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What this talk is about?

For equilibrium models of energy markets (including stochastic
versions with risk aversion);

+ Modelling issues

+ Existence and other theoretical issues

+ Solution techniques



Energy markets can be large

Strategic sectors:

• subject to regulations in quality, price and entry

• couple several regions and markets

Electric Power: (source EPEX)
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Strategic sectors:
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Natural Gas: Energy Policy, 36:2385–2414, 2008. Egging, Gabriel, Holtz, Zhuang,
A complementarity model for the European natural gas market



Market: Premises

+ Agents (producers, traders, logistics)
-take unilateral decisions
-behave competitively

+ A representative of the consumers (the ISO)
-focuses on the benefits of consumption
-seeking a price that matches supply and demand
-while keeping prices “low”

+ Agents’ actions coupled by some relations, clearing the
market.
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-take unilateral decisions
-behave competitively

+ A representative of the consumers (the ISO)
-focuses on the benefits of consumption
-seeking a price that matches supply and demand
-while keeping prices “low”

+ Agents’ actions coupled by some relations, clearing the
market, (MC)

Today, models from game theory or complementarity leading
to Variational Inequalities (VIs) (i.e., sufficiently "convex")
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Do Different models yield different decisions?

– Mixed Complementarity formulations
Agents maximize profit independently
Supply≥Demand: Market Clearing constraint (MC)
multiplier≡equilibrium price
Price is an exogenous concave
function of the total offer: π= π(

∑
iq
i)

– Models from game theory
Agents minimize cost s.t. MC

MC multiplier≡(variational) equilibrium price

Consumers indirectly represented
Notation: q= (qi,q−i), in particular π= π(qi,q−i)

How different are these models?
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+ Agents (producers, traders, logistics)

ith producer problem

 max ri(qi)

s.t. qi ∈Qi

+ Revenue ri(qi) = π>qi−ci(qi)

(price is an exogenous function of all the offer)

+ Agents’ actions coupled by a market clearing
constraint

+ Equilibrium price coincides with the exogenous
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+ Agents (producers, traders, logistics)

ith producer problem

 max ri(qi,q−i)≡minci(qi,qi)(ci =−ri)

s.t. qi ∈Qi

+ Revenue ri(qi) = π>qi−ci(qi) = ri(qi,q−i)

(price is an exogenous function π(q) of all the offer)

+ Agents’ actions coupled by a market clearing
constraint MC(qi,q−i) = 0 (mult. π)

+ Equilibrium price π̄ coincides with the
exogenous π(q̄)
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Mixed Complementarity Model

Agents problems

 min ci(qi,q−i)

s.t. qi ∈Qi

and, at equilibrium, MC(qi,q−i) = 0 (π̄= π(q̄))

Generalized Nash Game

Agents problems


min ci(qi)

s.t. qi ∈Qi

MC(qi, q̃−i) = 0 (same π̄ for all i)

A Variational Equilibrium of the game is a Generalized Nash
Equilibrium satisfying π̄i = π̄
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J.P. Luna, C. Sagastizábal, M. Solodov. Complementarity and game-theoretical models for equilibria in energy markets:
deterministic and risk-averse formulations. Ch. 10 in Risk Management in Energy Production and Trading, (R.
Kovacevic, G. Pflüg and M. T. Vespucci), "Int. Series in Op. Research and Manag. Sci.", Springer, 2013.

Both models yield equivalent VIs
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s.t. qi ∈Qi

MC(qi, q̃−i) = 0 (π̄i)

Variational Inequality follows from optimality conditions

1st order OC

(primal form)〈
∇qic

i(q̄i),qi− q̄i
〉
≥ 0

∀qi ∈Qi∩MC

In VI(F,C) :
〈
F(q̄),q− q̄

〉
≥ 0 ∀ feasible q

• the VI operator F(q) =
N∏
i=1

Fi(q) for Fi(q) = ∇qic
i(qi)

• the VI feasible set C=

N∏
i=1

Qi
⋂{

q : MC(q) = 0
}decomposability

NOTE: MC does not depend on i: constraint is shared
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Suppose producers pay Ii(zi)

to invest in an increase zi in production capacity

Production bounds go from 0≤ qi ≤ qimax (≡ qi ∈Qi)
to 0≤ qi ≤ qimax+zi (zi,qi) ∈ Xi

ith problem


min Ii(zi)+ci(qi)

s.t. (zi,qi) ∈ Xi

MC(qi,q−i) = 0

≡
minIi(zi)+V i(zi)

V i(zi) =
{

minci(qi)

(zi,qi) ∈Xi

MC(qi,q−i) = 0

can this problem be rewritten as a 2-level problem?
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Incorporating a Capacity Market

When trying to rewrite min Ii(zi)+V i(zi) using

V i(zi,q−i) =


minci(qi)

(zi,qi) ∈ Xi

MC(qi,q−i) = 0

a difficulty arises.
The function V i depends on (zi,q−i), the second-level
problem is a Generalized Nash Game (hard!)
Consistent with reality: Agents will keep competing after
capacity expansion. Similarly for Mixed Complementarity
model and 2 stage with recourse, even without expansion
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Production variables are (naturally) different for each realization: qik
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Investment variables are (naturally) the same for all realizations: zi

Production variables are (naturally) different for each realization: qik

ith problem

for scenario k


min Ii(zi)+cik(qk)

s.t. (zi,qik) ∈ Xik
MCk(q

i
k,q

−i
k ) = 0

Two-stage formulation with recourse not possible
Single-stage formulation instead: find a capacity
expansion compatible with K scenarios of competition
(likewise for generation-only market)
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Risk-neutral agents

Derive VI from

ith problem

using expected value


min Ii(zi)+E[cik(q

i
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i
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k ) = 0 for k= 1 : K

• a VI operator F involving ∇Ii(zi)×∇qi1:K
E
[
ci1:K(q)

]
• a VI feasible set C=

K∏
k=1

N∏
i=1

Xik
⋂{

qk : MCk(qk) = 0
}

decomposability
there is no coupling between scenarios (E is linear)
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Difficulties arise: The risk measure is in general nonsmooth

ρ(Z) :=AV@R ε(Z) = minu
{
u+ 1

1−εE
(
[Zk−u]+

)}
: it is

a value-function and [·]+ is nonsmooth

• the VI operator F involves ∇Ii(zi)×∂qi
1:K
ρ
[
ci1:K(q)

]
,

multivalued
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by means of new variables and constraints



Two ways of handling multivalued VI operator

Reformulation:
Introduce AV@R directly into the agent problem, by
rewriting []+ in

ρ(Z) := min
u

{
u+

1

1−ε
E
(
[Zk−u]+

)}
by means of new variables and constraints

Smoothing:
Smooth the [·]+-function and solve the smoothed VI

ρ`(Z) := min
u

{
u+

1

1−ε
E
(
σ` (Zk−u)

)}
,

for smoothing σ`→ [·]+ uniformly as `→∞
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FROM


min Ii(zi)+ρ[cik(q
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i
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min Ii(zi)+ui + 1
1−εE

(
Ti

k

)
s.t. (zi,qik) ∈ Xik for k= 1 : K

MCk(q
i
k,q

−i
k ) = 0 for k= 1 : K

T ik ≥ cik(qik)−ui ,T ik ≥ 0 for k= 1 : K,u ∈ IR

NOTE: new constraint is NOT shared: no longer a
generalized Nash game, but a bilinear CP (how to show ∃?).
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Keeps feasible set separable by scenarios: easier VI
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+ Reformulation

eliminates nonsmoothness

Non-separable feasible set

+ Smoothing

To drive smoothing parameter to 0: repeated VI solves

Keeps feasible set separable by scenarios: easier VI

Provides existence result!



Smoothing

We use smooth approximations ρ`

ρ`(Z) := min
u

{
u+

1

1−ε
E
[
σ`(Zk−u)

]}
,

for smoothing σ`→ [·]+ uniformly as `→∞. For instance,

σ`(t) = (t+
√
t2+4τ2` )/2

for τ`→ 0.

Since ρ` is smooth, VI(F`,C) has a a single-valued VI

operator involving ∇qiρ
`
[
(cik(qk))

K
k=1

]



Theorems

• like AV@R, ρ` is a risk-measure

– convex, monotone, and translation equi-variant,

– but not positively homogeneous (only coherent in the limit).

• ρ` is C2 for strictly convex smoothings such as

σ`(t) = (t+
√
t2+4τ2` )/2

• Any accumulation point of the smoothed problems solves
the original risk-averse (non-smooth) problem as `→∞.

: existence result!
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• like AV@R, ρ` is a risk-measure

– convex, monotone, and translation equi-variant,

– but not positively homogeneous (only coherent in the limit).

• ρ` is C2 for strictly convex smoothings such as

σ`(t) = (t+
√
t2+4τ2` )/2

• Any accumulation point of the smoothed problems solves
the original risk-averse (non-smooth) problem as `→∞.

existence result!
Reference: An approximation scheme for a class of risk-averse stochastic

equilibrium problems. Luna, Sagastizábal, Solodov



Numerical performance of smoothing

τ`⇒ VI`⇒ τ`+1⇒ VI`+1 . . .until stabilization

for x= (z1:N,q1:N1:K ) stop if

∣∣x̄j+1− x̄j∣∣
max

(
1,
∣∣x̄j+1∣∣) ≤ 0.01

2 players and a consumer representative, player 0. Player 2 has higher
generation costs. Less than 5 solves in average, each solve takes 45
seconds. Excellent solution quality
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For nonconvex generation costs, reformulation becomes slower with
nonconvex generation costs.

Smoothing needs less than 6 solves in average. Once again, after the first
VI solve, PATH much faster for consecutive smoothed VIs:

time of PATHsmoothing ≤ 2× time of PATHreformulation

but: Total time of reformulation increases a lot, it scales less well
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but: Total time of reformulation increases a lot, it scales less well



Final Comments
• When in the agents’ problems the objective or some constraint

depends on actions of other agents, writing down the stochastic
game/VI can be tricky (which selection mechanism in a 2-stage setting?)

• Handling nonsmoothness via reformulation seems inadequate for
large instances

• Smoothing solves satisfactorily the original risk-averse nonsmooth
problem for moderate τ (no need to make τ→ 0)

• Smoothing preserves separability; it is possible to combine

– Benders’ techniques (along scenarios) with

– Dantzig-Wolfe decomposition (along agents)

• Decomposition matters: for European Natural Gas network
– Solving VI directly with PATH solver S. Dirkse, M. C. Ferris, and T. Munson

– Using DW-decomposition saves 2/3 of solution time
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