Congestion Management in a Stochastic Dispatch Model for Electricity Markets

Endre Bjørndal1, Mette Bjørndal1, Kjetil Midthun2, Golbon Zakeri3

Workshop on Optimization and Equilibrium in Energy Economics
UCLA, January 2016

Supported by the Norwegian Research Council

1NHH/SNF
2SINTEF
3University of Auckland
Reasons for inadequate congestion handling:

• Congestion within areas not considered (in full)
• «Loop-flow» not included in market clearing
• Inadequate representation of capacity constraints
Figure 2. Power generation by power source in the Nordic region in 2013

- Hydro: 203 TWh (53%)
- Nuclear: 86 TWh (23%)
- Fossil: 47 TWh (12%)
- Biomass: 23 TWh (6%)
- Wind: 24 TWh (6%)

Source: ENTSO-E
Table 13. Nordic Generation capacity (MW) by power source, 2013

<table>
<thead>
<tr>
<th></th>
<th>Denmark</th>
<th>Finland</th>
<th>Norway</th>
<th>Sweden</th>
<th>Nordic region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installed capacity (total)</td>
<td>14,861</td>
<td>17,300</td>
<td>32,879</td>
<td>38,273</td>
<td>103,313</td>
</tr>
<tr>
<td>Nuclear power</td>
<td>-</td>
<td>2,752</td>
<td>-</td>
<td>9,531</td>
<td>12,283</td>
</tr>
<tr>
<td>Other thermal power</td>
<td>6,989</td>
<td>11,135</td>
<td>1,040</td>
<td>8,079</td>
<td>27,243</td>
</tr>
<tr>
<td>- Condensing power</td>
<td>-</td>
<td>2,465</td>
<td>-</td>
<td>1,375</td>
<td>3,840</td>
</tr>
<tr>
<td>- CHP, district heating</td>
<td>1,929</td>
<td>4,375</td>
<td>-</td>
<td>3,631</td>
<td>9,935</td>
</tr>
<tr>
<td>- CHP, industry</td>
<td>562</td>
<td>3,180</td>
<td>-</td>
<td>1,498</td>
<td>5,240</td>
</tr>
<tr>
<td>- Gas turbines etc.</td>
<td>-</td>
<td>1,115</td>
<td>-</td>
<td>1,575</td>
<td>2,690</td>
</tr>
<tr>
<td>Hydro power</td>
<td>9</td>
<td>3,125</td>
<td>30,900</td>
<td>16,150</td>
<td>50,184</td>
</tr>
<tr>
<td>Wind power</td>
<td>4,809</td>
<td>288</td>
<td>811</td>
<td>3,745</td>
<td>9,653</td>
</tr>
<tr>
<td>Sun power</td>
<td>563</td>
<td>0</td>
<td>N/A</td>
<td>43</td>
<td>606</td>
</tr>
</tbody>
</table>

Source: Swedenergy, NVE, DERA, EMI
Nord Pool Spot - 2015/01/12, 18-19
Towards Single European Market:
Next Steps

- Markets included in PCR - over 2800 TWh of yearly consumption
- Markets associate members of PCR
- Markets that could join next as part of an agreed European roadmap
Markets and systems for:

- **Real-time balancing** (Regulating power market, and other ancillary services)
- **Congestion alleviation**
Flexibility costs and uncertainty

- High uncertainty
- Low uncertainty

Flexibility costs: extra adjustment costs
e.g. due to
- resetting plans,
- non-optimal operation,
- more expensive units
- rules of the auction

Day-ahead market | Regulation market | Delivery hour (e.g. 08:00-08:59)
Stochastic market clearing

- Literature:
 - Wong and Fuller (2007); Bouffard et al. (2005b,a); Pritchard et al. (2010); Khazaei et al. (2012); Morales et al. (2012); Khazaei et al. (2013, 2014a,b); Morales et al. (2014); Zugno and Conejo (2013) ...

- Our paper:
 - Energy-only stochastic market clearing as in Pritchard et al. (2010)
 - How should the day-ahead part of the market be modeled?
 - Effects of day-ahead network flow and balance constraints
 - Compare to a sequential market clearing model with myopic clearing of the day-ahead part of the market
Day-ahead and real-time generation (≥ 0) and load (≤ 0) quantities:

$$x_i \in C^1_i \quad \forall i \in I$$
$$X_{i\omega} \in C^2_i(\omega, x_i) \quad \forall i \in I, \ \omega \in \Omega$$

Upregulation $X_{i\omega}^u = \max\{X_{i\omega} - x_i, 0\}$ or downregulation $X_{i\omega}^d = \max\{x_i - X_{i\omega}, 0\}$ for flexible entities.
Generator cost functions

\[a_i + b_i x_i \]

\[a_i - a_i^{d} \]

\[b_i \]

\[b_i^{d} \]
Load benefit curves

\[a_i + b_i x_i \]

\[a_i - a_i^d \]

\[b_i \]

\[b_i^u \]

\[a_i^u - a_i \]

\[X_{i \omega_1} \]

\[X_{i \omega_2} \]
Objective function

Cost of real-time quantity at day-ahead parameters:

\[c_i(X_{i\omega}) = a_i X_{i\omega} + 0.5b_i(X_{i\omega})^2 \]

Flexibility cost:

\[\tilde{c}_i(x_i, X_{i\omega}) = (a_i^u - a_i)X_{i\omega}^u + 0.5(b_i^u - b_i)(X_{i\omega}^u)^2 \\
+ (a_i - a_i^d)X_{i\omega}^d + 0.5(b_i^d - b_i)(X_{i\omega}^d)^2 \]
Stochastic market clearing model

\[
\min_{x, f, X, F} \mathbb{E} \left[\sum_{i \in I} \left(c_i(X_i) + \tilde{c}_i(x_i, X_i) \right) \right] \tag{1a}
\]

s.t.
\[
\begin{align*}
\forall i \in I & : x_i \in C_i^1 \tag{1b} \\
\forall i \in I, \omega \in \Omega & : X_{i\omega} \in C_i^2(\omega, x_i) \tag{1c} \\
\forall n \in N & : \tau_n(f) + \sum_{i \in I(n)} x_i = 0 \tag{1d} \\
\forall n \in N, \omega \in \Omega & : \tau_n(F_\omega) - \tau_n(f) + \sum_{i \in I(n)} (X_{i\omega} - x_i) = 0 \tag{1e} \\
\forall \omega \in \Omega & : f \in U^1 \tag{1f} \\
\forall \omega \in \Omega & : F_\omega \in U^2 \tag{1g}
\end{align*}
\]
Myopic market clearing model - day-ahead part

\[
\begin{align*}
\min_{x,f} & \quad \sum_{i \in I} c_i(x_i) \quad (2a) \\
\text{s.t.} & \quad x_i \in C_i^1 \quad \forall i \in I \quad (2b) \\
& \quad \tau_n(f) + \sum_{i \in I(n)} x_i = 0 \quad \forall n \in N \quad [\pi_n] \quad (2c) \\
& \quad f \in U^1 \quad (2d)
\end{align*}
\]
Myopic market clearing model - real-time part, scenario ω

\[
\min_{X_\omega,F_\omega} \sum_{i \in I} \left(c_i(X_i\omega) + \tilde{c}_i(x_i,X_i\omega) \right)
\]
\[
\text{s.t.}
\]
\[
X_i\omega \in C_i^2(\omega,x_i) \quad \forall i \in I
\]
\[
\tau_n(F_\omega) - \tau_n(f) + \sum_{i \in I(n)} (X_i\omega - x_i) = 0 \quad \forall n \in N \quad [p_\omega\lambda_{n\omega}]
\]
\[
F_\omega \in U^2
\]
Day-ahead constraints

- We assume that U^2 represents the network constraints in a DC load flow model without losses
- What should U^1 represent?
Alternative day-ahead network representations

1. Nodal model, i.e., $U^1 = U^2$
2. Zonal model
 - No loop flow
 - Aggregate flow capacities set by system operator(s)
3. Unconstrained flow, i.e., $U^1 = \mathbb{R}^{|L|}$
4. Unconstrained flow and balance

$$\min[v_{nodi}^{stoch}, v_{zonal}^{stoch}] \geq v_{bal}^{stoch} \geq v_{unc}^{stoch}$$
Example 1

- \(P(1) = P(2) = 0.5 \)
- Real-time quantities \(X_\omega \) are given above
- All cost parameters equal zero, except \(a_1^u = a_2^u = 1 \) and \(a_3^u = 0.25 \)
- All lines have identical impedances
- Capacity of line (2,3) is 40
Example 1 - stochastic model

\[
\begin{align*}
\text{min } & \quad 0.5 \cdot 1 \cdot ([30 - x_1]^+ + [0 - x_1]^+ + [0 - x_3]^+ + [60 - x_3]^+) \\
& \quad + 0.5 \cdot 0.25 \cdot ([-30 - x_3]^+ + [-60 - x_3]^+) \\
\text{s.t.} & \quad x_1 + x_2 + x_3 = 0 \\
& \quad -40 \leq \frac{x_2 - x_3}{3} \leq 40
\end{align*}
\]
Example 1 - optimal day-ahead schedules

\[v_{\text{unc}}^{\text{stoch}} = 0 \]

\[v_{\text{bal}}^{\text{stoch}} = 0.5 \cdot (-30 - (-90)) \cdot 0.25 + 0.5 \cdot (-60 - (-90)) \cdot 0.25 = 11.25 \]

\[v_{\text{nodal}}^{\text{stoch}} = 0.5 \cdot (-30 - (-75)) \cdot 0.25 + 0.5 \cdot [60 - 45] \cdot 1 + (-60 - (-75)) \cdot 0.25 = 15 \]
Example 2

Node 2: Nuclear + Thermal

- Euros/MWh: 0, 10000, 15000
- MWh/h: 0, 10000, 15000

Node 1: Wind (scen. 2) – Consumption

- Euros/MWh: 0, 7000, 150
- MWh/h: 0, 2000, 3000

Node 3: Hydro

- Euros/MWh: 0, 150
- MWh/h: 0, 15000

\[b = 0.01 \]
Wind scenarios

- $p_1 = 0.2$
- $p_2 = 0.5$
- $p_3 = 0.3$

- Wind = 0
- Wind = 7000
- Wind = 15000
Cost and benefit parameters

<table>
<thead>
<tr>
<th>Entity</th>
<th>Node</th>
<th>Intercept (a)</th>
<th>Slope (b)</th>
<th>Flexible?</th>
<th>Flex. cost up</th>
<th>Flex. cost down</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Partly</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Load</td>
<td>1</td>
<td>150</td>
<td>0.01</td>
<td>Yes</td>
<td>$b^u = 30b$</td>
<td>-</td>
</tr>
<tr>
<td>Nucl.</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>No</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Therm.</td>
<td>2</td>
<td>10</td>
<td>0</td>
<td>Yes</td>
<td>$a^u - a = 6$</td>
<td>-</td>
</tr>
<tr>
<td>Hydro</td>
<td>3</td>
<td>0</td>
<td>0.01</td>
<td>Yes</td>
<td>$b^u = 10b$</td>
<td>-</td>
</tr>
</tbody>
</table>
Example 2 - optimal values, stochastic model

<table>
<thead>
<tr>
<th>Model</th>
<th>Value (1000 €s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wait-and-see</td>
<td>956.620</td>
</tr>
<tr>
<td>Unconstrained</td>
<td>952.500</td>
</tr>
<tr>
<td>Balanced</td>
<td>950.808</td>
</tr>
<tr>
<td>Nodal</td>
<td>950.542</td>
</tr>
<tr>
<td>Zonal ((cap_{{1},{2,3}} = 3000))</td>
<td>938.986</td>
</tr>
<tr>
<td>Zonal ((cap_{{1},{2,3}} = 5000))</td>
<td>950.808</td>
</tr>
</tbody>
</table>
Example 2 - optimal schedules, stochastic model

Nodal model

<table>
<thead>
<tr>
<th>Entity</th>
<th>Day-head</th>
<th>Real-time adj.</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind</td>
<td>0</td>
<td>7000</td>
<td>13800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nucl.</td>
<td>1200</td>
<td>-42</td>
<td>438</td>
<td>-42</td>
<td></td>
</tr>
<tr>
<td>Therm.</td>
<td>42</td>
<td>83</td>
<td>-877</td>
<td>-3517</td>
<td></td>
</tr>
<tr>
<td>Hydro</td>
<td>3517</td>
<td>-42</td>
<td>-6562</td>
<td>-10242</td>
<td></td>
</tr>
<tr>
<td>Load</td>
<td>-4758</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Power flow - nodal model

Unconstrained model

<table>
<thead>
<tr>
<th>Entity</th>
<th>Day-head</th>
<th>Real-time adj.</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind</td>
<td>0</td>
<td>7000</td>
<td>14000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nucl.</td>
<td>1000</td>
<td>-800</td>
<td>-800</td>
<td>-800</td>
<td></td>
</tr>
<tr>
<td>Therm.</td>
<td>800</td>
<td>800</td>
<td>-800</td>
<td>-800</td>
<td></td>
</tr>
<tr>
<td>Hydro</td>
<td>4000</td>
<td>1200 (−42)</td>
<td>1680 (438)</td>
<td>-4000</td>
<td></td>
</tr>
<tr>
<td>Load</td>
<td>-5000</td>
<td>2800 (42)</td>
<td>3600 (83)</td>
<td>-3517</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>800</td>
<td>-800</td>
<td>-800</td>
<td>-800</td>
<td></td>
</tr>
</tbody>
</table>
Example 2 - cost and benefit effects, stochastic model

Nodal model

<table>
<thead>
<tr>
<th>Entity</th>
<th>(E[-c])</th>
<th>Flex. costs ((\bar{c}))</th>
<th>(E[-c - \bar{c}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind</td>
<td>0.000</td>
<td>Low: -2.400 Medium: -2.630</td>
<td>High: 0.000</td>
</tr>
<tr>
<td>Nuc.</td>
<td>-2.400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Therm.</td>
<td>-2.400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydro</td>
<td>-30.384</td>
<td>-0.313</td>
<td>-30.447</td>
</tr>
<tr>
<td>Load</td>
<td>987.104</td>
<td></td>
<td>987.104</td>
</tr>
<tr>
<td>Total</td>
<td>951.920</td>
<td>-0.313</td>
<td>-2.630 -0.000</td>
</tr>
</tbody>
</table>

Unconstrained model

<table>
<thead>
<tr>
<th>(E[-c])</th>
<th>Flex. costs ((\bar{c}))</th>
<th>(E[-c - \bar{c}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>Low: -2.000 Medium: -4.000</td>
<td>High: 0.000</td>
</tr>
<tr>
<td>-2.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-4.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-30.400</td>
<td>-30.400</td>
<td></td>
</tr>
<tr>
<td>988.900</td>
<td>988.900</td>
<td></td>
</tr>
<tr>
<td>952.500</td>
<td>0.000 0.000 0.000 0.000</td>
<td>952.500</td>
</tr>
</tbody>
</table>
Myopic model

- Infeasibility issue, e.g. due to scheduling of non-flexible nuclear in day-ahead market
Myopic / nodal model - effect of day-ahead wind capacity
Conclusions and further research

- Too restrictive constraints in the day-ahead stage of a stochastic market clearing model may hinder flexibility and yield sub-optimal solutions.
- Examples of such constraints are DC load flow capacities, European-style zonal capacities, and even nodal balance constraints.
- Further research:
 - Pricing
 - Investigate relevance for deterministic (sequential) market clearing models
References

