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Quantum Relative Entropy

The quantum relative entropy between two states ρ and σ is as follows

S(ρ‖σ) = Tr{ρ(log ρ− log σ)}

Positivity of quantum relative entropy

S(ρ‖σ) ≥ 0

Infinite Quantum Relative Entropy

S(ρ‖σ) = +∞
when supp(ρ) ∩ supp(σ)⊥ 6= ∅

Monotonicity of Quantum Relative Entropy (Data Processing Inequality)

S(ρ‖σ) ≥ S(N (ρ)‖N (σ))

In particular,

S(ρAB‖σAB) ≥ S(ρA‖σA)
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Joint Convexity of Quantum Relative Entropy

For ρ =
∑
j pjρj and σ =

∑
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∑
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Monotonicity of Quantum Relative Entropy

S(ρ‖σ) ≥ S(N (ρ)‖N (σ))

Monotonicity under partial traces

S(ρAB‖σAB) ≥ S(ρA‖σA)

all ”equivalent”

e.g. Monotonicity under partial
traces holds for all states iff
Strong sub-additivity relation
holds for all states



Equivalent statements

Monotonicity of Quantum Relative Entropy

S(ρ‖σ) ≥ S(N (ρ)‖N (σ))

Monotonicity under partial traces

S(ρAB‖σAB) ≥ S(ρA‖σA)

Stinespring factorization theorem

N (ρ) = TrE(U∗(ρ⊗ 1E)U)



Equivalent statements

Monotonicity of Quantum Relative Entropy

S(ρ‖σ) ≥ S(N (ρ)‖N (σ))

Monotonicity under partial traces

S(ρAB‖σAB) ≥ S(ρA‖σA)

Stinespring factorization theorem

N (ρ) = TrE(U∗(ρ⊗ 1E)U)

ρAE



Equivalent statements

Monotonicity of Quantum Relative Entropy

S(ρ‖σ) ≥ S(N (ρ)‖N (σ))

Monotonicity under partial traces

S(ρAB‖σAB) ≥ S(ρA‖σA)

Stinespring factorization theorem

N (ρ) = TrE(U∗(ρ⊗ 1E)U)

ρAEρA



Equivalent statements

Monotonicity of Quantum Relative Entropy

S(ρ‖σ) ≥ S(N (ρ)‖N (σ))

Monotonicity under partial traces

S(ρAB‖σAB) ≥ S(ρA‖σA)
see “Strong Subadditivity of

Quantum Entropy” on
Wikipedia

Stinespring factorization theorem

N (ρ) = TrE(U∗(ρ⊗ 1E)U)
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Trace distance

For two quantum states ρ, σ, trace distance

‖ρ− σ‖1 = max−I≤Λ≤I Tr{Λ(ρ− σ)}

Triangle Inequality ‖ρ− σ‖1 ≤ ‖ρ− τ‖1 + ‖τ − σ‖1

Monotonicity (Data Processing inequality)

‖ρ− σ‖1 ≥ ‖N (ρ)−N (σ)‖1
CPTP map

In particular,
‖ρAB − σAB‖1 ≥ ‖ρA − σA‖1
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Quasi-relative entropy

Let f : (0,∞)→ R be operator monotone decreasing, and f(1) = 0,
quasi-relative entropy, or f -divergence is

Sf (ρ‖σ) = Tr{f(∆σ,ρ)ρ} ∆A,B(X) = AXB−1

Spectral decompositions ρ =
∑
j λj |ψj〉〈ψj |, and σ =

∑
k µk|φk〉〈φk|

Sf (ρ||σ) =
∑
j,k λjf

(
µk

λj

)
|〈φk||ψj〉|2

For f(x) = − log x, the quasi-relative entropy becomes the relative entropy

S− log(ρ‖σ) = S(ρ‖σ) = Tr(ρ log ρ− ρ log σ)
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Quasi-relative entropy

For q ∈ (0, 2), the function fq(x) = 1
1−q (1− x1−q) gives Tsallis q-entropy

Sq(ρ‖σ) =
1

1− q
(
1− Tr(ρqσ1−q)

)
is used in entanglement and thermodynamics, nonextensive statistics,
optical lattice theory, particle charging, statistical mechanics, and others -
see ”Quantum Entropies” on Scholarpedia
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Quasi-relative entropy

For α ∈ (0, 1), the function fα(x) = 1− x1−α gives

Sα(ρ‖σ) = 1− Tr(ρασ1−α)

which defines Renyi relative entropy

SRα (ρ‖σ) =
1

α− 1
log Tr(ρασ1−α) =

1

α− 1
log(1− Sα(ρ‖σ)))

is used in hypothesis testing (Csiszar ’95); entanglement-assisted LOCC
conversion; strong converse problem in quantum hypothesis testing
(Mosonyi, Ogawa, ’15); strong converse problem for the classical capacity
of a quantum channel (Wilde et. al., ’14)
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Quasi-relative entropy

Unitary invariance

Sf (UρU∗‖UσU∗) = Sf (ρ‖σ)

Positivity
Sf (ρ‖σ) ≥ 0 and Sf (ρ‖σ) = 0 if and only if ρ = σ
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Data Processing Inequality

Petz ’85
Sf (ρ‖σ) ≥ Sf (N (ρ)‖N (σ)) for CPTP map N

‖ρ− σ‖1 ≥ ‖N (ρ)−N (σ)‖1

Trace-distance
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Relative entropy vs Trace distance

Pinsker inequality
1

2
‖ρ− σ‖21 ≤ S(ρ‖σ)

≥?

Pinsker inequality for quasi-relative entropy

f ′′(1)

2
‖ρ− σ‖21 ≤ Sf (ρ‖σ)

f(x) = − log x

f ′′(1) = 1

By Hiai and Mosonyi ’16



Reversed Pinsker inequality

S(ρ‖σ) ≤ (ασ + T ) log(1 + T/ασ)− αρ log(1 + T/αρ)

T = 1
2‖ρ− σ‖

2
1 αω is the minimal non-zero eigenvalue of the state ω

By Audenaert, Eisert ’11
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For q ∈ (0, 2), the Tsallis q-entropy is

Sq(ρ‖σ) =
1

1− q
(
1− Tr(ρqσ1−q)

)

Rastegin ’11

λρ is the maximal eigenvalue of ρ, and α = min{αρ, ασ}, αω is the
minimal non-zero eigenvalue of ω

1 < q ≤ 2

Sq(ρ‖σ) ≤ 1

q − 1

λqρ
αq
‖ρ− σ‖1

0 < q < 1

Sq(ρ‖σ) ≤ 1

1− q
λqρ
αqσ
‖ρ− σ‖1
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Let f any operator monotone decreasing function. Let states ρ and
σ be either 2-dimensional qubit states or classical states. Assume
one of two conditions: 1) ρ is full rank; 2) af = 0. Then the
following holds

Sf (ρ‖σ) ≤ ‖ρ− σ‖1
[

λρ
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f(λ−1
ρ ασ)− af
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Theorem (V. ’19)

Let f any operator monotone decreasing function. Let states ρ and
σ be either 2-dimensional qubit states or classical states. Assume
one of two conditions: 1) ρ is full rank; 2) af = 0. Then the
following holds

Sf (ρ‖σ) ≤ ‖ρ− σ‖1
[

λρ
λρ − ασ

f(λ−1
ρ ασ)− af

]

λρ ∈ (0, 1] is the largest eigenvalue of ρ

ασ ∈ (0, 1] is the smallest eigenvalue of σ

af = − limy↑∞
f(iy)
iy



Reversed Pinsker for relative entropy

S(ρ‖σ) ≤ ‖ρ− σ‖1λρ
log(αρ)− log(ασ)

αρ − ασ
≤ λρ

α
‖ρ− σ‖1

Theorem

In any finite dimensions,
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S(ρ‖σ) ≤ ‖ρ− σ‖1λρ
log(αρ)− log(ασ)

αρ − ασ
≤ λρ

α
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For qubits, taking f(x) = − log(x), we have a slightly improved bound
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Reversed Pinsker for relative entropy

S(ρ‖σ) ≤ ‖ρ− σ‖1λρ
log(αρ)− log(ασ)

αρ − ασ
≤ λρ

α
‖ρ− σ‖1

Before,

S(ρ‖σ) ≤ (ασ + T ) log(1 + T/ασ)− αρ log(1 + T/αρ)

T = 1
2‖ρ− σ‖

2
1

For qubits, taking f(x) = − log(x), we have a slightly improved bound

S(ρ‖σ) ≤ ‖ρ− σ‖1λρ
log λρ − logασ

λρ − ασ
≤ λρ
ασ
‖ρ− σ‖1 .

Theorem

In any finite dimensions,

In any dimension larger than four there are states for which our bound is
better.
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Reversed Pinsker for Tsallis relative entropy

q > 1, the function f(x) = xq is not operator monotone

But the proof by Rastegin ’11, can be improved to have

Sq(ρ‖σ) ≤
λqρ
αq
‖ρ− σ‖1 original Sq(ρ‖σ) ≤ 1

q − 1

λqρ
αq
‖ρ− σ‖1

≥ 1 for q ∈ (1, 2]



Reversed Pinsker for Tsallis relative entropy

For q ∈ (0, 1)

Sq(ρ‖σ) ≤ 1

1− q
‖ρ− σ‖1λqρ

α1−q
ρ − α1−q

σ

αρ − ασ
≤ ‖ρ− σ‖1

λqρ
αq
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Sq(ρ‖σ) ≤ 1

1− q
‖ρ− σ‖1λqρ

λ1−q
ρ − α1−q

σ

λρ − ασ
≤ ‖ρ− σ‖1

λqρ
αqσ

.

For q ∈ (0, 1)

Sq(ρ‖σ) ≤ 1

1− q
‖ρ− σ‖1λqρ

α1−q
ρ − α1−q

σ

αρ − ασ
≤ ‖ρ− σ‖1

λqρ
αq

For qubits



Reversed Pinsker for Tsallis relative entropy

Sq(ρ‖σ) ≤ 1

1− q
‖ρ− σ‖1λqρ

λ1−q
ρ − α1−q

σ

λρ − ασ
≤ ‖ρ− σ‖1

λqρ
αqσ

.

For q ∈ (0, 1)

Sq(ρ‖σ) ≤ 1

1− q
‖ρ− σ‖1λqρ

α1−q
ρ − α1−q

σ

αρ − ασ
≤ ‖ρ− σ‖1

λqρ
αq

original Sq(ρ‖σ) ≤ 1

1− q
‖ρ− σ‖1

λqρ
αqσ

≥ 1 for q ∈ (0, 1)

For qubits



Idea of the proof

Every operator monotone decreasing function f has the following
integral representation (Donoghue ’74)

f(x) = −afx− bf +

∫ ∞
0

(
1

t+ x
− t

t2 + 1

)
dµf (t)

here af := − limy↑∞
f(iy)

iy
≥ 0, bf := −Ref(i) ∈ R and µ is a positive

measure on (0,∞) s.t. ∫ ∞
0

1

t2 + 1
dµf (t) <∞

and µf (x1)− µf (x0) = − limy↓0
1
π

∫ x1

x0
Imf(−x+ iy) dx
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Every operator monotone decreasing function f has the following
integral representation (Donoghue ’74)

f(x) = −afx− bf +

∫ ∞
0

(
1

t+ x
− t

t2 + 1

)
dµf (t)

here af := − limy↑∞
f(iy)

iy
≥ 0, bf := −Ref(i) ∈ R and µ is a positive

measure on (0,∞) s.t. ∫ ∞
0

1

t2 + 1
dµf (t) <∞

and µf (x1)− µf (x0) = − limy↓0
1
π

∫ x1

x0
Imf(−x+ iy) dx

If f(1) = 0, then

f(x) = af (1− x) +

∫ ∞
0

(
1

t+ x
− 1

t+ 1

)
dµf (t)



Idea of the proof

Sf (ρ‖σ) = Tr{(f(∆σ,ρ)− f(∆ρ,ρ))ρ}



Idea of the proof

Sf (ρ‖σ) = Tr{(f(∆σ,ρ)− f(∆ρ,ρ))ρ}

= 0



Idea of the proof

Sf (ρ‖σ) = Tr{(f(∆σ,ρ)− f(∆ρ,ρ))ρ}

=

∫ ∞
0

dµf (t) Tr{
(
(tI + ∆σ,ρ)

−1 − (tI + ∆ρ,ρ)
−1
)
ρ}

using integral representation



Idea of the proof

Sf (ρ‖σ) = Tr{(f(∆σ,ρ)− f(∆ρ,ρ))ρ}

=

∫ ∞
0

dµf (t) Tr{
(
(tI + ∆σ,ρ)

−1 − (tI + ∆ρ,ρ)
−1
)
ρ}

using A−1 −B−1 = A−1(B −A)B−1 and ∆A,B = LARB−1

=

∫ ∞
0

dµf (t) Tr{
(
(tI + ∆σ,ρ)

−1(Lρ − Lσ)(tI + ∆ρ,ρ)
−1
)

(I)}



Idea of the proof

Sf (ρ‖σ) = Tr{(f(∆σ,ρ)− f(∆ρ,ρ))ρ}

=

∫ ∞
0

dµf (t) Tr{
(
(tI + ∆σ,ρ)

−1 − (tI + ∆ρ,ρ)
−1
)
ρ}

=

∫ ∞
0

dµf (t) Tr{
(
(tI + ∆σ,ρ)

−1(Lρ − Lσ)(tI + ∆ρ,ρ)
−1
)

(I)}

=

∫ ∞
0

dµf (t) (t+ 1)−1Tr{Dt(ρ− σ)}

where Dt =
∑
jk

(
t+ µk

λj

)−1

〈ψj ||φk〉|ψj〉〈φk|, using spectral

decomposition of ρ, σ

ρ =
∑
j λj |ψj〉〈ψj |, σ =

∑
k µk|φk〉〈φk|
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Lemma For orthogonal bases {|ψj〉} and {|φk〉}, let

D =
∑
kj Ckj〈ψj ||φk〉|ψj〉〈φk|

such that 0 ≤ Ckj ≤ C for all k, j and some C. Consider two cases:

Let X be a diagonal matrix in either basis: without loss of generality
let X =

∑
k xk|φk〉〈φk|
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Lemma For orthogonal bases {|ψj〉} and {|φk〉}, let
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Future research

If ρ and σ are d-dimensional states,

Sf (ρ‖σ) ≤ ‖ρ− σ‖1
√
d

[
λρ

λρ − ασ
f(λ−1

ρ ασ)− af
]

Comes from
|Tr(DX)| ≤ ‖DX‖1 ≤ ‖X‖1‖D‖∞ ≤ ‖X‖1‖D‖2

from the structure of D,

‖D‖22 = Tr(D∗D) =
∑
kj C

2
kj |〈ψj ||φk〉|2 ≤ C2d

How to get rid of the dimension?
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For a pure state |Ψ〉AB entanglement is measured by entanglement entropy

E(|Φ〉) = S(ρA) = −Tr(ρA log ρA)

where ρA = TrB |Ψ〉〈Ψ|AB

For a mixed state ρAB marginal entropies are different. Need
entanglement measure E

E vanishes on product states

E is invariant under local unitary operations

E can not increase under LOCC operations

is equal to entanglement entropy on pure states
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For a ”distance measure” D(ρ, σ), entanglement measure is defined as

ED(ρ) = minσsepD(ρ, σ)

[Vedral, Plenio ’98, +Rippin, Knight ’97] A distance should satisfy

D(ρ, σ) = 0 if and only if ρ = σ

D is invariant under unitary operations: D(UρU∗, UσU∗) = D(ρ, σ)

Data Processing Inequality: D(N (ρ),N (σ)) ≤ D(ρ, σ) for any CPTP
map N
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A relative entropy of entanglement of a state ρAB is given by

Er.e.(ρ) := minσsep S(ρ||σ) = minσsep Tr
(
ρ ln ρ− ρ log σ

)
where σAB =

∑
j αjσA(j)⊗ σB(j) with

∑
j αj = 1

For a pure state relative entropy of entanglement becomes entropy of
entanglement

[Vedral, Plenio ’98]

if |Ψ〉 =
∑
j

√
pj |jj〉, then Er.e.(|Ψ〉) = S(Ψ||σΨ) = −

∑
j pj log pj ,

where σΨ =
∑
j pj |jj〉〈jj|

sep

|Ψ〉〈Ψ|
σΨ

S(·‖·)
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Take quasi-relative entropy as a distance

Ef (ρ) = minσsep Sf (ρ‖σ)

Theorem (V. ’20)

For a maximally entangled state |Ψ+〉 =
∑
j

1√
d
|jj〉, the quasi-relative

entropy of entanglement is reached for a state σ+ =
∑
j

1

d
|jj〉〈jj|, and

becomes
Ef (|Ψ+〉〈Ψ+|) = f(1/d)
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Theorem

For a pure state |Ψ〉 =
∑
j

√
pj |jj〉, the quasi-relative entropy of

entanglement for a class of functions, including − log(x), is reached for a
state σ =

∑
j pj |jj〉〈jj|, and becomes

Ef (|Ψ〉〈Ψ|) =
∑
j pjf(pj)

Theorem

For a pure 2-qubit state |Ψ〉 =
√
p|00〉+

√
1− p|11〉, the quasi-relative

entropy of entanglement for a class of functions, including 1− x1−α, is
reached for a state in the form σ = q|00〉〈00|+ (1− q)|11〉〈11|, and
becomes

Ef (|Ψ〉〈Ψ|) =
∑
j pjf(qj)
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E(|Ψ〉〈Ψ|) = −
∑
j pj log pj = S(ρA)

f(x) = 1− x1−α for α ∈ (0, 1) defines quasi-relative entropy
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Tsallis relative entropy is defined as
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Let ρ = |Ψ〉〈Ψ| and σ∗ be our guess for the closest state. Consider

F (x, σ) := Sf (ρ‖(1− x)σ∗ + xσ)

The goal is to prove that for any separable state
∂F

∂x
(0, σ) ≥ 0

To show that σ∗ is the closest, suppose that there is a separable state σ s.t.

Sf (ρ‖σ) < Sf (ρ‖σ∗)

Then, for 0 < x ≤ 1, since Sf is jointly convex

F (x, σ) = Sf (ρ‖(1− x)σ∗ + xσ) ≤
(1− x)Sf (ρ‖σ∗) + xSf (ρ‖σ) = (1− x)F (0, σ) + xF (1, σ)

This implies that

1

x
[F (x, σ)− F (0, σ)] ≤ F (1, σ)− F (0, σ) < 0

impossible due to



Idea of the proof

Constrain on the function

Hf (p) =
∫∞

0
p(t+ p)−2dµf (t)

is either 1) constant; or 2) monotonically increasing or decreasing



Future research

For a pure state |Ψ〉 =
∑
j

√
pj |jj〉, the quasi-relative entropy of

entanglement for ANY function is reached for a state in the form
σ =

∑
j qj |jj〉〈jj|, and becomes

Ef (|Ψ〉〈Ψ|) =
∑
j pjf(qj)

Is this true?



Thank you!


