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Introduction

Background

How to satisfy electricity demands with minimum
costs?

Scope: consider long investment periods, multiple
electricity-generating technologies, and
uncertainties
Policy: renewable portfolio standards, carbon
limits, etc. may necessitate the use of variable
renewable technologies
Perspective: a centralized model where
generation and transmission investments are
planned together
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Introduction

Supply Uncertainty
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Introduction

Supply Variability
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Introduction

Operational Flexibility
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Introduction

Challenges

Multistage forward-looking investments with recourse
Multiscale short- and long-run uncertainties

Long-run: investment costs, technology development, policy changes, fuel
prices, demand growth
Short-run: demand pattern, generation availability, wind speeds, solar
insolation

Problem size explodes if we model multiple stages and all of the
uncertainties explicitly
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Introduction

Model Structure

Stochastic, multistage, multiscale model

å investment-stage
decisions: coarse
timescale

å operating-stage
decisions: fine
timescale
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Illustrative Formulation

Objective Function

min
∑
ω

probability︷︸︸︷
αω

(
∑
τ

∑
t

∑
n

cτt,n,ωX τ
t,n,ω // gen. invest. cost

+
∑

t

∑
l

cL
l,t,ωYl,t,ω // trans. invest. cost

+
∑
τ

∑
t

∑
n

∑
r

Nr ·
∑

d

c̄τt,n,ωPτ
t,n,r ,d // operating cost)
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Illustrative Formulation

Investment-Stage Constraints

0 ≤ X τ
t,n,ω ≤ X τ,max

n ,∀ω, τ, t ,n // investment

0 ≤ Yt,l,ω ≤ Y max
l ,∀ω, t ,n limit∑

τ

∑
n

cτt,n,ωX τ
t,n,ω +

∑
l

cL
l,t,ωYt,l,ω ≤ cmax

t ,∀ω, t // investment budget

X τ
t,n,ωk

= X τ
t,n,ωk̄

: Ωm(ωk ) = Ωm(ωk̄ ),∀m < t , τ, ω, t ,n // investment

Yt,l,ωk = Yt,l,ωk̄
: Ωm(ωk ) = Ωm(ωk̄ ),∀m < t , ω, t ,n nonanticipativity
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Illustrative Formulation

Operating-Stage Constraints
System Constraints

∑
τ

Pτ
t,n,r ,d,ω + PSTD

t,n,r ,d,ω − PSTC
t,n,r ,d,ω + UDt,n,r ,d,ω // load

−
∑

l|O(l)=n

ft,l,r ,d,ω +
∑

l|D(l)=n

ft,l,r ,d,ω = Dt,n,r ,d,ω,∀ω, t ,n, r ,d balance

ft,l,r ,d,ω = Bl · (θt,O(l),r ,d,ω − θt,D(l),r ,d,ω),∀ω, t , l , r ,d // flow def.

− f max
l,ES −

t∑
m=0

Ym,l,ω ≤ ft,l,r ,d,ω ≤ f max
l,ES // flow

+
t∑

m=0

Ym,l,ω,∀ω, t , l , r ,d limit

− π ≤ θt,n,r ,d,ω ≤ π,∀ω, t ,n, r ,d // phase angle
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Illustrative Formulation

Operating-Stage Constraints
Generator Constraints

0 ≤ Pτ
t,n,r ,d,ω ≤ F τ

t,n,r ,d ·

(
X τ

ES,n +
t∑

m=0

X τ
m,n,ω

)
,∀ω, τ, t ,n, r ,d // gen. limit

− Rτ ·

(
X τ

ES +
t∑

m=0

X τ
m,n,ω

)
≤ Pτ

t,n,r ,d,ω − Pτ
t,n,r ,d−1,ω // ramp

≤ Rτ ·

(
X τ

ES +
t∑

m=0

X τ
m,n,ω

)
,∀ω, τ, t ,n, r ,d limit
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Illustrative Formulation

Operating-Stage Constraints
Storage Constraints

PST
t,n,r ,d,ω = PST

t,n,r ,d−1,ω − PSTD
t,n,r ,d,ω + ηPSTC

t,n,r ,d,ω,∀ω, t ,n, r ,d // SoC balance

0 ≤ PST
t,n,r ,d,ω ≤ h ·

(
X ST

ES,n +
t∑

m=0

X ST
m,n,ω

)
,∀ω, t ,n, r ,d // SoC limit

0 ≤ PSTC
t,n,r ,d,ω ≤ X ST

ES,n +
t∑

m=0

X ST
m,n,ω,∀ω, t ,n, r ,d // charge limit

0 ≤ PSTD
t,n,r ,d,ω ≤ X ST

ES,n +
t∑

m=0

X ST
m,n,ω,∀ω, t ,n, r ,d // discharge limit
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Illustrative Formulation

Two Challenges

1 Many operating stages to capture fine-scale uncertainties
2 Many investment-stage scenarios to capture coarse uncertainties
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Representative Operating-Stage Periods

Operating-Stage Periods

Problem: Model is intractable if solving dispatch decisions for every hour
in the operating stage
Standard Solution: Use representative hours, based on LDC, to represent
operating stage

å Loses correlations between load, wind, and solar
å Cannot model intertemporal constraints (e.g., storage, ramping)

Our Solution: Use representative days with intact correlation structures
and intertemporal constraints in operating stage
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Representative Operating-Stage Periods

Representative Days

Each representative day contains
one day’s hourly load, solar, and
wind data in each region
Cluster to generate representative
days that respects the correlation
among variables, locations, and
time

Figure: There are 72 data points in a
representative day for each region
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Representative Operating-Stage Periods

Clustering Methods

Method 1
å Hierarchical Clustering using Dynamic

Time Warping
å Dynamic Time Warping: measures

similarity between two time series, which
may vary in time

Method 2
å Step 1: Use k -means clustering, with

Euclidean distance as a metric, to find a
starting set of clusters

å Step 2: Apply Method 1 within each
cluster to find representative days
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Representative Operating-Stage Periods

Clustering Test

Dataset: One year’s hourly wind, solar, and load data for three cities in
Texas
Model: An investment model with one investment stage and 20 years’
operations
Method:

å Run the model with original dataset and with representative days from
Methods 1 and 2

å Compare investment decisions and total cost
å Investigate how decisions change as a function of model inputs
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Representative Operating-Stage Periods

k -Means Clustering

k -means clustering is fast, but provides no representative days for the
clusters
Using cluster centroids gives poor results—variable renewables are
overbuilt because they are modeled as having ‘average’ performance
Percentiles within clusters could overcome this
Hierarchical clustering within each k -means cluster provides an actual
day from the underlying data
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Representative Operating-Stage Periods

Investment Cost
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Representative Operating-Stage Periods

Investment Capacities
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Representative Operating-Stage Periods

Clustering Results

The two clustering methods perform similarly well overall
Method 2 takes less time to implement: Method 1 takes about 15 minutes
in R studio as opposed to 2 minutes for Method 2
30 clusters (representative days) gives a good approximation of original
dataset
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Decomposition Method

Investment-Stage Scenarios

Problem: Model may need many investment-stage scenarios to capture
coarse-grain uncertainties
Some Solutions:

1 Lagrangian relaxation: multiplier updates highly sensitive to problem data
2 Progressive hedging algorithm1

3 Linear decision rules (Kuhn): Fallback option—model decisions as being a
linear function of problem data:

x = Aξ

need to find coefficients, A

1Rockafellar and Wets (1991): “Scenario and policy aggregation in optimization under
uncertainty”.
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Decomposition Method

Progressive Hedging

Suppose we have the following stochastic problem:

min
x

∑
s∈S

psfs(xs) (1)

s.t. xs ∈ Cs // xs is admissible

xs is implementable

Relax nonanticipativity to get scenario-s problem:

min
xs

fs(xs) (2)

s.t. xs ∈ Cs
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Decomposition Method

Progressive Hedging

Add penalty for nonanticipativity violations:

min
xs

fs(xs) +
[
W>xs +

ρ

2
||xs − x̂ ||2

]
(3)

s.t. xs ∈ Cs

W : Lagrange multiplier vector
ρ: positive penalty parameter, introduced to attain convergence stability in
an algorithmic sense
x̂=

∑
s∈S psxs: average of xs ’s
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Decomposition Method

Algorithm

1: for s ∈ S do
2: Solve Problem (2) for scenario s
3: end for
4: x̂ ←

∑
s∈S psxs

5: Wt ← ρ · (xt − x̂t )
6: while |x − x̂ | > ε do
7: for s ∈ S do
8: Solve Problem (3) for scenario s
9: end for

10: x̂ ←
∑

s∈S psxs
11: Wt ← ρ · (xt − x̂t )
12: end while
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Decomposition Method

Lower Bound

A feasible solution gives an upper bound
The dual of the non-anticipativity constraints in two-stage stochastic MIPs
define implicit lower bounds2∑

s

ps[min fs(xs) + W>xs]

We show a similar bound for multi-stage stochastic problems
Allows us to assess the quality of a progressive hedging solution
LB obtained with the same effort as one PH iteration

2Gade et al. (2014): “Obtaining Lower Bounds from the Progressive Hedging Algorithm for
Stochastic Mixed-Integer Programs”.
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Decomposition Method

Performance of PHA

Table: Performance of PHA with Different Number of Representative Days in Operating
Stage

Full Problem PHA
CPU Time Objective CPU Time Upper Bound Lower Bound

Days Variables Constraints [s] [$ billion] [s] [$ billion] [$ billion]

3 1337856 2248967 2968 95.096 1161 95.122 95.095
9 3992064 6727943 16535 100.988 5898 101.011 100.988

Tested on a three-region system
Four investment periods, each operating stage lasts 10 years
128 scenarios in total
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Decomposition Method

Investment Decisions

The investment decisions from the original model and the decomposed
model are similar
Maximum and average absolute differences < 2% and 0.3%

Table: Investment Capacities [MW]

Investment No Decomposition Decomposed Model
Period Bus 1 Bus 2 Bus 3 Bus 1 Bus 2 Bus 3

1 37717 3495 7781 37672 3502 7791
2 1985 2427 3634 1982 2423 3632
3 4509 2621 6728 4528 2621 6731
4 8402 949 2082 8407 951 2042
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Decomposition Method

Upper Bounds and Lower Bounds

3 Representative Days 9 Representative Days
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Conclusions and Future Work
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Conclusions and Future Work

Conclusions

Decisions and uncertainties occur at different stages and scales
Long-term uncertainties are explicitly modeled in the scenario tree
Short-term uncertainty are implicitly modeled through different
operating-stage problems
The resulting multistage multiscale stochastic model can be effectively
solved using PHA
Representative days allows intertemporal constraints to be captured in
long-term investment decisions
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Conclusions and Future Work

Future Work

Comprehensive numerical case study
Study effects of variable renewable energy sources on price signals and
investment cost remuneration
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Conclusions and Future Work

Questions?
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