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The quantum relative entropy between two states p and o is as follows

S(pllo) = Tr{p(log p —log o)}
Positivity of quantum relative entropy

S(plle) =0

Infinite Quantum Relative Entropy
S(pllo) = +oo

when supp(p) N supp(c)* # 0
Relative entropy Is invariant under unitary operations

S(pllo) = S(UpU*||UcU™)
Additivity of relative entropy
S(p1 ® pallor ® 02) = S(p1llo1) + S(p2|lo2)
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Quantum Relative Entropy

The quantum relative entropy between two states p and o is as follows

S(pllo) = Tr{p(log p —log o)}
Positivity of quantum relative entropy

S(plle) =0

Infinite Quantum Relative Entropy
S(pllo) = o0
when supp(p) N supp(c)* # 0

Monotonicity of Quantum Relative Entropy (Data Processing Inequality)
S(pllo) =2 SN (p)IN (o))

In particular,
S(p*P o) = S(p o)
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Equivalent statements

Strong Sub-additivity of quantum entropy

For a tri-partite state p B¢
S(p?P9) + S(p”) < S(p*P) + S(p"°)

Joint Convexity of Quantum Relative Entropy
For p=2_;pjpj and o =) ;pjo;

S(plle) <> °;piS(pjllo) =

Monotonicity of Quantum Relative Entrj/

S(pllo) = SN (p)|N (o))

Monotonicity under partial traces

all "equivalent”

S(PABHUAB) > S(,OAHUA) e.g. Monotonicity under partial
traces holds for all states iff
Strong sub-additivity relation
holds for all states
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Equivalent statements

Stinespring factorization theorem

N(p) = Trg(U*(p® 1g)U)

Monotonicity of Quantum Relative Entropy
S(pllo) = SN (p)|N ()
Monotonicity under partial traces

S(p*Plo?P) = S(p?lo?) N
see “Strong Subadditivity of
Quantum Entropy” on

Wikipedia
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race distance

For an operator A, trace norm is

|Al = Tr{VATA}
For Hermitian operator A =) |, A;|7)(j| spectral decomposition

1Al = 225 A

Unitary invariance

IUAU"|]1 = [|Allx

For two quantum states p, o, trace distance

lp = olly = max_r<a<; Tr{A(p — 0)}
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race distance

Triangle Inequality lp—cl1 <|lp—7|1 + |7 — ol

Monotonicity (Data Processing inequality)

lp—ally = IN(p) = N(o)llx

\> CPTP map

In particular,
IpA7 — B L > |Ip? — o?|Is

For two quantum states p, o, trace distance

lp = olly = max_r<a<; Tr{A(p — 0)}
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quasi-relative entropy, or f-divergence is
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Quasi-relative entropy

Let f: (0,00) — R be operator monotone decreasing, and f(1) = 0,
quasi-relative entropy, or f-divergence is

Si(pllo) = Tr{f(Asp)p}  Aap(X)=AXB™!
Spectral decompositions p = >, A;|¥;) (5], and o = >, pk|or)(dk

Si(pllo) = S50 0 f () [(@nl ) 2

For f(x) = —logx, the quasi-relative entropy becomes the relative entropy

S—10g(pllo) = S(pllo) = Tr(plog p — plog o)
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Quasi-relative entropy

For ¢ € (0,2), the function f,(x) = 1%q(l — x179) gives Tsallis g-entropy

54(pll0) = 7= (1 = Tr(po )

Is used In entanglement and thermodynamics, nonextensive statistics,
optical lattice theory, particle charging, statistical mechanics, and others -
see "Quantum Entropies” on Scholarpedia




Quasi-relative entropy
For o € (0,1), the function f,(z) =1 — 2'~% gives
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which defines Renyi relative entropy
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Quasi-relative entropy
For o € (0,1), the function f,(z) =1 — 2'~% gives

Sa(pllo) =1 —Tr(p*o' =)
which defines Renyi relative entropy

1 o 1—a\ __ 1 L
—— logTr(p%0"™%) = —— log(1 — Sa(p|0)))

S (pllo) =

is used in hypothesis testing (Csiszar '95); entanglement-assisted LOCC
conversion; strong converse problem in quantum hypothesis testing
(Mosonyi, Ogawa, '15); strong converse problem for the classical capacity
of a quantum channel (Wilde et. al., '14)




Unitary invariance

Quasi-relative entropy

SH(UpU*|[UaU*) = Sy (p]lo)




Unitary invariance

Positivity

Quasi-relative entropy

Sy(UpUT|UaU") = Sy (pllo)

St(pllo) >0 and S¢(pllo) =0if andonly if p=0
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Data Processing Inequality

Petz '85
S1(pllo) = SN (p)IN (o)) for CPTP map A’

Trace-distance

lp = olly = [NV (p) = N(o)llx
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Pinsker inequality for quasi-relative entropy

By Hiali and Mosonyi '16

(1)
2

f(x) = —logx

(1) =1

lp—alli < St(pllo)




Reversed Pinsker inequality

By Audenaert, Eisert '11

S(pllo) < (o +T)log(1 + T/ary) — aplog(1 + T/ax,)

T=z|p—o0l} oy, 1s the minimal non-zero eigenvalue of the state w
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For ¢ € (0,2), the Tsallis g-entropy is

Sylpllo) = 1= (1~ Tr(pt 1))

A, is the maximal eigenvalue of p, and a = min{a,, as }, a,, is the
minimal non-zero eigenvalue of w

Rastegin '11
1 <qg<?2
1 Al
Sq(pllo) < “lp = ol

—qg—1a4




Reversed Pinsker for Tsallis relative entropy

For ¢ € (0,2), the Tsallis g-entropy is

Sylpllo) = 1= (1~ Tr(pt 1))

A, is the maximal eigenvalue of p, and a = min{a,, as }, a,, is the
minimal non-zero eigenvalue of w

Rastegin '11
1 <qg=<?2 D0<g<l1
Y Y
Solpllo) < ——7 5q e =l Solpllo) < 7 o lp—alh




Reversed Pinsker for quasi-relative entropy

Theorem (V. '19)

Let f any operator monotone decreasing function. Let states p and
o be either 2-dimensional qubit states or classical states. Assume
one of two conditions: 1) p is full rank; 2) ay = 0. Then the
following holds

Ap

p — Co

St(pllo) < llp—allx |5 f(A;tag) —ay




Reversed Pinsker for quasi-relative entropy

Theorem (V. '19)

Let f any operator monotone decreasing function. Let states p and
o be either 2-dimensional qubit states or classical states. Assume
one of two conditions: 1) p is full rank; 2) ay = 0. Then the
following holds

Ap

p — Co

f()‘p_lo%) —ay

St(pllo) < |lp — ol )

A, € (0,1] is the largest eigenvalue of p

a, € (0,1] is the smallest eigenvalue of o

f(iy)
By

af — — hmyToo




Reversed Pinsker for relative entropy

Theorem
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Reversed Pinsker for relative entropy

Theorem

In any finite dimensions,

log(a,) — log(ay) - A

P
ap — Qg Q

S(pllo) < llp = all1) lp = alh

For qubits, taking f(x) = —log(xz), we have a slightly improved bound

log A, — log o, A
2le = 0000 < 2 p—a .

S(pllo) < llp— olluA,

Ap — Oy Oy
Before,
S(pllo) < (@ +T)log(1 + T/ay) — a, log(1 + T/a,)
T =3lp—ol}

In any dimension larger than four there are states for which our bound is

better.
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q > 1, the function f(x) = x? is not operator monotone

But the proof by Rastegin '11, can be improved to have

1 Al

A ..
Sa(pllo) < 22 [l ol original ,(pllo) < — ~2 llp o]l




Reversed Pinsker for Tsallis relative entropy

q > 1, the function f(x) = x? is not operator monotone

But the proof by Rastegin '11, can be improved to have

y . 1A
Sqlpllo) < = llp = ol original Sy(pllo) < lp—olh

a4 qg—1a4
L |

> 1 for q € (1, 2]
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Reversed Pinsker for Tsallis relative entropy

For ¢ € (0,1)
! b y
Sq(pllo) < fHP— o|FRY — <llp—olli—
o o
For qubits
1 ol y
Sq(pllo) = 5——llp = oll1A Jy—— <llp—ollog




Reversed Pinsker for Tsallis relative entropy

For ¢ € (0,1)
! 0ol y
Sq(pllo) < THP—UHM% — <llp—olli—
0 o
For qubits
1 Al — a1 y
Sq(pllo) < =4 lp—oll1A] y— <llp—olh 17
.. 1 )\q
original S, (pll0) < —— llp— ol &
L ]

> 1 for g € (0,1)




ldea of the proof

Every operator monotone decreasing function f has the following
integral representation (Donoghue '74)

° 7
f(ﬂf)Z—af~‘fl?—bf+/O <t+w — t2il>dﬂf(t)

f(iy)
LY

=]
dur(t) <
/O 2 dms(t) < oo

and pf(z1) — pp(z0) = —limy o = fxxol Imf(—x +1y) dx

here af := —lim, 100 >0, by := —Ref(7) € R and p is a positive

measure on (0, 00) s.t.




ldea of the proof

Every operator monotone decreasing function f has the following
integral representation (Donoghue '74)

< /1
f(ﬂf)Z—af~‘fl?—bf+/O <t+w — t2il>dﬂf(t)

f(iy)
LY

=
dur(t) <
/O 2 dms(t) < oo

and pf(z1) — pp(z0) = —limy o = fxxol Imf(—x +1y) dx
If f(1) =0, then

>0, by := —Ref(?) € R and p is a positive

here a¢ := — lim 10

measure on (0, 00) s.t.
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S¢(pllo) = Tri(f(As,p)

ldea of the proof

— f(Bpp))p}
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ldea of the proof

St(pllo) = Te{(f(As,p) — f(A,,))p} using integral representation

— /Oood,uf(t) Te{((t + Ay p) ™t = (T + A, )7 Y) p}




ldea of the proof

Sr(pllo) = Tr{(f(As,p) — f(Ap,))r}
-/ g (t) TH{ (T + A )™ — (T + D)) )
using A=' =B ' =A"'(B—A)B ' and Ayp=LaRp-

B /O g (8) T (] + Do)~ (L — Lo)(tT + A,) 1) (D)}




ldea of the proof

Sr(pllo) = Tr{(f(As,p) — f(Ap,))r}

— /Oood,uf(t) Te{((tI + Aup) ' — (I + A, )7 ") p}
B /O g (8) T (] + Do)~ (L — Lo)(tT + A,) 1) (D)}

_ / Cdug(t) (t+ 1) Te{Dy(p — o)}

—1
where Dy =3, (t + i—’;) (V;||Px)|1;) (K|, using spectral
decomposition of p, o

p =, Nl sl o = Y unlon) (@]
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ldea of the proof
For orthogonal bases {|1;)} and {|¢k)}, let

D =) 1 Crj(¥;llor) 1) (k]

such that 0 < C%; < C for all £,7 and some C'. Consider two cases:

Let X be a diagonal matrix in either basis: without loss of generality

let X =), zr|dr) (ok]
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ldea of the proof
Lemma  For orthogonal bases {|¢;)} and {|¢k)}, let

D =) 1 Crj(¥;llor) 1) (k]

such that 0 < C%; < C for all £,7 and some C'. Consider two cases:

e Let X be a diagonal matrix in either basis: without loss of generality

let X =), zr|dr) (ok]

Let X be a 2 x 2 Hermitian traceless matrix, i.e. X* = X and
* Tr(X)=0o.

In both cases, Tr(DX)| < C|| X4

We have 50
S;(pllo) = / dip(t) (t +1)"VTe{Dy(p — o))

<+ o) e =0l




S5 (ollo) < llp = o|lx /

ldea of the proof

1 1
t+ A, t41

dpg(t) |
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ldea of the proof

1 1
t+ A, t41

= llp— ol
o)

dpg(t) |

A, /m{ 1
Ao—as o Lt+ X1,

t




S5 (ollo) < llp = o|lx /

ldea of the proof

1

L+ )\;1040

Ap -
L et AR

Ap

= HP—UHl)\

p — Co

1

——— du¢(t
T pr(t)

1

t+ A, Lo

t

1

— —1} dyug(t)

[f()\;loza) —as(l — )\p_laa)]




ldea of the proof

1 1
t+ A, t41

S5 (ollo) < llp = o|lx /

dpg(t) |

Ip— ofli—22 /OO{ 1
=llp—0o
P 1)\/0_&0 . t+)\,§10¢0

A

t

1

1

} dyug(t)

— Hp — (7”1 \ pa [f()‘;laa) - @f(l - )‘p_laa)]

p Yo

Ap

~ o= alh |- O aw) — o




Future research

If p and o are d-dimensional states,
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Future research

If p and o are d-dimensional states,

St(pllo) < llp — o1 v/d

Comes from

Ap

f tas) —ay

Tr(DX)| < [[DX|l1 < | X[ [|Dlloo < [[X][2][D]l2




Future research
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Future research

If p and o are d-dimensional states,

Ap

St(pllo) < llp = all1vd fA; o) — ag

Comes from
Tr(DX)| < [|[DX|l1 < | X[[1||1D]|oc < [[X|1]]D][2

from the structure of D,

DIz = Te(D*D) = 3 4 C;l{wsllo0)|* < Cd

How to get rid of the dimension?
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Bipartite state pap can be separable or entangled

How much entanglement does a state have?
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on pure state, marginal entropies are the same
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Closest separable state

Bipartite state pap can be separable or entangled

For a pure state |V) 45 entanglement is measured by entanglement entropy

E(|®)) = S(pa) = —Tr(palogpa)
where p4 = Trg|U) (| 5

For a mixed state p4p marginal entropies are different. Need
entanglement measure E

« [ vanishes on product states

e I iIs invariant under local unitary operations

e F can not increase under LOCC operations

e Is equal to entanglement entropy on pure states
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Closest separable state

A relative entropy of entanglement of a state p4p Is given by

E, . (p) :=mingsep S(p||o) = minggep Tt (,0 Inp — plog 0)

where oap = ), ajoa(j) ® op(j) with ), a; =1

For a "distance measure” D(p, o), entanglement measure is defined as

Ep(p) = mingsep D(p, 0)

[Vedral, Plenio '98, +Rippin, Knight '97] A distance should satisfy

D(p,0) =0if and only if p =0
D is invariant under unitary operations: D(UpU*,UcU*) = D(p, o)

Data Processing Inequality: D(N (p),N (o)) < D(p,o) for any CPTP
map N
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Theorem (V. '20)

L. " - elat
; —d\]j>, the quasi-relative
1
entropy of entanglement is reached for a state oy = » . E!jj)(jj\, and

For a maximally entangled state |[UT) = )"

becomes
Ep([OT)(YF]) = f(1/d)
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Closest separable state

Theorem

For a pure state |¥) = » ., /p;j|jj), the quasi-relative entropy of
entanglement for a class of functions, including — log(x), is reached for a
state o = ) . p;[jj){jjl, and becomes

Ez([W){¥]) = 2_; p;f(p5)

Theorem

For a pure 2-qubit state |¥) = ,/p|00) + /1 — p|11), the quasi-relative

entropy of entanglement for a class of functions, including 1 — 217, is

reached for a state in the form o = ¢|00)(00| + (1 — ¢)|11)(11], and
becomes

Er([W)(P]) = >, pif(g)




Entropy of entanglement

f(x) = —log x gives relative entropy S_1,s(p|lc) = Tr(plogp — plogo)

E(W)(V]) = =2, pjlogp; = 5(pa)
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Entropy of entanglement
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E(|U){¥|) = —>_;p;logp; = S(pa)

f(x) =1—x'% for a € (0,1) defines quasi-relative entropy
Sa(pllo) =1 —Tr(p%c' =)

Tsallis relative entropy is defined as

1
ST Sa(pllo)

“ =1 a

1
1l — «

Eq (JUF)(TH]) = (1 —d*)

1 1

7 Sg(PA) - = E(l — Trpy) = E(l — 1)
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1 1
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=T a— 1




Entropy of entanglement
f(x) = —log x gives relative entropy S_1,s(p|lc) = Tr(plogp — plogo)
E(|U)(¥|) = —>_,pjlogp; = S(pa)

f(x) =1—x'% for a € (0,1) defines quasi-relative entropy
Sa(pllo) =1 —Tr(p%c' =)

Tsallis relative entropy is defined as Renyi relative entropy is defined as
1 1
ST p— —SO{ r — -
o = 7 Salpllo) Sa = —— log(1 = Sa(p[0))

1
a— 1

BR(UH)(W+]) = —— logd*~! = log d




Entropy of entanglement
f(x) = —log x gives relative entropy S_1,s(p|lc) = Tr(plogp — plogo)
E(|U)(¥|) = —>_,pjlogp; = S(pa)

f(x) =1—x'% for a € (0,1) defines quasi-relative entropy
Sa(pllo) =1 —Tr(p%c' =)

Tsallis relative entropy is defined as Renyi relative entropy is defined as
1 1
S p— T _ i
T = —5a(pllo) ST = — log(1 = Sa(pll0))
1
ER(UH)(UH)) = —— logd*~" = logd
a —

1

= SE(py) = - log Trp%
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ldea of the proof

Let p = |U)(W| and o* be our guess for the closest state. Consider

F(z,0) = S;(pll(1 = z)o* + z0)

OF

The goal is to prove that for any separable state 8_(0’ g) >0
T

To show that o™ Is the closest, suppose that there is a sepayable state o s.t.

Sy (pllo) < S¢(pllo”)

Then, for 0 <z <1, since St is jointly convex

F(z,0) =S¢ (pll(1 = x)o* +z0) <
(1 =x)S¢(pllo”) + x5 (pllo) = (1 —2)F(0,0) + xF(1,0)

This implies that Impossible due to




ldea of the proof

Constrain on the function

fo (t +p) Zdﬂf()

is either 1) constant; or 2) monotonically increasing or decreasing




Future research

Is this true?

For a pure state |¥) = » . \/P;j|jj), the quasi-relative entropy of
entanglement for ANY function is reached for a state in the form

o =), qjl77)(jjl, and becomes
Er([¥)(P]) = >, p;if(g;)




Thank you!




