfies (i)–(iii).

Example

• q-Ornstein-Uhlenbeck semigroup on $\Gamma_q(H)$ satisfies $\mathrm{CGE}(1,\infty)$

Stability properties

```
Proposition (W., Zhang '20) If (S_t), (T_t) satisfy CGE(K, \infty), then (S_t \otimes T_t) and (S_t * T_t) satisfy CGE(K, \infty).
```

Stability properties

Proposition (W., Zhang '20) If (S_t) , (T_t) satisfy $CGE(K, \infty)$, then $(S_t \otimes T_t)$ and $(S_t * T_t)$ satisfy $CGE(K, \infty)$.

Proposition (W., Zhang '20) If the generator of (T_t) has the Lindblad form

$$\mathcal{L} = \sum_{j} [p_j, [p_j, \cdot]]$$

with commuting projections p_j , then (T_t) satisfies $CGE(1,\infty)$.

C

Stability properties

Proposition (W., Zhang '20) If (S_t) , (T_t) satisfy $CGE(K, \infty)$, then $(S_t \otimes T_t)$ and $(S_t * T_t)$ satisfy $CGE(K, \infty)$.

Proposition (W., Zhang '20) If the generator of (T_t) has the Lindblad form

$$\mathcal{L} = \sum_{j} [p_j, [p_j, \cdot]]$$

with commuting projections p_j , then (T_t) satisfies $CGE(1,\infty)$.

Example

G finite group, (H, π, b) cocycle, (e_j) ONB of H, $T_t \lambda_g = e^{-t\|b(g)\|^2} \lambda_g \leadsto \mathcal{L} = \sum_j [v_j, [v_j, \cdot]]$ with $v_j \delta_g = \langle b(g), e_j \rangle \delta_g$

$$G$$
 group, $\lambda_g \colon \ell^2(G) \to \ell^2(G)$, $\lambda_g \delta_h = \delta_{gh}$, group von Neumann algebra $L(G) = \{\lambda_g \mid g \in G\}''$, $\tau(x) = \langle x \delta_e, \delta_e \rangle$

$$G$$
 group, $\lambda_g \colon \ell^2(G) \to \ell^2(G)$, $\lambda_g \delta_h = \delta_{gh}$, group von Neumann algebra $L(G) = \{\lambda_g \mid g \in G\}''$, $\tau(x) = \langle x \delta_e, \delta_e \rangle$

Now $G = \mathbb{F}_d$, $\ell(g)$ =combinatorial distance of g from e in Cayley graph $\leadsto T_t^{(d)} \lambda_g = e^{-t\ell(g)} \lambda_g$ is QMS on $L(\mathbb{F}_d)$

$$G$$
 group, $\lambda_g \colon \ell^2(G) \to \ell^2(G)$, $\lambda_g \delta_h = \delta_{gh}$, group von Neumann algebra $L(G) = \{\lambda_g \mid g \in G\}''$, $\tau(x) = \langle x \delta_e, \delta_e \rangle$

Now $G=\mathbb{F}_d$, $\ell(g)$ =combinatorial distance of g from e in Cayley graph $\leadsto T_t^{(d)}\lambda_g=e^{-t\ell(g)}\lambda_g$ is QMS on $L(\mathbb{F}_d)$

Theorem (W., Zhang '20, Brannan, Gao, Junge '20) $(T_t^{(d)})$ satisfies ${\rm CLSI}(2)$, constant is optimal

$$G$$
 group, $\lambda_g \colon \ell^2(G) \to \ell^2(G)$, $\lambda_g \delta_h = \delta_{gh}$, group von Neumann algebra $L(G) = \{\lambda_g \mid g \in G\}''$, $\tau(x) = \langle x \delta_e, \delta_e \rangle$

Now $G=\mathbb{F}_d$, $\ell(g)$ =combinatorial distance of g from e in Cayley graph $\leadsto T_t^{(d)}\lambda_g=e^{-t\ell(g)}\lambda_g$ is QMS on $L(\mathbb{F}_d)$

Theorem (W., Zhang '20, Brannan, Gao, Junge '20) $(T_t^{(d)})$ satisfies ${\rm CLSI}(2)$, constant is optimal

Corollary

$$(e^{-t(-\Delta)^{1/2}})$$
 on $L^{\infty}(\mathbb{T}^d)$ satisfies $\mathrm{CLSI}(2)$.

Prove $\mathrm{CGE}(1,\infty)$ for $(T_t^{(d)})$:

Prove $CGE(1, \infty)$ for $(T_t^{(d)})$:

• Use free product structure to reduce to $G = \mathbb{Z}$:

$$T_t^{(d)} = \underbrace{T_t^{(1)} * \cdots * T_t^{(1)}}_{d \text{ times}}$$

Prove $CGE(1, \infty)$ for $(T_t^{(d)})$:

• Use free product structure to reduce to $G = \mathbb{Z}$:

$$T_t^{(d)} = \underbrace{T_t^{(1)} * \cdots * T_t^{(1)}}_{d \text{ times}}$$

ullet Use amenability of ${\mathbb Z}$ to reduce to finite-dimensional case:

$$L(\mathbb{Z}) \hookrightarrow \prod_{n,\mathcal{U}} B(\ell^2(\{-n,\ldots,n\}))$$

Prove $CGE(1, \infty)$ for $(T_t^{(d)})$:

• Use free product structure to reduce to $G = \mathbb{Z}$:

$$T_t^{(d)} = \underbrace{T_t^{(1)} * \cdots * T_t^{(1)}}_{d \text{ times}}$$

• Use amenability of $\mathbb Z$ to reduce to finite-dimensional case:

$$L(\mathbb{Z}) \hookrightarrow \prod_{n,\mathcal{U}} B(\ell^2(\{-n,\ldots,n\}))$$

• Use Lindblad form of generator on $M_{2n+1}(\mathbb{C})$:

$$\mathcal{L} = \sum_{j} [p_j, [p_j, \cdot]]$$

with commuting projections p_j (exploits cocycle for ℓ)

• Does $GE(K, \infty)$ imply $CGE(K, \infty)$, at least for classical Markov semigroups?

- Does $GE(K, \infty)$ imply $CGE(K, \infty)$, at least for classical Markov semigroups?
- Can one weaken the assumption of tracial symmetry?

- Does $\operatorname{GE}(K,\infty)$ imply $\operatorname{CGE}(K,\infty)$, at least for classical Markov semigroups?
- Can one weaken the assumption of tracial symmetry?
- Does every QMS on a finite-dimensional von Neumann algebra satisfy $GE(K, \infty)$ for some $K \in \mathbb{R}$?

- Does $\operatorname{GE}(K,\infty)$ imply $\operatorname{CGE}(K,\infty)$, at least for classical Markov semigroups?
- Can one weaken the assumption of tracial symmetry?
- Does every QMS on a finite-dimensional von Neumann algebra satisfy $GE(K,\infty)$ for some $K\in\mathbb{R}$?
- Is there a finite-dimensional improvement GE(K, N)?