

Quasi-relative entropy: the closest separable state and reversed Pinsker inequality

Anna Vershynina

Department of Mathematics, University of Houston

Entropy Inequalities, Quantum Information and Quantum Physics February 9, 2021

Outline of the talk

- Quasi-relative entropy (*f*-divergence)
- Pinsker and reversed Pinsker inequalities
- Reversed Pinsker for Tsallis entropy
- Reversed Pinsker for quasi-relative entropy
- The 'closest' separable state
- Future Research

The quantum relative entropy between two states ρ and σ is as follows

 $S(\rho \| \sigma) = \operatorname{Tr} \{ \rho(\log \rho - \log \sigma) \}$

The quantum relative entropy between two states ρ and σ is as follows

$$S(\rho \| \sigma) = \operatorname{Tr} \{ \rho(\log \rho - \log \sigma) \}$$

Positivity of quantum relative entropy

 $S(\rho \| \sigma) \ge 0$

The quantum relative entropy between two states ρ and σ is as follows

$$S(\rho \| \sigma) = \operatorname{Tr} \{ \rho(\log \rho - \log \sigma) \}$$

Positivity of quantum relative entropy

 $S(\rho \| \sigma) \ge 0$

Infinite Quantum Relative Entropy

 $S(\rho \| \sigma) = +\infty$ when $\operatorname{supp}(\rho) \cap \operatorname{supp}(\sigma)^{\perp} \neq \emptyset$

The quantum relative entropy between two states ρ and σ is as follows

$$S(\rho \| \sigma) = \operatorname{Tr} \{ \rho(\log \rho - \log \sigma) \}$$

Positivity of quantum relative entropy

 $S(\rho \| \sigma) \ge 0$

Infinite Quantum Relative Entropy

 $S(\rho \| \sigma) = +\infty$

when $\operatorname{supp}(\rho) \cap \operatorname{supp}(\sigma)^{\perp} \neq \emptyset$

Relative entropy is invariant under unitary operations

 $S(\rho \| \sigma) = S(U\rho U^* \| U\sigma U^*)$

The quantum relative entropy between two states ρ and σ is as follows

$$S(\rho \| \sigma) = \operatorname{Tr} \{ \rho(\log \rho - \log \sigma) \}$$

Positivity of quantum relative entropy

 $S(\rho \| \sigma) \ge 0$

Infinite Quantum Relative Entropy

 $S(\rho \| \sigma) = +\infty$

when $\operatorname{supp}(\rho) \cap \operatorname{supp}(\sigma)^{\perp} \neq \emptyset$

Relative entropy is invariant under unitary operations

$$S(\rho \| \sigma) = S(U\rho U^* \| U\sigma U^*)$$

Additivity of relative entropy

 $S(\rho_1 \otimes \rho_2 || \sigma_1 \otimes \sigma_2) = S(\rho_1 || \sigma_1) + S(\rho_2 || \sigma_2)$

The quantum relative entropy between two states ρ and σ is as follows

$$S(\rho \| \sigma) = \operatorname{Tr} \{ \rho(\log \rho - \log \sigma) \}$$

Positivity of quantum relative entropy

 $S(\rho \| \sigma) \ge 0$

Infinite Quantum Relative Entropy

 $S(\rho \| \sigma) = +\infty$ when $\operatorname{supp}(\rho) \cap \operatorname{supp}(\sigma)^{\perp} \neq \emptyset$

Monotonicity of Quantum Relative Entropy (Data Processing Inequality) $S(\rho \| \sigma) \geq S(\mathcal{N}(\rho) \| \mathcal{N}(\sigma))$

Completely Positive Trace Preserving (CPTP) map

The quantum relative entropy between two states ρ and σ is as follows

$$S(\rho \| \sigma) = \operatorname{Tr} \{ \rho(\log \rho - \log \sigma) \}$$

Positivity of quantum relative entropy

 $S(\rho \| \sigma) \ge 0$

Infinite Quantum Relative Entropy

 $S(\rho \| \sigma) = +\infty$ when $\operatorname{supp}(\rho) \cap \operatorname{supp}(\sigma)^{\perp} \neq \emptyset$

Monotonicity of Quantum Relative Entropy (Data Processing Inequality) $S(\rho \| \sigma) \geq S(\mathcal{N}(\rho) \| \mathcal{N}(\sigma))$

In particular,

$$S(\rho^{AB} \| \sigma^{AB}) \ge S(\rho^A \| \sigma^A)$$

Strong Sub-additivity of quantum entropy

For a tri-partite state ρ^{ABC}

 $S(\rho^{ABC}) + S(\rho^B) \le S(\rho^{AB}) + S(\rho^{BC})$

Strong Sub-additivity of quantum entropy

For a tri-partite state ρ^{ABC} $S(\rho^{ABC}) + S(\rho^B) \leq S(\rho^{AB}) + S(\rho^{BC})$

Joint Convexity of Quantum Relative Entropy

For
$$\rho = \sum_{j} p_{j} \rho_{j}$$
 and $\sigma = \sum_{j} p_{j} \sigma_{j}$
$$S(\rho \| \sigma) \leq \sum_{j} p_{j} S(\rho_{j} \| \sigma_{j})$$

Strong Sub-additivity of quantum entropy

For a tri-partite state ρ^{ABC} $S(\rho^{ABC}) + S(\rho^B) \leq S(\rho^{AB}) + S(\rho^{BC})$

Joint Convexity of Quantum Relative Entropy For $\rho = \sum_{j} p_{j} \rho_{j}$ and $\sigma = \sum_{j} p_{j} \sigma_{j}$ $S(\rho \| \sigma) \leq \sum_{j} p_{j} S(\rho_{j} \| \sigma_{j})$

Monotonicity of Quantum Relative Entropy

 $S(\rho \| \sigma) \ge S(\mathcal{N}(\rho) \| \mathcal{N}(\sigma))$

$$S(\rho^{AB} \| \sigma^{AB}) \ge S(\rho^A \| \sigma^A)$$

Strong Sub-additivity of quantum entropy For a tri-partite state ρ^{ABC} $S(\rho^{ABC}) + S(\rho^B) \leq S(\rho^{AB}) + S(\rho^{BC})$ Joint Convexity of Quantum Relative Entropy For $\rho = \sum_{j} p_{j} \rho_{j}$ and $\sigma = \sum_{j} p_{j} \sigma_{j}$ $S(\rho \| \sigma) \leq \sum_{j} p_j S(\rho_j \| \sigma_j)$ all "equivalent" Monotonicity of Quantum Relative Entropy $S(\rho \| \sigma) > S(\mathcal{N}(\rho) \| \mathcal{N}(\sigma))$ Monotonicity under partial traces $S(\rho^{AB} \| \sigma^{AB}) \ge S(\rho^A \| \sigma^A)$ e.g. Monotonicity under partial traces holds for all states iff Strong sub-additivity relation holds for all states

Stinespring factorization theorem

 $\mathcal{N}(\rho) = \mathrm{Tr}_E(U^*(\rho \otimes 1_E)U)$

Monotonicity of Quantum Relative Entropy

$$S(\rho \| \sigma) \ge S(\mathcal{N}(\rho) \| \mathcal{N}(\sigma))$$

$$S(\rho^{AB} \| \sigma^{AB}) \ge S(\rho^A \| \sigma^A) \checkmark$$

Stinespring factorization theorem

$$\mathcal{N}(\rho) = \operatorname{Tr}_E(\underbrace{U^*(\rho \otimes 1_E)U}_{\rho^{AE}})$$

Monotonicity of Quantum Relative Entropy

$$S(\rho \| \sigma) \ge S(\mathcal{N}(\rho) \| \mathcal{N}(\sigma))$$

$$S(\rho^{AB} \| \sigma^{AB}) \ge S(\rho^A \| \sigma^A) \checkmark$$

Stinespring factorization theorem

$$\mathcal{N}(\rho) = \operatorname{Tr}_E(\underbrace{U^*(\rho \otimes 1_E)U}_{\rho^{AE}})$$

Monotonicity of Quantum Relative Entropy

$$S(\rho \| \sigma) \ge S(\mathcal{N}(\rho) \| \mathcal{N}(\sigma))$$

$$S(\rho^{AB} \| \sigma^{AB}) \ge S(\rho^A \| \sigma^A) \checkmark$$

Stinespring factorization theorem

 $\mathcal{N}(\rho) = \mathrm{Tr}_E(U^*(\rho \otimes 1_E)U)$

Monotonicity of Quantum Relative Entropy

$$S(\rho \| \sigma) \ge S(\mathcal{N}(\rho) \| \mathcal{N}(\sigma))$$

Monotonicity under partial traces

$$S(\rho^{AB} \| \sigma^{AB}) \ge S(\rho^A \| \sigma^A)$$

see "Strong Subadditivity of Quantum Entropy" on Wikipedia

For an operator A, trace norm is

$$||A||_1 = \operatorname{Tr}\{\sqrt{A^{\dagger}A}\}$$

For an operator A, trace norm is

$$||A||_1 = \operatorname{Tr}\{\sqrt{A^{\dagger}A}\}$$

For Hermitian operator $A = \sum_j \lambda_j |j\rangle \langle j|$ spectral decomposition

$$||A||_1 = \sum_j |\lambda_j|$$

For an operator A, trace norm is

$$||A||_1 = \operatorname{Tr}\{\sqrt{A^{\dagger}A}\}$$

For Hermitian operator $A = \sum_j \lambda_j |j\rangle \langle j|$ spectral decomposition

 $||A||_1 = \sum_j |\lambda_j|$

Unitary invariance

 $\|UAU^*\|_1 = \|A\|_1$

For an operator A, trace norm is

$$||A||_1 = \operatorname{Tr}\{\sqrt{A^{\dagger}A}\}$$

For Hermitian operator $A = \sum_{j} \lambda_{j} |j\rangle \langle j|$ spectral decomposition

 $||A||_1 = \sum_j |\lambda_j|$

Unitary invariance

$$||UAU^*||_1 = ||A||_1$$

For two quantum states ρ , σ , trace distance

$$\|\rho - \sigma\|_1 = \max_{-I \le \Lambda \le I} \operatorname{Tr}\{\Lambda(\rho - \sigma)\}\$$

Triangle Inequality

$$\|\rho - \sigma\|_{1} \le \|\rho - \tau\|_{1} + \|\tau - \sigma\|_{1}$$

For two quantum states ρ , σ , trace distance

$$\|\rho - \sigma\|_1 = \max_{-I \le \Lambda \le I} \operatorname{Tr}\{\Lambda(\rho - \sigma)\}\$$

Triangle Inequality $\|\rho - \sigma\|_1 \le \|\rho - \tau\|_1 + \|\tau - \sigma\|_1$

Monotonicity (Data Processing inequality)

$$\|\rho - \sigma\|_1 \ge \|\mathcal{N}(\rho) - \mathcal{N}(\sigma)\|_1$$

$$\smile \quad \mathsf{CPTP map}$$

In particular,

$$\|\rho^{AB} - \sigma^{AB}\|_1 \ge \|\rho^A - \sigma^A\|_1$$

For two quantum states ρ , σ , trace distance

$$\|\rho - \sigma\|_1 = \max_{-I \le \Lambda \le I} \operatorname{Tr}\{\Lambda(\rho - \sigma)\}\$$

Let $f: (0, \infty) \to \mathbb{R}$ be operator monotone decreasing, and f(1) = 0, *quasi-relative entropy*, or *f-divergence* is

 $S_f(\rho \| \sigma) = \text{Tr}\{f(\Delta_{\sigma,\rho})\rho\}$

Let $f: (0, \infty) \to \mathbb{R}$ be operator monotone decreasing, and f(1) = 0, *quasi-relative entropy*, or *f-divergence* is

$$S_f(\rho \| \sigma) = \operatorname{Tr} \{ f(\Delta_{\sigma,\rho}) \rho \} \qquad \Delta_{A,B}(X) = A X B^{-1}$$

Let $f: (0, \infty) \to \mathbb{R}$ be operator monotone decreasing, and f(1) = 0, *quasi-relative entropy*, or *f-divergence* is

$$S_f(\rho \| \sigma) = \operatorname{Tr} \{ f(\Delta_{\sigma,\rho}) \rho \} \qquad \Delta_{A,B}(X) = A X B^{-1}$$

Spectral decompositions $\rho = \sum_j \lambda_j |\psi_j\rangle \langle \psi_j |$, and $\sigma = \sum_k \mu_k |\phi_k\rangle \langle \phi_k |$

Let $f: (0, \infty) \to \mathbb{R}$ be operator monotone decreasing, and f(1) = 0, *quasi-relative entropy*, or *f-divergence* is

$$S_f(\rho \| \sigma) = \operatorname{Tr} \{ f(\Delta_{\sigma,\rho}) \rho \} \qquad \Delta_{A,B}(X) = A X B^{-1}$$

Spectral decompositions $\rho = \sum_{j} \lambda_{j} |\psi_{j}\rangle \langle \psi_{j}|$, and $\sigma = \sum_{k} \mu_{k} |\phi_{k}\rangle \langle \phi_{k}|$ $S_{f}(\rho ||\sigma) = \sum_{j,k} \lambda_{j} f\left(\frac{\mu_{k}}{\lambda_{j}}\right) |\langle \phi_{k} ||\psi_{j}\rangle|^{2}$

For $f(x) = -\log x$, the quasi-relative entropy becomes the relative entropy

$$S_{-\log}(\rho \| \sigma) = S(\rho \| \sigma) = \operatorname{Tr}(\rho \log \rho - \rho \log \sigma)$$

For $q \in (0,2)$, the function $f_q(x) = \frac{1}{1-q}(1-x^{1-q})$ gives *Tsallis q-entropy*

$$S_q(\rho \| \sigma) = \frac{1}{1-q} \left(1 - \operatorname{Tr}(\rho^q \sigma^{1-q}) \right)$$

For $q \in (0,2)$, the function $f_q(x) = \frac{1}{1-q}(1-x^{1-q})$ gives *Tsallis q-entropy*

$$S_q(\rho \| \sigma) = \frac{1}{1-q} \left(1 - \operatorname{Tr}(\rho^q \sigma^{1-q}) \right)$$

is used in entanglement and thermodynamics, nonextensive statistics, optical lattice theory, particle charging, statistical mechanics, and others - see "Quantum Entropies" on Scholarpedia

For $\alpha \in (0,1)$, the function $f_{\alpha}(x) = 1 - x^{1-\alpha}$ gives

$$S_{\alpha}(\rho \| \sigma) = 1 - \operatorname{Tr}(\rho^{\alpha} \sigma^{1-\alpha})$$

which defines Renyi relative entropy

$$S_{\alpha}^{R}(\rho \| \sigma) = \frac{1}{\alpha - 1} \log \operatorname{Tr}(\rho^{\alpha} \sigma^{1 - \alpha}) = \frac{1}{\alpha - 1} \log(1 - S_{\alpha}(\rho \| \sigma)))$$

For $\alpha \in (0,1)$, the function $f_{\alpha}(x) = 1 - x^{1-\alpha}$ gives

$$S_{\alpha}(\rho \| \sigma) = 1 - \operatorname{Tr}(\rho^{\alpha} \sigma^{1-\alpha})$$

which defines Renyi relative entropy

$$S_{\alpha}^{R}(\rho \| \sigma) = \frac{1}{\alpha - 1} \log \operatorname{Tr}(\rho^{\alpha} \sigma^{1 - \alpha}) = \frac{1}{\alpha - 1} \log(1 - S_{\alpha}(\rho \| \sigma)))$$

is used in hypothesis testing (Csiszar '95); entanglement-assisted LOCC conversion; strong converse problem in quantum hypothesis testing (Mosonyi, Ogawa, '15); strong converse problem for the classical capacity of a quantum channel (Wilde et. al., '14)

Unitary invariance

 $S_f(U\rho U^* \| U\sigma U^*) = S_f(\rho \| \sigma)$

Unitary invariance

$$S_f(U\rho U^* \| U\sigma U^*) = S_f(\rho \| \sigma)$$

Positivity

 $S_f(\rho \| \sigma) \ge 0$ and $S_f(\rho \| \sigma) = 0$ if and only if $\rho = \sigma$

Data Processing Inequality

Petz '85 $S_f(\rho \| \sigma) \geq S_f(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)) \qquad \qquad \text{for CPTP map } \mathcal{N}$

Data Processing Inequality

Petz '85 $S_f(\rho \| \sigma) \geq S_f(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)) \qquad \qquad \text{for CPTP map } \mathcal{N}$

Trace-distance

$$\|\rho - \sigma\|_1 \ge \|\mathcal{N}(\rho) - \mathcal{N}(\sigma)\|_1$$

Relative entropy vs Trace distance

Pinsker inequality

$$\frac{1}{2} \|\rho - \sigma\|_1^2 \le S(\rho \|\sigma)$$
Relative entropy vs Trace distance

Pinsker inequality

$$\frac{1}{2} \|\rho - \sigma\|_1^2 \le S(\rho \|\sigma)$$

Pinsker inequality for quasi-relative entropy

By Hiai and Mosonyi '16

$$\frac{f''(1)}{2} \|\rho - \sigma\|_1^2 \le S_f(\rho \|\sigma)$$

Relative entropy vs Trace distance

Pinsker inequality

$$\frac{1}{2} \|\rho - \sigma\|_1^2 \le S(\rho \|\sigma)$$

Pinsker inequality for quasi-relative entropy

By Hiai and Mosonyi '16

$$\frac{f''(1)}{2} \|\rho - \sigma\|_1^2 \le S_f(\rho \|\sigma)$$

 $f(x) = -\log x$ f''(1) = 1

Relative entropy vs Trace distance

Pinsker inequality

$$\frac{1}{2} \|\rho - \sigma\|_1^2 \le S(\rho \|\sigma)$$
$$\ge ?$$

Pinsker inequality for quasi-relative entropy

By Hiai and Mosonyi '16

$$\frac{f''(1)}{2} \|\rho - \sigma\|_1^2 \le S_f(\rho \|\sigma)$$

 $f(x) = -\log x$ f''(1) = 1

Reversed Pinsker inequality

By Audenaert, Eisert '11

$$S(\rho \| \sigma) \le (\alpha_{\sigma} + T) \log(1 + T/\alpha_{\sigma}) - \alpha_{\rho} \log(1 + T/\alpha_{\rho})$$

 $T = \frac{1}{2} \| \rho - \sigma \|_1^2$ α_{ω} is the minimal non-zero eigenvalue of the state ω

For $q \in (0, 2)$, the *Tsallis* q-entropy is

$$S_q(\rho \| \sigma) = \frac{1}{1-q} \left(1 - \operatorname{Tr}(\rho^q \sigma^{1-q}) \right)$$

For $q \in (0, 2)$, the *Tsallis* q-entropy is

$$S_q(\rho \| \sigma) = \frac{1}{1-q} \left(1 - \operatorname{Tr}(\rho^q \sigma^{1-q}) \right)$$

 λ_{ρ} is the maximal eigenvalue of ρ , and $\alpha = \min\{\alpha_{\rho}, \alpha_{\sigma}\}$, α_{ω} is the minimal non-zero eigenvalue of ω

For $q \in (0, 2)$, the *Tsallis* q-entropy is

$$S_q(\rho \| \sigma) = \frac{1}{1-q} \left(1 - \operatorname{Tr}(\rho^q \sigma^{1-q}) \right)$$

 λ_{ρ} is the maximal eigenvalue of ρ , and $\alpha = \min\{\alpha_{\rho}, \alpha_{\sigma}\}$, α_{ω} is the minimal non-zero eigenvalue of ω

Rastegin '11

 $1 < q \leq 2$

$$S_q(\rho \| \sigma) \le \frac{1}{q-1} \frac{\lambda_{\rho}^q}{\alpha^q} \| \rho - \sigma \|_1$$

For $q \in (0, 2)$, the *Tsallis* q-entropy is

$$S_q(\rho \| \sigma) = \frac{1}{1-q} \left(1 - \operatorname{Tr}(\rho^q \sigma^{1-q}) \right)$$

 λ_{ρ} is the maximal eigenvalue of ρ , and $\alpha = \min\{\alpha_{\rho}, \alpha_{\sigma}\}$, α_{ω} is the minimal non-zero eigenvalue of ω

Rastegin '11

 $1 < q \le 2 \qquad \qquad 0 < q < 1$

$$S_q(\rho \| \sigma) \le \frac{1}{q-1} \frac{\lambda_{\rho}^q}{\alpha^q} \| \rho - \sigma \|_1$$

$$S_q(\rho \| \sigma) \le \frac{1}{1-q} \frac{\lambda_{\rho}^q}{\alpha_{\sigma}^q} \| \rho - \sigma \|_1$$

Reversed Pinsker for quasi-relative entropy

Theorem (V. '19)

Let f any operator monotone decreasing function. Let states ρ and σ be either 2-dimensional qubit states or classical states. Assume one of two conditions: 1) ρ is full rank; 2) $a_f = 0$. Then the following holds

$$S_f(\rho \| \sigma) \le \|\rho - \sigma\|_1 \left[\frac{\lambda_\rho}{\lambda_\rho - \alpha_\sigma} f(\lambda_\rho^{-1} \alpha_\sigma) - a_f \right]$$

Reversed Pinsker for quasi-relative entropy

Theorem (V. '19)

Let f any operator monotone decreasing function. Let states ρ and σ be either 2-dimensional qubit states or classical states. Assume one of two conditions: 1) ρ is full rank; 2) $a_f = 0$. Then the following holds

$$S_f(\rho \| \sigma) \le \| \rho - \sigma \|_1 \left[\frac{\lambda_\rho}{\lambda_\rho - \alpha_\sigma} f(\lambda_\rho^{-1} \alpha_\sigma) - a_f \right]$$

 $\lambda_{\rho} \in (0,1]$ is the largest eigenvalue of ρ

 $\alpha_{\sigma} \in (0,1]$ is the smallest eigenvalue of σ

$$a_f = -\lim_{y \uparrow \infty} \frac{f(iy)}{iy}$$

Theorem

In any finite dimensions,

$$S(\rho \| \sigma) \le \| \rho - \sigma \|_1 \lambda_\rho \frac{\log(\alpha_\rho) - \log(\alpha_\sigma)}{\alpha_\rho - \alpha_\sigma} \le \frac{\lambda_\rho}{\alpha} \| \rho - \sigma \|_1$$

Theorem

In any finite dimensions,

$$S(\rho \| \sigma) \le \| \rho - \sigma \|_1 \lambda_\rho \frac{\log(\alpha_\rho) - \log(\alpha_\sigma)}{\alpha_\rho - \alpha_\sigma} \le \frac{\lambda_\rho}{\alpha} \| \rho - \sigma \|_1$$

For qubits, taking $f(x) = -\log(x)$, we have a slightly improved bound

$$S(\rho \| \sigma) \le \| \rho - \sigma \|_1 \lambda_\rho \frac{\log \lambda_\rho - \log \alpha_\sigma}{\lambda_\rho - \alpha_\sigma} \le \frac{\lambda_\rho}{\alpha_\sigma} \| \rho - \sigma \|_1$$

Theorem

In any finite dimensions,

$$S(\rho \| \sigma) \le \| \rho - \sigma \|_1 \lambda_\rho \frac{\log(\alpha_\rho) - \log(\alpha_\sigma)}{\alpha_\rho - \alpha_\sigma} \le \frac{\lambda_\rho}{\alpha} \| \rho - \sigma \|_1$$

For qubits, taking $f(x) = -\log(x)$, we have a slightly improved bound

$$S(\rho \| \sigma) \le \| \rho - \sigma \|_1 \lambda_\rho \frac{\log \lambda_\rho - \log \alpha_\sigma}{\lambda_\rho - \alpha_\sigma} \le \frac{\lambda_\rho}{\alpha_\sigma} \| \rho - \sigma \|_1$$

Before,

$$S(\rho \| \sigma) \le (\alpha_{\sigma} + T) \log(1 + T/\alpha_{\sigma}) - \alpha_{\rho} \log(1 + T/\alpha_{\rho})$$

 $T = \frac{1}{2} \|\rho - \sigma\|_1^2$

In any dimension larger than four there are states for which our bound is better.

q > 1, the function $f(x) = x^q$ is not operator monotone

q > 1, the function $f(x) = x^q$ is not operator monotone

But the proof by Rastegin '11, can be improved to have

$$S_q(\rho \| \sigma) \le \frac{\lambda_{\rho}^q}{\alpha^q} \| \rho - \sigma \|_1$$

q > 1, the function $f(x) = x^q$ is not operator monotone

But the proof by Rastegin '11, can be improved to have

$$S_q(\rho \| \sigma) \le \frac{\lambda_{\rho}^q}{\alpha^q} \| \rho - \sigma \|_1 \qquad \text{ original } S_q(\rho \| \sigma) \le \frac{1}{q-1} \frac{\lambda_{\rho}^q}{\alpha^q} \| \rho - \sigma \|_1$$

q > 1, the function $f(x) = x^q$ is not operator monotone

But the proof by Rastegin '11, can be improved to have

$$S_{q}(\rho \| \sigma) \leq \frac{\lambda_{\rho}^{q}}{\alpha^{q}} \| \rho - \sigma \|_{1} \qquad \text{original } S_{q}(\rho \| \sigma) \leq \frac{1}{q-1} \frac{\lambda_{\rho}^{q}}{\alpha^{q}} \| \rho - \sigma \|_{1}$$
$$\geq 1 \text{ for } q \in (1, 2]$$

Reversed Pinsker for Tsallis relative entropy For $q \in (0, 1)$

$$S_q(\rho \| \sigma) \le \frac{1}{1-q} \| \rho - \sigma \|_1 \lambda_\rho^q \frac{\alpha_\rho^{1-q} - \alpha_\sigma^{1-q}}{\alpha_\rho - \alpha_\sigma} \le \| \rho - \sigma \|_1 \frac{\lambda_\rho^q}{\alpha^q}$$

Reversed Pinsker for Tsallis relative entropy For $q \in (0, 1)$

$$S_q(\rho \| \sigma) \le \frac{1}{1-q} \| \rho - \sigma \|_1 \lambda_\rho^q \frac{\alpha_\rho^{1-q} - \alpha_\sigma^{1-q}}{\alpha_\rho - \alpha_\sigma} \le \| \rho - \sigma \|_1 \frac{\lambda_\rho^q}{\alpha^q}$$

For qubits

$$S_q(\rho \| \sigma) \le \frac{1}{1-q} \| \rho - \sigma \|_1 \lambda_\rho^q \frac{\lambda_\rho^{1-q} - \alpha_\sigma^{1-q}}{\lambda_\rho - \alpha_\sigma} \le \| \rho - \sigma \|_1 \frac{\lambda_\rho^q}{\alpha_\sigma^q}$$

Reversed Pinsker for Tsallis relative entropy For $q \in (0, 1)$

$$S_q(\rho \| \sigma) \le \frac{1}{1-q} \| \rho - \sigma \|_1 \lambda_\rho^q \frac{\alpha_\rho^{1-q} - \alpha_\sigma^{1-q}}{\alpha_\rho - \alpha_\sigma} \le \| \rho - \sigma \|_1 \frac{\lambda_\rho^q}{\alpha^q}$$

For qubits

$$S_q(\rho \| \sigma) \leq \frac{1}{1-q} \| \rho - \sigma \|_1 \lambda_\rho^q \frac{\lambda_\rho^{1-q} - \alpha_\sigma^{1-q}}{\lambda_\rho - \alpha_\sigma} \leq \| \rho - \sigma \|_1 \frac{\lambda_\rho^q}{\alpha_\sigma^q} \,.$$

original
$$S_q(\rho \| \sigma) \leq \frac{1}{1-q} \| \rho - \sigma \|_1 \frac{\lambda_{\rho}^q}{\alpha_{\sigma}^q}$$

 $\geq 1 \text{ for } q \in (0,1)$

Every operator monotone decreasing function f has the following integral representation (Donoghue '74)

$$f(x) = -a_f x - b_f + \int_0^\infty \left(\frac{1}{t+x} - \frac{t}{t^2+1}\right) d\mu_f(t)$$

here $a_f := -\lim_{y \uparrow \infty} \frac{f(iy)}{iy} \ge 0$, $b_f := -\operatorname{Re} f(i) \in \mathbb{R}$ and μ is a positive measure on $(0, \infty)$ s.t.

$$\int_0^\infty \frac{1}{t^2 + 1} \mathrm{d}\mu_f(t) < \infty$$

and $\mu_f(x_1) - \mu_f(x_0) = -\lim_{y \downarrow 0} \frac{1}{\pi} \int_{x_0}^{x_1} \operatorname{Im} f(-x + iy) \, \mathrm{d}x$

Every operator monotone decreasing function f has the following integral representation (Donoghue '74)

$$f(x) = -a_f x - b_f + \int_0^\infty \left(\frac{1}{t+x} - \frac{t}{t^2+1}\right) d\mu_f(t)$$

here $a_f := -\lim_{y \uparrow \infty} \frac{f(iy)}{iy} \ge 0$, $b_f := -\operatorname{Re} f(i) \in \mathbb{R}$ and μ is a positive measure on $(0, \infty)$ s.t.

$$\int_0^\infty \frac{1}{t^2 + 1} \mathrm{d}\mu_f(t) < \infty$$

and $\mu_f(x_1) - \mu_f(x_0) = -\lim_{y \downarrow 0} \frac{1}{\pi} \int_{x_0}^{x_1} \operatorname{Im} f(-x + iy) \, \mathrm{d} x$ If f(1) = 0, then

$$f(x) = a_f(1-x) + \int_0^\infty \left(\frac{1}{t+x} - \frac{1}{t+1}\right) d\mu_f(t)$$

$S_f(\rho \| \sigma) = \operatorname{Tr}\{(f(\Delta_{\sigma,\rho}) - f(\Delta_{\rho,\rho}))\rho\}$

 $S_f(\rho \| \sigma) = \operatorname{Tr}\{(f(\Delta_{\sigma,\rho}) - f(\Delta_{\rho,\rho}))\rho\}$ = 0

$$\begin{split} S_f(\rho \| \sigma) &= \operatorname{Tr}\{(f(\Delta_{\sigma,\rho}) - f(\Delta_{\rho,\rho}))\rho\} & \text{using integral representation} \\ &= \int_0^\infty d\mu_f(t) \,\operatorname{Tr}\{\left((tI + \Delta_{\sigma,\rho})^{-1} - (tI + \Delta_{\rho,\rho})^{-1}\right)\rho\} \end{split}$$

$$S_{f}(\rho \| \sigma) = \operatorname{Tr}\{(f(\Delta_{\sigma,\rho}) - f(\Delta_{\rho,\rho}))\rho\}$$

= $\int_{0}^{\infty} d\mu_{f}(t) \operatorname{Tr}\{(tI + \Delta_{\sigma,\rho})^{-1} - (tI + \Delta_{\rho,\rho})^{-1})\rho\}$
using $A^{-1} - B^{-1} = A^{-1}(B - A)B^{-1}$ and $\Delta_{A,B} = L_{A}R_{B^{-1}}$
= $\int_{0}^{\infty} d\mu_{f}(t) \operatorname{Tr}\{(tI + \Delta_{\sigma,\rho})^{-1}(L_{\rho} - L_{\sigma})(tI + \Delta_{\rho,\rho})^{-1})(I)\}$

$$S_f(\rho \| \sigma) = \operatorname{Tr} \{ (f(\Delta_{\sigma,\rho}) - f(\Delta_{\rho,\rho}))\rho \}$$
$$= \int_0^\infty d\mu_f(t) \operatorname{Tr} \{ ((tI + \Delta_{\sigma,\rho})^{-1} - (tI + \Delta_{\rho,\rho})^{-1}) \rho \}$$

$$= \int_0^\infty d\mu_f(t) \operatorname{Tr}\left\{ \left((tI + \Delta_{\sigma,\rho})^{-1} (L_\rho - L_\sigma) (tI + \Delta_{\rho,\rho})^{-1} \right) (I) \right\}$$

$$= \int_0^\infty d\mu_f(t) \ (t+1)^{-1} \text{Tr}\{D_t(\rho-\sigma)\}$$

where $D_t = \sum_{jk} \left(t + \frac{\mu_k}{\lambda_j} \right)^{-1} \langle \psi_j || \phi_k \rangle |\psi_j \rangle \langle \phi_k |$, using spectral decomposition of ρ , σ

$$\rho = \sum_{j} \lambda_{j} |\psi_{j}\rangle \langle \psi_{j}|, \quad \sigma = \sum_{k} \mu_{k} |\phi_{k}\rangle \langle \phi_{k}|$$

Lemma For orthogonal bases $\{|\psi_j\rangle\}$ and $\{|\phi_k\rangle\}$, let

 $D = \sum_{kj} C_{kj} \langle \psi_j || \phi_k \rangle |\psi_j \rangle \langle \phi_k |$

such that $0 \le C_{kj} \le C$ for all k, j and some C. Consider two cases:

• Let X be a diagonal matrix in either basis: without loss of generality let $X = \sum_k x_k |\phi_k\rangle \langle \phi_k|$

Lemma For orthogonal bases $\{|\psi_j\rangle\}$ and $\{|\phi_k\rangle\}$, let

 $D = \sum_{kj} C_{kj} \langle \psi_j || \phi_k \rangle |\psi_j \rangle \langle \phi_k |$

such that $0 \le C_{kj} \le C$ for all k, j and some C. Consider two cases:

• Let X be a diagonal matrix in either basis: without loss of generality let $X = \sum_k x_k |\phi_k\rangle \langle \phi_k|$

• Let X be a 2×2 Hermitian traceless matrix, i.e. $X^* = X$ and $\operatorname{Tr}(X) = 0$.

Lemma For orthogonal bases $\{|\psi_j\rangle\}$ and $\{|\phi_k\rangle\}$, let

 $D = \sum_{kj} C_{kj} \langle \psi_j || \phi_k \rangle |\psi_j \rangle \langle \phi_k |$

such that $0 \le C_{kj} \le C$ for all k, j and some C. Consider two cases:

• Let X be a diagonal matrix in either basis: without loss of generality let $X = \sum_k x_k |\phi_k\rangle \langle \phi_k|$

• Let X be a 2×2 Hermitian traceless matrix, i.e. $X^* = X$ and $\operatorname{Tr}(X) = 0$.

In both cases, $|\operatorname{Tr}(DX)| \leq C ||X||_1$

Lemma For orthogonal bases $\{|\psi_j\rangle\}$ and $\{|\phi_k\rangle\}$, let

 $D = \sum_{kj} C_{kj} \langle \psi_j || \phi_k \rangle |\psi_j \rangle \langle \phi_k |$

such that $0 \le C_{kj} \le C$ for all k, j and some C. Consider two cases:

• Let X be a diagonal matrix in either basis: without loss of generality let $X = \sum_k x_k |\phi_k\rangle \langle \phi_k|$

• Let X be a 2×2 Hermitian traceless matrix, i.e. $X^* = X$ and Tr(X) = 0.

In both cases, $|\operatorname{Tr}(DX)| \leq C ||X||_1$

We have

$$S_f(\rho \| \sigma) = \int_0^\infty d\mu_f(t) \ (t+1)^{-1} \text{Tr}\{D_t(\rho - \sigma)\}$$

Lemma For orthogonal bases $\{|\psi_j\rangle\}$ and $\{|\phi_k\rangle\}$, let

 $D = \sum_{kj} C_{kj} \langle \psi_j || \phi_k \rangle |\psi_j \rangle \langle \phi_k |$

such that $0 \le C_{kj} \le C$ for all k, j and some C. Consider two cases:

• Let X be a diagonal matrix in either basis: without loss of generality let $X = \sum_k x_k |\phi_k\rangle \langle \phi_k|$

• Let X be a 2×2 Hermitian traceless matrix, i.e. $X^* = X$ and Tr(X) = 0.

In both cases, $|\operatorname{Tr}(DX)| \leq C ||X||_1$

We have

$$S_f(\rho \| \sigma) = \int_0^\infty d\mu_f(t) \ (t+1)^{-1} \operatorname{Tr} \{ D_t(\rho - \sigma) \}$$
$$\leq (t+\lambda_{\rho}^{-1}\alpha_{\sigma})^{-1} \| \rho - \sigma \|$$

$$S_f(\rho \| \sigma) \le \| \rho - \sigma \|_1 \int_0^\infty \frac{1}{t + \lambda_\rho^{-1} \alpha_\sigma} \cdot \frac{1}{t+1} d\mu_f(t) ,$$

$$S_f(\rho \| \sigma) \le \| \rho - \sigma \|_1 \int_0^\infty \frac{1}{t + \lambda_\rho^{-1} \alpha_\sigma} \cdot \frac{1}{t+1} d\mu_f(t) ,$$

$$= \|\rho - \sigma\|_1 \frac{\lambda_{\rho}}{\lambda_{\rho} - \alpha_{\sigma}} \int_0^\infty \left\{ \frac{1}{t + \lambda_{\rho}^{-1} \alpha_{\sigma}} - \frac{1}{t + 1} \right\} d\mu_f(t)$$

$$S_f(\rho \| \sigma) \le \| \rho - \sigma \|_1 \int_0^\infty \frac{1}{t + \lambda_\rho^{-1} \alpha_\sigma} \cdot \frac{1}{t+1} d\mu_f(t) ,$$

$$= \|\rho - \sigma\|_1 \frac{\lambda_{\rho}}{\lambda_{\rho} - \alpha_{\sigma}} \int_0^\infty \left\{ \frac{1}{t + \lambda_{\rho}^{-1} \alpha_{\sigma}} - \frac{1}{t + 1} \right\} d\mu_f(t)$$

$$= \|\rho - \sigma\|_1 \frac{\lambda_{\rho}}{\lambda_{\rho} - \alpha_{\sigma}} \left[f(\lambda_{\rho}^{-1} \alpha_{\sigma}) - a_f (1 - \lambda_{\rho}^{-1} \alpha_{\sigma}) \right]$$

$$S_f(\rho \| \sigma) \le \| \rho - \sigma \|_1 \int_0^\infty \frac{1}{t + \lambda_\rho^{-1} \alpha_\sigma} \cdot \frac{1}{t+1} d\mu_f(t) ,$$

$$= \|\rho - \sigma\|_1 \frac{\lambda_{\rho}}{\lambda_{\rho} - \alpha_{\sigma}} \int_0^\infty \left\{ \frac{1}{t + \lambda_{\rho}^{-1} \alpha_{\sigma}} - \frac{1}{t + 1} \right\} d\mu_f(t)$$

$$= \|\rho - \sigma\|_1 \frac{\lambda_{\rho}}{\lambda_{\rho} - \alpha_{\sigma}} \left[f(\lambda_{\rho}^{-1} \alpha_{\sigma}) - a_f (1 - \lambda_{\rho}^{-1} \alpha_{\sigma}) \right]$$

п

$$= \|\rho - \sigma\|_1 \left[\frac{\lambda_{\rho}}{\lambda_{\rho} - \alpha_{\sigma}} f(\lambda_{\rho}^{-1} \alpha_{\sigma}) - a_f \right]$$
If ρ and σ are *d*-dimensional states,

$$S_f(\rho \| \sigma) \le \|\rho - \sigma\|_1 \sqrt{d} \left[\frac{\lambda_\rho}{\lambda_\rho - \alpha_\sigma} f(\lambda_\rho^{-1} \alpha_\sigma) - a_f \right]$$

If ρ and σ are d-dimensional states,

$$S_f(\rho \| \sigma) \le \|\rho - \sigma\|_1 \sqrt{d} \left[\frac{\lambda_\rho}{\lambda_\rho - \alpha_\sigma} f(\lambda_\rho^{-1} \alpha_\sigma) - a_f \right]$$

Comes from

 $|\operatorname{Tr}(DX)| \le ||DX||_1 \le ||X||_1 ||D||_\infty \le ||X||_1 ||D||_2$

If ρ and σ are d-dimensional states,

$$S_f(\rho \| \sigma) \le \|\rho - \sigma\|_1 \sqrt{d} \left[\frac{\lambda_\rho}{\lambda_\rho - \alpha_\sigma} f(\lambda_\rho^{-1} \alpha_\sigma) - a_f \right]$$

Comes from

 $|\operatorname{Tr}(DX)| \le ||DX||_1 \le ||X||_1 ||D||_\infty \le ||X||_1 ||D||_2$

from the structure of D,

$$||D||_2^2 = \operatorname{Tr}(D^*D) = \sum_{kj} C_{kj}^2 |\langle \psi_j ||\phi_k \rangle|^2 \le C^2 d$$

If ρ and σ are d-dimensional states,

$$S_f(\rho \| \sigma) \le \|\rho - \sigma\|_1 \sqrt{d} \left[\frac{\lambda_\rho}{\lambda_\rho - \alpha_\sigma} f(\lambda_\rho^{-1} \alpha_\sigma) - a_f \right]$$

Comes from

 $|\operatorname{Tr}(DX)| \le ||DX||_1 \le ||X||_1 ||D||_\infty \le ||X||_1 ||D||_2$

from the structure of D,

$$||D||_2^2 = \operatorname{Tr}(D^*D) = \sum_{kj} C_{kj}^2 |\langle \psi_j ||\phi_k \rangle|^2 \le C^2 d$$

How to get rid of the dimension?

Bipartite state ρ_{AB} can be separable or entangled

Bipartite state ρ_{AB} can be separable or entangled

How much entanglement does a state have?

Bipartite state ρ_{AB} can be separable or entangled

For a pure state $|\Psi\rangle_{AB}$ entanglement is measured by entanglement entropy

$$E(|\Phi\rangle) = S(\rho_A) = -\operatorname{Tr}(\rho_A \log \rho_A)$$

where $\rho_A = \text{Tr}_B |\Psi\rangle \langle \Psi|_{AB}$

Bipartite state ρ_{AB} can be separable or entangled

For a pure state $|\Psi\rangle_{AB}$ entanglement is measured by entanglement entropy

$$E(|\Phi\rangle) = S(\rho_A) = -\operatorname{Tr}(\rho_A \log \rho_A) = S(\rho_B)$$

where $\rho_A = \text{Tr}_B |\Psi\rangle\langle\Psi|_{AB}$

on pure state, marginal entropies are the same

Bipartite state ρ_{AB} can be separable or entangled

For a pure state $|\Psi\rangle_{AB}$ entanglement is measured by entanglement entropy

$$E(|\Phi\rangle) = S(\rho_A) = -\operatorname{Tr}(\rho_A \log \rho_A)$$

where $\rho_A = \text{Tr}_B |\Psi\rangle \langle \Psi|_{AB}$

For a mixed state ρ_{AB} marginal entropies are different. Need entanglement measure E

- *E* vanishes on product states
- *E* is invariant under local unitary operations
- *E* can not increase under LOCC operations

Bipartite state ρ_{AB} can be separable or entangled

For a pure state $|\Psi\rangle_{AB}$ entanglement is measured by entanglement entropy

$$E(|\Phi\rangle) = S(\rho_A) = -\operatorname{Tr}(\rho_A \log \rho_A)$$

where $\rho_A = \text{Tr}_B |\Psi\rangle \langle \Psi|_{AB}$

For a mixed state ρ_{AB} marginal entropies are different. Need entanglement measure E

- *E* vanishes on product states
- *E* is invariant under local unitary operations
- *E* can not increase under LOCC operations
- is equal to entanglement entropy on pure states

A relative entropy of entanglement of a state ρ_{AB} is given by

$$E_{r.e.}(\rho) := \min_{\sigma sep} S(\rho || \sigma) = \min_{\sigma sep} \operatorname{Tr} \left(\rho \ln \rho - \rho \log \sigma \right)$$

where $\sigma_{AB} = \sum_{j} \alpha_{j} \sigma_{A}(j) \otimes \sigma_{B}(j)$ with $\sum_{j} \alpha_{j} = 1$

A relative entropy of entanglement of a state ρ_{AB} is given by

$$E_{r.e.}(\rho) := \min_{\sigma sep} S(\rho || \sigma) = \min_{\sigma sep} \operatorname{Tr} \left(\rho \ln \rho - \rho \log \sigma \right)$$

where $\sigma_{AB} = \sum_{j} \alpha_{j} \sigma_{A}(j) \otimes \sigma_{B}(j)$ with $\sum_{j} \alpha_{j} = 1$

For a "distance measure" $D(\rho,\sigma)$, entanglement measure is defined as

 $E_D(\rho) = \min_{\sigma sep} D(\rho, \sigma)$

A relative entropy of entanglement of a state ρ_{AB} is given by

$$E_{r.e.}(\rho) := \min_{\sigma sep} S(\rho || \sigma) = \min_{\sigma sep} \operatorname{Tr} \left(\rho \ln \rho - \rho \log \sigma \right)$$

where $\sigma_{AB} = \sum_{j} \alpha_{j} \sigma_{A}(j) \otimes \sigma_{B}(j)$ with $\sum_{j} \alpha_{j} = 1$

For a "distance measure" $D(\rho, \sigma)$, entanglement measure is defined as

$$E_D(\rho) = \min_{\sigma sep} D(\rho, \sigma)$$

[Vedral, Plenio '98, +Rippin, Knight '97] A distance should satisfy

- $D(\rho, \sigma) = 0$ if and only if $\rho = \sigma$
- D is invariant under unitary operations: $D(U\rho U^*, U\sigma U^*) = D(\rho, \sigma)$
- Data Processing Inequality: $D(\mathcal{N}(\rho), \mathcal{N}(\sigma)) \leq D(\rho, \sigma)$ for any CPTP map \mathcal{N}

A relative entropy of entanglement of a state ρ_{AB} is given by

$$E_{r.e.}(\rho) := \min_{\sigma sep} S(\rho || \sigma) = \min_{\sigma sep} \operatorname{Tr} \left(\rho \ln \rho - \rho \log \sigma \right)$$

where $\sigma_{AB} = \sum_{j} \alpha_{j} \sigma_{A}(j) \otimes \sigma_{B}(j)$ with $\sum_{j} \alpha_{j} = 1$

For a pure state relative entropy of entanglement becomes entropy of entanglement

[Vedral, Plenio '98]

if $|\Psi\rangle = \sum_{j} \sqrt{p_j} |jj\rangle$, then $E_{r.e.}(|\Psi\rangle) = S(\Psi||\sigma_{\Psi}) = -\sum_{j} p_j \log p_j$, where $\sigma_{\Psi} = \sum_{j} p_j |jj\rangle\langle jj|$

A relative entropy of entanglement of a state ρ_{AB} is given by

$$E_{r.e.}(\rho) := \min_{\sigma sep} S(\rho || \sigma) = \min_{\sigma sep} \operatorname{Tr} \left(\rho \ln \rho - \rho \log \sigma \right)$$

where $\sigma_{AB} = \sum_{j} \alpha_{j} \sigma_{A}(j) \otimes \sigma_{B}(j)$ with $\sum_{j} \alpha_{j} = 1$

For a pure state relative entropy of entanglement becomes entropy of entanglement

[Vedral, Plenio '98]

if $|\Psi\rangle = \sum_{j} \sqrt{p_j} |jj\rangle$, then $E_{r.e.}(|\Psi\rangle) = S(\Psi||\sigma_{\Psi}) = -\sum_{j} p_j \log p_j$, where $\sigma_{\Psi} = \sum_{j} p_j |jj\rangle\langle jj|$

• $|\Psi\rangle\langle\Psi|$

A relative entropy of entanglement of a state ρ_{AB} is given by

$$E_{r.e.}(\rho) := \min_{\sigma sep} S(\rho || \sigma) = \min_{\sigma sep} \operatorname{Tr} \left(\rho \ln \rho - \rho \log \sigma \right)$$

where $\sigma_{AB} = \sum_{j} \alpha_{j} \sigma_{A}(j) \otimes \sigma_{B}(j)$ with $\sum_{j} \alpha_{j} = 1$

For a pure state relative entropy of entanglement becomes entropy of entanglement

[Vedral, Plenio '98]

if $|\Psi\rangle = \sum_{j} \sqrt{p_j} |jj\rangle$, then $E_{r.e.}(|\Psi\rangle) = S(\Psi||\sigma_{\Psi}) = -\sum_{j} p_j \log p_j$, where $\sigma_{\Psi} = \sum_{j} p_j |jj\rangle\langle jj|$

Take quasi-relative entropy as a distance

 $E_f(\rho) = \min_{\sigma sep} S_f(\rho \| \sigma)$

Take quasi-relative entropy as a distance

$$E_f(\rho) = \min_{\sigma sep} S_f(\rho \| \sigma)$$

Theorem (V. '20)

For a maximally entangled state $|\Psi^+\rangle = \sum_j \frac{1}{\sqrt{d}} |jj\rangle$, the quasi-relative entropy of entanglement is reached for a state $\sigma_+ = \sum_j \frac{1}{d} |jj\rangle\langle jj|$, and becomes

$$E_f(|\Psi^+\rangle\langle\Psi^+|) = f(1/d)$$

Theorem

For a pure state $|\Psi\rangle = \sum_{j} \sqrt{p_j} |jj\rangle$, the quasi-relative entropy of entanglement for a class of functions, including $-\log(x)$, is reached for a state $\sigma = \sum_{j} p_j |jj\rangle\langle jj|$, and becomes

$$E_f(|\Psi\rangle\langle\Psi|) = \sum_j p_j f(p_j)$$

Theorem

For a pure state $|\Psi\rangle = \sum_{j} \sqrt{p_j} |jj\rangle$, the quasi-relative entropy of entanglement for a class of functions, including $-\log(x)$, is reached for a state $\sigma = \sum_{j} p_j |jj\rangle\langle jj|$, and becomes

$$E_f(|\Psi\rangle\langle\Psi|) = \sum_j p_j f(p_j)$$

Theorem

For a pure 2-qubit state $|\Psi\rangle = \sqrt{p}|00\rangle + \sqrt{1-p}|11\rangle$, the quasi-relative entropy of entanglement for a class of functions, including $1 - x^{1-\alpha}$, is reached for a state in the form $\sigma = q|00\rangle\langle00| + (1-q)|11\rangle\langle11|$, and becomes

$$E_f(|\Psi\rangle\langle\Psi|) = \sum_j p_j f(q_j)$$

 $f(x) = -\log x$ gives relative entropy $S_{-\log}(\rho \| \sigma) = \operatorname{Tr}(\rho \log \rho - \rho \log \sigma)$

$$E(|\Psi\rangle\langle\Psi|) = -\sum_{j} p_{j} \log p_{j} = S(\rho_{A})$$

 $f(x) = -\log x$ gives relative entropy $S_{-\log}(\rho \| \sigma) = \operatorname{Tr}(\rho \log \rho - \rho \log \sigma)$

$$E(|\Psi\rangle\langle\Psi|) = -\sum_{j} p_{j} \log p_{j} = S(\rho_{A})$$

 $f(x) = 1 - x^{1-\alpha}$ for $\alpha \in (0, 1)$ defines quasi-relative entropy $S_{\alpha}(\rho \| \sigma) = 1 - \operatorname{Tr}(\rho^{\alpha} \sigma^{1-\alpha})$

Tsallis relative entropy is defined as

$$S_{\alpha}^{T} = \frac{1}{1-\alpha} S_{\alpha}(\rho \| \sigma)$$

 $f(x) = -\log x$ gives relative entropy $S_{-\log}(\rho \| \sigma) = \operatorname{Tr}(\rho \log \rho - \rho \log \sigma)$

$$E(|\Psi\rangle\langle\Psi|) = -\sum_{j} p_{j} \log p_{j} = S(\rho_{A})$$

 $f(x) = 1 - x^{1-\alpha}$ for $\alpha \in (0, 1)$ defines quasi-relative entropy $S_{\alpha}(\rho \| \sigma) = 1 - \operatorname{Tr}(\rho^{\alpha} \sigma^{1-\alpha})$

Tsallis relative entropy is defined as

$$S_{\alpha}^{T} = \frac{1}{1 - \alpha} S_{\alpha}(\rho \| \sigma)$$

$$E_{\alpha}^{T}(|\Psi^{+}\rangle\langle\Psi^{+}|) = \frac{1}{1-\alpha}(1-d^{\alpha-1})$$

 $f(x) = -\log x$ gives relative entropy $S_{-\log}(\rho \| \sigma) = \operatorname{Tr}(\rho \log \rho - \rho \log \sigma)$

$$E(|\Psi\rangle\langle\Psi|) = -\sum_{j} p_{j} \log p_{j} = S(\rho_{A})$$

 $f(x) = 1 - x^{1-\alpha}$ for $\alpha \in (0, 1)$ defines quasi-relative entropy $S_{\alpha}(\rho \| \sigma) = 1 - \operatorname{Tr}(\rho^{\alpha} \sigma^{1-\alpha})$

Tsallis relative entropy is defined as

$$S_{\alpha}^{T} = \frac{1}{1-\alpha} S_{\alpha}(\rho \| \sigma)$$

$$E_{\alpha}^{T}(|\Psi^{+}\rangle\langle\Psi^{+}|) = \frac{1}{1-\alpha}(1-d^{\alpha-1})$$

$$\neq S_{\alpha}^{T}(\rho_{A}) := \frac{1}{\alpha-1}(1-\operatorname{Tr}\rho_{A}) = \frac{1}{\alpha-1}(1-d^{1-\alpha})$$

 $f(x) = -\log x$ gives relative entropy $S_{-\log}(\rho \| \sigma) = \operatorname{Tr}(\rho \log \rho - \rho \log \sigma)$

$$E(|\Psi\rangle\langle\Psi|) = -\sum_{j} p_{j} \log p_{j} = S(\rho_{A})$$

 $f(x) = 1 - x^{1-\alpha}$ for $\alpha \in (0, 1)$ defines quasi-relative entropy $S_{\alpha}(\rho \| \sigma) = 1 - \operatorname{Tr}(\rho^{\alpha} \sigma^{1-\alpha})$

Tsallis relative entropy is defined as

$$S_{\alpha}^{T} = \frac{1}{1-\alpha} S_{\alpha}(\rho \| \sigma)$$

Renyi relative entropy is defined as

$$S_{\alpha}^{T} = \frac{1}{\alpha - 1} \log(1 - S_{\alpha}(\rho \| \sigma))$$

 $f(x) = -\log x$ gives relative entropy $S_{-\log}(\rho \| \sigma) = \operatorname{Tr}(\rho \log \rho - \rho \log \sigma)$

$$E(|\Psi\rangle\langle\Psi|) = -\sum_{j} p_{j} \log p_{j} = S(\rho_{A})$$

 $f(x) = 1 - x^{1-\alpha}$ for $\alpha \in (0, 1)$ defines quasi-relative entropy $S_{\alpha}(\rho \| \sigma) = 1 - \operatorname{Tr}(\rho^{\alpha} \sigma^{1-\alpha})$

Tsallis relative entropy is defined as

Renyi relative entropy is defined as

$$S_{\alpha}^{T} = \frac{1}{1-\alpha} S_{\alpha}(\rho \| \sigma) \qquad \qquad S_{\alpha}^{T} = \frac{1}{\alpha-1} \log(1 - S_{\alpha}(\rho \| \sigma))$$

$$E_{\alpha}^{R}(|\Psi^{+}\rangle\langle\Psi^{+}|) = \frac{1}{\alpha - 1}\log d^{\alpha - 1} = \log d$$

 $f(x) = -\log x$ gives relative entropy $S_{-\log}(\rho \| \sigma) = \operatorname{Tr}(\rho \log \rho - \rho \log \sigma)$

$$E(|\Psi\rangle\langle\Psi|) = -\sum_{j} p_{j} \log p_{j} = S(\rho_{A})$$

 $f(x) = 1 - x^{1-\alpha}$ for $\alpha \in (0, 1)$ defines quasi-relative entropy $S_{\alpha}(\rho \| \sigma) = 1 - \operatorname{Tr}(\rho^{\alpha} \sigma^{1-\alpha})$

Tsallis relative entropy is defined as

Renyi relative entropy is defined as

$$S_{\alpha}^{T} = \frac{1}{1-\alpha} S_{\alpha}(\rho \| \sigma) \qquad \qquad S_{\alpha}^{T} = \frac{1}{\alpha-1} \log(1 - S_{\alpha}(\rho \| \sigma))$$

$$E_{\alpha}^{R}(|\Psi^{+}\rangle\langle\Psi^{+}|) = \frac{1}{\alpha - 1}\log d^{\alpha - 1} = \log d$$

$$= S^R_{\alpha}(\rho_A) := \frac{1}{1-\alpha} \log \operatorname{Tr} \rho^{\alpha}_A$$

Let $\rho = |\Psi\rangle\langle\Psi|$ and σ^* be our guess for the closest state. Consider

$$F(x,\sigma) := S_f(\rho \| (1-x)\sigma^* + x\sigma)$$

Let $\rho = |\Psi\rangle\langle\Psi|$ and σ^* be our guess for the closest state. Consider

$$F(x,\sigma) := S_f(\rho \| (1-x)\sigma^* + x\sigma)$$

The goal is to prove that for any separable state

$$\frac{\partial F}{\partial x}(0,\sigma) \geq 0$$

Let $\rho = |\Psi\rangle\langle\Psi|$ and σ^* be our guess for the closest state. Consider

$$F(x,\sigma) := S_f(\rho \| (1-x)\sigma^* + x\sigma)$$

The goal is to prove that for any separable state

$$\frac{\partial F}{\partial x}(0,\sigma) \ge 0$$

To show that σ^* is the closest, suppose that there is a separable state σ s.t.

$$S_f(\rho \| \sigma) < S_f(\rho \| \sigma^*)$$

Let $\rho = |\Psi\rangle\langle\Psi|$ and σ^* be our guess for the closest state. Consider

$$F(x,\sigma) := S_f(\rho \| (1-x)\sigma^* + x\sigma)$$

The goal is to prove that for any separable state

$$\frac{\partial F}{\partial x}(0,\sigma) \ge 0$$

To show that σ^* is the closest, suppose that there is a separable state σ s.t. $S_f(\rho \| \sigma) < S_f(\rho \| \sigma^*)$

Then, for $0 < x \leq 1$, since S_f is jointly convex

$$F(x,\sigma) = S_f(\rho || (1-x)\sigma^* + x\sigma) \le (1-x)S_f(\rho || \sigma^*) + xS_f(\rho || \sigma) = (1-x)F(0,\sigma) + xF(1,\sigma)$$

Let $\rho = |\Psi\rangle\langle\Psi|$ and σ^* be our guess for the closest state. Consider

$$F(x,\sigma) := S_f(\rho \| (1-x)\sigma^* + x\sigma)$$

The goal is to prove that for any separable state

$$\frac{\partial F}{\partial x}(0,\sigma) \ge 0$$

To show that σ^* is the closest, suppose that there is a separable state σ s.t.

$$S_f(\rho \| \sigma) < S_f(\rho \| \sigma^*)$$

Then, for $0 < x \leq 1$, since S_f is jointly convex

$$F(x,\sigma) = S_f(\rho \| (1-x)\sigma^* + x\sigma) \leq (1-x)S_f(\rho \| \sigma^*) + xS_f(\rho \| \sigma) = (1-x)F(0,\sigma) + xF(1,\sigma)$$

This implies that

$$\frac{1}{x}[F(x,\sigma) - F(0,\sigma)] \le F(1,\sigma) - F(0,\sigma) < 0$$

Let $\rho = |\Psi\rangle\langle\Psi|$ and σ^* be our guess for the closest state. Consider

$$F(x,\sigma) := S_f(\rho \| (1-x)\sigma^* + x\sigma)$$

The goal is to prove that for any separable state $\frac{\partial F}{\partial x}(0,\sigma) \ge 0$

To show that σ^* is the closest, suppose that there is a separable state σ s.t.

$$S_f(\rho \| \sigma) < S_f(\rho \| \sigma^*)$$

Then, for $0 < x \leq 1$, since S_f is jointly convex

$$F(x,\sigma) = S_f(\rho \| (1-x)\sigma^* + x\sigma) \le (1-x)S_f(\rho \| \sigma^*) + xS_f(\rho \| \sigma) = (1-x)F(0,\sigma) \neq xF(1,\sigma)$$

This implies that

impossible due to

$$\frac{1}{x}[F(x,\sigma) - F(0,\sigma)] \le F(1,\sigma) - F(0,\sigma) < 0$$

Constrain on the function

$$H_f(p) = \int_0^\infty p(t+p)^{-2} d\mu_f(t)$$

is either 1) constant; or 2) monotonically increasing or decreasing

Is this true?

For a pure state $|\Psi\rangle = \sum_{j} \sqrt{p_j} |jj\rangle$, the quasi-relative entropy of entanglement for ANY function is reached for a state in the form $\sigma = \sum_{j} q_j |jj\rangle \langle jj|$, and becomes

$$E_f(|\Psi\rangle\langle\Psi|) = \sum_j p_j f(q_j)$$

Thank you!