

Supported by the Norwegian Research Council

¹NHH/SNF ²SINTEF ³University of Auckland

Congestion management and balancing

Reasons for inadequate congestion handling:

- · Congestion within areas not considered (in full)
- · «Loop-flow» not included in market clearing
- Inadequate representation of capacity constraints

Figure 2. Power generation by power source in the Nordic region in 2013

Nordic electricity market

Model

Table 13. Nordic Generation capacity (MW) by power source, 2013

	Denmark	Finland	Norway	Sweden	Nordic region
Installed capacity (total)	14,861	17,300	32,879	38,273	103 313
Nuclear power	-	2,752	-	9,531	12 283
Other thermal power	6,989	11,135	1,040	8,079	27 243
- Condensing power	-	2,465	-	1,375	3 840
- CHP, district heating	1,929	4,375	-	3,631	9 935
- CHP, industry	562	3,180	-	1,498	5 240
- Gas turbines etc.	-	1,115	-	1,575	2 690
Hydro power	9	3,125	30,900	16,150	50 184
Wind power	4,809	288	811	3,745	9 653
Sun power	563	0	N/A	43	606

Source: Swedenergy, NVE, DERA, EMI

√ Q (~ 4 / 33

Nord Pool Spot - 2015/01/12, 18-19

Conclusions

References

Towards Single European Market: Next Steps

References

Flexibility costs and uncertainty

Model

- Literature:
 - Wong and Fuller (2007); Bouffard et al. (2005b,a); Pritchard et al. (2010); Khazaei et al. (2012); Morales et al. (2012); Khazaei et al. (2013, 2014a,b); Morales et al. (2014); Zugno and Conejo (2013) ...
- Our paper:
 - Energy-only stochastic market clearing as in Pritchard et al. (2010)
 - How should the day-ahead part of the market be modeled?
 - Effects of day-ahead network flow and balance constraints
 - Compare to a sequential market clearing model with myopic clearing of the day-ahead part of the market

Introduction	Model	Day-ahead formulations	Numerical examples	Conclusions	References
Outline					

- 3 Day-ahead formulations
- 4 Numerical examples

Day-ahead and real-time generation (\geq 0) and load (\leq 0) quantities:

$$\begin{aligned} x_i \in C_i^1 & \forall i \in I \\ X_{i\omega} \in C_i^2(\omega, x_i) & \forall i \in I, \ \omega \in \Omega \end{aligned}$$

Upregulation $X_{i\omega}^{u} = \max\{X_{i\omega} - x_{i}, 0\}$ or downregulation $X_{i\omega}^{d} = \max\{x_{i} - X_{i\omega}, 0\}$ for flexible entities.

 Cost of real-time quantity at day-ahead parameters:

$$c_i(X_{i\omega}) = a_i X_{i\omega} + 0.5 b_i (X_{i\omega})^2$$

Flexibility cost:

$$egin{aligned} & ilde{c}_i(x_i, X_{i\omega}) = &(a^u_i - a_i) X^u_{i\omega} + 0.5 (b^u_i - b_i) (X^u_{i\omega})^2 \ &+ &(a_i - a^d_i) X^d_{i\omega} + 0.5 (b^d_i - b_i) (X^d_{i\omega})^2 \end{aligned}$$

Stochastic market clearing model

Model

$$\min_{\substack{x,f,X,F}} \mathbb{E}\left[\sum_{i\in I} \left(c_i(X_i) + \tilde{c}_i(x_i, X_i)\right)\right] \tag{1a}$$
s.t.
$$x_i \in C_i^1 \qquad \forall i \in I \qquad (1b)$$

$$X_{i\omega} \in C_i^2(\omega, x_i) \qquad \forall i \in I, \ \omega \in \Omega \qquad (1c)$$

$$\tau_n(f) + \sum_{i\in I(n)} x_i = 0 \qquad \forall n \in N \qquad [\pi_n] \qquad (1d)$$

$$\tau_n(F_\omega) - \tau_n(f) + \sum_{i\in I(n)} (X_{i\omega} - x_i) = 0 \quad \forall n \in N, \ \omega \in \Omega \qquad [p_\omega \lambda_{n\omega}] \qquad (1e)$$

$$f \in U^1 \qquad (1f)$$

$$F_\omega \in U^2 \qquad \forall \omega \in \Omega \qquad (1g)$$

< □ ト < □ ト < 亘 ト < 亘 ト < 亘 ト 三 の Q () 15 / 33

Myopic market clearing model - day-ahead part

$$\min_{x,f} \sum_{i \in I} c_i(x_i)$$
(2a)
s.t.
$$x_i \in C_i^1 \qquad \forall i \in I \qquad (2b) \\ \tau_n(f) + \sum_{i \in I(n)} x_i = 0 \qquad \forall n \in N \qquad [\pi_n] \qquad (2c)$$

$$f \in U^1 \tag{2d}$$

$$\min_{\substack{X_{\omega}, F_{\omega} \\ \text{s.t.}}} \sum_{i \in I} \left(c_i(X_{i\omega}) + \tilde{c}_i(x_i, X_{i\omega}) \right)$$
(3a)
s.t.
$$X_{i\omega} \in C_i^2(\omega, x_i) \qquad \forall i \in I$$
(3b)

$$au_n(F_\omega) - au_n(f) + \sum_{i \in I(n)} (X_{i\omega} - x_i) = 0 \quad \forall n \in N \qquad [p_\omega \lambda_{n\omega}] \quad (3c)$$

$$F_{\omega} \in U^2$$
 (3d)

Day-ahead constraints

- We assume that U^2 represents the network constraints in a DC load flow model without losses
- What should U^1 represent?

Alternative day-ahead network representations

- Nodal model, i.e., $U^1 = U^2$
- 2 Zonal model
 - No loop flow
 - Aggregate flow capacities set by system operator(s)
- **③** Unconstrained flow, i.e., $U^1 = \mathbb{R}^{|L|}$
- Onconstrained flow and balance

$$\min[v_{\textit{nodal}}^{\textit{stoch}}, v_{\textit{zonal}}^{\textit{stoch}}] \ge v_{\textit{bal}}^{\textit{stoch}} \ge v_{\textit{unc}}^{\textit{stoch}}$$

•
$$P(1) = P(2) = 0.5$$

- Real-time quantities X_ω are given above
- All cost parameters equal zero, except $a_1^u = a_2^u = 1$ and $a_3^u = 0.25$
- All lines have identical impedances
- Capacity of line (2,3) is 40

min
$$0.5 \cdot 1 \cdot ([30 - x_1]^+ + [0 - x_1]^+ + [0 - x_3]^+ + [60 - x_3]^+)$$

+ $0.5 \cdot 0.25 \cdot ([-30 - x_3]^+ + [-60 - x_3]^+)$
s.t.

$$x_1 + x_2 + x_3 = 0$$

- 40 $\leq \frac{x_2 - x_3}{3} \leq 40$

References

Example 1 - optimal day-ahead schedules

$$\begin{aligned} v_{unc}^{stoch} &= 0 \\ v_{bal}^{stoch} &= 0.5 \cdot (-30 - (-90)) \cdot 0.25 \\ &+ 0.5 \cdot (-60 - (-90)) \cdot 0.25 = 11.25 \end{aligned}$$

$$\begin{split} s_{nodal}^{stoch} &= 0.5 \cdot (-30 - (-75)) \cdot 0.25 \\ &+ 0.5 \cdot \left[(60 - 45) \cdot 1 \right. \\ &+ (-60 - (-75)) \cdot 0.25 \right] = 15 \end{split}$$

Node 2: Nuclear + Thermal

Introduction	Model	Day-ahead formulations	Numerical examples	Conclusions	References
Wind so	cenario	S			

Cost and benefit parameters

Model

Entity	Node	Intercept ((a)	Slope (b)	Flexible?	Flex. cost up	Flex. cost down
Wind	1	0		0	Partly	-	_
Load	1	150		0.01	Yes	$b^{u} = 30b$	-
Nucl.	2	2		0	No	-	-
Therm.	2	10		0	Yes	$a^u - a = 6$	-
Hydro	3	0		0.01	Yes	$b^u = 10b$	-

References

Example 2 - optimal values, stochastic model

Model	Value (1000 €s)
Wait-and-see	956.620
Unconstrained	952.500
Balanced	950.808
Nodal	950.542
Zonal ($cap_{\{1\},\{2,3\}} = 3000$)	938.986
Zonal ($cap_{\{1\},\{2,3\}} = 5000$)	950.808

Example 2 - optimal schedules, stochastic model

Nodal model

Model

Unconstrained model

		Real-time adj.				
Entity	Day-head	Low Medium Hig				
Wind	0		7000	13800		
Nucl.	1200					
Therm.	42	-42	438	-42		
Hydro	3517	83	-877	-3517		
Load	-4758	-42	-6562	-10242		
Total	0	0	0	0		

		Real-time adj				
Entity	Day-head	Low	Medium	High		
Wind	0		7000	14000		
Nucl.	1000	800		800		
Hvdro	4000	- 000	- 1600	-4000		
Load	-5000		- 6200	-10000		
Total	800	- 800	-800	-800		

Power flow - nodal model

Example 2 - cost and benefit effects, stochastic model

Nodal model

Model

Unconstrained model

		Flex	Flex costs $(-\tilde{c})$			
Entity	$\mathbb{E}[-c]$	Low	Medium	High	$\mathbb{E}[-c - \tilde{c}]$	
Wind Nucl. Therm.	0.000 -2.400 -2.400	0.010	-2.630		0.000 -2.400 -3.715	
Hydro Load	- 30.384 987.104	-0.313			-30.447 987.104	
Total	951.920	-0.313	-2.630 -	- 0.000	950.542	

	Flex	<. costs ($-\tilde{c}$)	
$\mathbb{E}[-c]$	Low	Medium	High	$\mathbb{E}[-c - \tilde{c}]$
0.000				0.000
0.000				0.000
-2.000				-2.000
-4.000				-4.000
- 30.400				-30.400
988.900				988.900
952.500	0.000	0.000	0.000	952.500

 Infeasibility issue, e.g. due to scheduling of non-flexible nuclear in day-ahead market

30/33

Myopic / balanced model - effect of day-ahead wind capacity

Conclusions and further research

Model

- Too restrictive constraints in the day-ahead stage of a stochastic market clearing model may hinder flexibility and yield sub-optimal solutions
- Examples of such constraints are DC load flow capacitites, European-style zonal capacities, and even nodal balance constraints
- Further research:
 - Pricing
 - Investigate relevance for deterministic (sequential) market clearing models

Introduction	Model	Day-ahead formulations	Numerical examples	Conclusions	References
Referen	ces				

- Bouffard, F., Galiana, F. D., and Conejo, A. J. (2005a). Market-clearing with stochastic security-part i: formulation. Power Systems, IEEE Transactions on, 20(4):1818-1826.
- Bouffard, F., Galiana, F. D., and Conejo, A. J. (2005b). Market-clearing with stochastic security-part ii: Case studies. Power Systems, IEEE Transactions on, 20(4):1827–1835.
- Khazaei, J., Zakeri, G., and Oren, S. (2012). Single and multi-settlement approaches to market clearing mechanisms under demand uncertainty.
- Khazaei, J., Zakeri, G., and Oren, S. (2013). Deterministic vs. stochastic settlement approaches to market clearing mechanisms under demand uncertainty.
- Khazaei, J., Zakeri, G., and Oren, S. S. (2014a). Market clearing mechanisms under uncertainty.
- Khazaei, J., Zakeri, G., and Pritchard, G. (2014b). The effects of stochastic market clearing on the cost of wind integration: a case of new zealand electricity market. *Energy Systems*, 5(4):657–675.
- Morales, J., Conejo, A., Liu, K., and Zhong, J. (2012). Pricing electricity in pools with wind producers. Power Systems, IEEE Transactions on, 27(3):1366–1376.
- Morales, J. M., Zugno, M., Pineda, S., and Pinson, P. (2014). Electricity market clearing with improved scheduling of stochastic production. European Journal of Operational Research, 235(3):765 – 774.
- Pritchard, G., Zakeri, G., and Philpott, A. (2010). A single-settlement, energy-only electric power market for unpredictable and intermittent participants. *Operations Research*, 58(4-part-2):1210-1219.
- Wong, S. and Fuller, J. D. (2007). Pricing energy and reserves using stochastic optimization in an alternative electricity market. Power Systems, IEEE Transactions on, 22(2):631–638.
- Zugno, M. and Conejo, A. J. (2013). A robust optimization approach to energy and reserve dispatch in electricity markets. Technical report, Technical University of Denmark.