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Motivation: Data Alignment Problem

Correlated data structures

Data collection (from many sources) is ubiquitous.

Different data structures/sources offer many great benefits for
inference.

Understanding and quantifying the correlation between data
structures are among the most fundamental tasks in statistics!

Modern challenges: data structures are high-d, noisy,
unlabeled/scrambled.

This precludes “direct” inference/data junction.

General goal: determine if 3 a correspondence under which
the sources are “correlated”.
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Motivation: Data Alignment Problem (Cont'd)

Pictorially...
e Multiple data structures/sources are available.
@ Each source provides information for entities (e.g., users).

@ The correspondence between different sources is
unknown /obfuscated.

| | |
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Struc.#1  Struc.#2

3/17



Motivation: Data Alignment Problem (Cont'd)

Pictorially...
e Multiple data structures/sources are available.
@ Each source provides information for entities (e.g., users).

@ If “correlation” is sufficiently large maybe it is possible to
glean something about the correspondence.

—
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Motivation: Data Alignment Problem (Cont'd)

Pictorially...
e Multiple data structures/sources are available.
@ Each source provides information for entities (e.g., users).

@ Valuable tool to recover missing information by labeling
unlabeled features and allowing the junction of data coming
from different sources.

——
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Motivation: Data Alignment Problem (Cont'd)

Pictorially...
e Multiple data structures/sources are available.
@ Each source provides information for entities (e.g., users).

@ Crucial to understand limitations of data alignment so as to
assess the feasibility and reliability of alignment procedures.

—

Data Data
Struc.#1  Struc.#2
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Motivation: Folklore Example

Netflix Prize

o Netflix prize: take dataset and come up with a better
recommendation algorithm.

@ Dataset: lists of features for a set of entities, say, users.
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o Netflix prize: take dataset and come up with a better
recommendation algorithm.

@ Privacy concern: unique identifying sensitive information (e.g.,
names, user IDs) is deleted from a database while other
features (e.g., movie ratings) are left unchanged.

@ No side information: could be effective for protecting user
privacy (while providing access to data).
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Motivation: Folklore Example

Netflix Prize

Netflix prize: take dataset and come up with a better
recommendation algorithm.

Privacy concern: unique identifying sensitive information (e.g.,
names, user IDs) is deleted from a database while other
features (e.g., movie ratings) are left unchanged.

Side information is abundant in the public domain!

[Narayanan&Shmatikov'08,09]: many Netflix user IDs can be
matched with IMDb profiles.

Netflix prize dataset (anonymized): User IDs, movie IDs,
movie ratings.

IMDb dataset (public): Usernames, movie names, movie
ratings.
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Motivation: Folklore Example

Netflix Prize

o Netflix prize: take dataset and come up with a better
recommendation algorithm.

@ Privacy concern: unique identifying sensitive information (e.g.,
names, user IDs) is deleted from a database while other
features (e.g., movie ratings) are left unchanged.

e Side information is abundant in the public domain!

e Crucial to understand the conditions that allow/prevent
privacy breaches, and vulnerability of de-anony. schemes.
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Motivation: Graph Alignment/(Noisy) Graph Isomorphism
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@ In many modern applications, observations appear as graphs.
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“Interactions among users”
@ In many modern applications, observations appear as graphs.

@ Node labels may be absent or scrambled.

[Wu&Xu&Yu'21]
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Computational biology: assess the correlation of two biological
networks in two different species.

Natural language processing: uncovering the correlation
between two knowledge graphs that are in either different
languages.

5/17



Motivation: Graph Alignment/(Noisy) Graph Isomorphism

‘i - ”
Interactions among users

In many modern applications, observations appear as graphs.
Goal: Find/detect node correspondence.

Social network analysis: two friendship networks on different
social platforms share structural similarities?

Computational biology: assess the correlation of two biological
networks in two different species.

Natural language processing: uncovering the correlation
between two knowledge graphs that are in either different
languages.

Significant attention and beautiful strong results, e.g., [Barak
et. al."19], [Cullina,Kiyavash'16,20], [Wu,Xu,Yu'21], [Ding, Ma, Wu,
Xu'21], [Hall,Massoulié¢’21], [Ding,Li’22], [Ding,Du’23], and many
references therein.

5/17



The Database Alignment Problem

Generative Correlation Model

o Databases X,Y € R"*4: n “users” each with d "features”.

6 /17



The Database Alignment Problem

Generative Correlation Model
o Databases X,Y € R"*4: n “users” each with d "features”.

@ For now, databases include the same set of users.

<—d—>

6 /17



The Database Alignment Problem

Generative Correlation Model
o Databases X,Y € R"*4: n “users” each with d "features”.

o We will assume features are i.i.d.
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The Database Alignment Problem

Generative Correlation Model
o Databases X,Y € R"*4: n “users” each with d "features”.

@ There is a latent (hidden, planted) correspondence (matching,
permutation) m € S,, between the rows of X and Y.

o Features (X;,Yr,) associated with user i are dependent, while
different pairs are independent.

<—d—>
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The Database Alignment Problem

Generative Correlation Model
@ Recovery/alignment problem: given X,Y recover 7. J
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The Database Alignment Problem

Generative Correlation Model
@ Recovery/alignment problem: given X,Y recover 7.

@ Received significant attention, e.g.,
[Cullina,Mittal,Kiyavash'18],[Dai,Mittal,Kiyavash'19],
[Wang,Wu,Xu,Yolou'22].

<—d—>
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The Database Alignment Problem

Generative Correlation Model
@ In this talk, we focus on the detection variant of this problem.J
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@ Null: X and Y are Gaussian and independent, i.e.,
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@ Minimal (optimal) risk R* = inf, R(¢).
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Detecting Correlated Databases

Detection/Hypothesis Testing

@ Null: X and Y are Gaussian and independent, i.e.,

iid.
(X1,Y1), s X, Yo) "5 N @091, Tona)

e Alternative: cond. on 7 ~ Unif(S,,) (or 37 € S,)

iid. d 0 1 p
(X17Y7T1)v"'7(me7rn)1}V N® <|:O] ’ [p 1] ﬁzp)
o For a test ¢ : R™*% x R"™*4 — 0,1}, the “risk" is:

R(¢) = PHO [¢(X’Y) = 1] + EWNUnif(Sn)PH1|W[¢(X7Y) = 0]'

e Possibility: strong detection if lim dtv (Py,,Py,) = 1, and
weak detection if lim inf dyvy (Py,, Py, ) > 0.

e Impossibility: strong detection if dry(Py,,Py,) <1 —Q(1),
and weak detection if dry(Py,, Py, ) = o(1). 7 /17




Prior Work (Correlated Databases)

Known Results and Gaps
e [Dai,Cullina,Kiyavash'19]: Perfect recovery is possible if
p?> =1—o(n=*?) and impossible if p*> =1 —w(n=*9),
assuming 1 < d=0O(logn).

logn
, if d = w(logn) then rec. is possible if p> = w ( e )
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Known Results and Gaps

e [Dai,Cullina,Kiyavash'19]: Perfect recovery is possible if
p?> =1—o(n=*?) and impossible if p*> =1 —w(n=*9),
assuming 1 < d = O(logn).

e [Wang,Wu,Xu,Yolou'22]: Improved the above result by a
factor of logd, and hold for any d > 1.

@ Almost perfect recovery [Dai,Cullina,Kiyavash'20], feature
deletions and repetitions [Bakirtas,Erkip'20,21], etc.

@ [Zeynep,Nazer'21,22]: (Efficient) strong detection possible if
p*d — oo, and impossible if p?>d\/n — 0 and d = Q(logn)

@ Most notably, there is a \/n gap, and upper bound is
independent of n.

e [Tamir'22,23]: Joint correlation detection and recovery.
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Main Results (Correlated Databases)

We show in [Elimelech,Huleihel’23,24]

Weak Detection Strong Detection
Asymptotics Possible Impossible Possible Impossible
n,d — 0o Qd™1) o(d™1) w(d™h) (1—¢)d™t
d — 00, n constant Q(d~h) o(d™1) w(d™h) o@d™1)
n — oo, d constant P2 =0(1) o(1) 1- o(nf%) p*(d)

e If at least d — oo, then \/n is not needed, namely, upper
bound from [Zeynep,Nazer'21,22] is the truth.
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Main Results (Correlated Databases)

We show in [Elimelech,Huleihel’23,24]

Weak Detection Strong Detection
Asymptotics Possible Impossible Possible Impossible
n,d — 0o Qd™1) o(d™1) w(d™h) (1—¢)d™t
d — 00, n constant Q(d~h) o(d™1) w(d™h) o@d™1)
n — oo, d constant P2 =0(1) o(1) 1- o(nf%) p*(d)

e If at least d — oo, then \/n is not needed, namely, upper
bound from [Zeynep,Nazer'21,22] is the truth.

@ Fixed d is the interesting and more challenging regime.

o We use: dp? — 0 p? = o(d™1) < dp® = o(1).
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Upper Bounds (or, Algorithms)

e Total sum [Zeynep,Nazer'21,22]: Threshold the sum of
inner-products

n

Gaum(X,Y) 210 Y XY, > —=
i,j=1

dnp
2

Chernoff’'s bound gives:

d 2
R(¢sum) <2-exp <_6,00> .

© Strong detection if dp? = wy(1).

@ Weak detection if p? > 601°g2

© Completely independent of n.

© If d is fixed, then strong detection using ¢, is not
possible.
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Upper Bounds (or, Algorithms)

e Counting products [Elimelech,Huleihel’24]: Consider
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Upper Bounds (or, Algorithms)

e Counting products [Elimelech,Huleihel’24]: Consider

n

¢count(X7Y) £ 1 Z 1 {L(Xth) >d- 7—count} >
ij=1

nPa

where

d2
P XY,

a_d 2

Theorem (Count test strong detection)
Fix d € N. Then, R(¢count) — 0, asn — oo, if p?2 =1 — 0(n4/d).}

@ Coincides with the recovery threshold (via ML).
@ Decay rate is not optimal.
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Upper Bounds (or, Algorithms)

e Counting products [Elimelech,Huleihel’24]: Consider

n

npP
¢count(XaY) = 1 Z 1 {L(XMY ) >d- 7—count} > 2d
ij=1
Proof sketch: first moment
nPd 2nQy
PHO (¢count = 1 PHO Z ng > — < Td’

=1
where

Qd = PN(g’d(O,I) [L(A, B) Z d- Tcount] S e_d'EQ(Tcount)
Pa 2 Py, L(A,B) > d- Teount] > 1 — ¢ Er (unt)
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Upper Bounds (or, Algorithms)

e Counting products [Elimelech,Huleihel’24]: Consider

" nPy
¢count(XaY) = 1 Z 1 {L(XMY]) >d- 7—count} > T

ij=1
Proof sketch: second moment (w.l.o.g. m = Id),

nP,
P?-ll (¢count == 0) - ]P)’Hl Z Gzy J
,j=1

< IP)’Hl (Z G < TL,Pd>

4 Varp (Zz 1G“) . 4(1 —Pd) < 4
- n*p2  nPg T nPq
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Upper Bounds (or, Algorithms)

e Comparison test [Elimelech,Huleihel’24]: Define,

¢comp(X7Y) é 1 { Z(Xij - Yij) S 0}

i7j
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<]
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0 0
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(’ = \/2nd> <| 1z \/2nd>
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Take 0 as the value for which
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e Comparison test [Elimelech,Huleihel’24]: Define,

¢comp(X7Y) é 1 { Z(Xij - Yij) S 0}

,J
Take 0 as the value for which

drv (N(0,1), V(0,1 — [p]))

0 0
=P(|G>—— ) -P(|C|> ,
(’ = \/2nd> <| 1z \/2nd>
where G ~ N (0,1) and G’ ~ N (0,1 — |p|).

Theorem
Fix d € N. If p* = Q(1) then limy, 0 R(¢comp) < 1.
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Upper Bounds (or, Algorithms)

e Comparison test [Elimelech,Huleihel’24]: Define,

4

Proof sketch Let G1 = )7, Xy and Gy = 3,5 Yij. Then,

G; — Gy e N(O, 2nd) and G; — Gg S N(O 2nd(1 — p)).
Therefore,

> (Xij = Yij)

1,

¢comp(XaY) = 1 {

1 = R(¢comp) = P, (|G1 — Gof > 0) — Py, (|G1 — Go| > 0)
=P(JN(0,2nd)| > 0)
— P(N(0,2n(1 = p))| = 0)
= drv (N(0,1), N (0,1 = p)) = Q(1).

10 /17



Lower Bound (d — o0)

We start with the regime where at least d — oo.
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Lower Bound (d — o0)

We start with the regime where at least d — oo.

A P'Hl (XvY)

Second moment calculation: let L, (X,Y) = 7, (Xy) then
0 t

[R* =1 — dry(Py,, Py,)

Ex, [L3] = 0(1)

= drv(Py,, Py,) < 1-Q(1)
Ey, [L2] =1+ 0(1)

= d1v(Py,,Py,) < o(1)
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Lower Bound (d — o0)

We start with the regime where at least d — oo.

A ]PHl (XvY)

Second moment calculation: let L, (X,Y) = 7, (Xy) then
0 t

[R* =1 — dry(Py,, Py,)

Ex, [L7] = O(1)

= d1v(P3,, Pyy,) < 1-0Q(1)
Ey, [L2] =1+ 0(1)

= d1v(Py,,Py,) < o(1)

Thus, it is suffice to analyze the second moment of the likelihood.

11 /17



Lower Bound (d — o0)

Recall that

o ]P)?-h (XaY)
Ln(XyY) - ]P)’Ho (XaY)
Ex [PH1|W(X’ Y)]

Py, (X,Y)

:Eﬂ[

]P)'H1|7r(xv Y)

Py (X,Y)

|
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Lower Bound (d — o0)

Recall that
Py, (X,Y)
L,(X,Y) = 1o
n(X,Y) Py (X,Y)
_ EW[P’){lh(X)Y)] —F |:]P)’H1|7r(X7Y):|
P'Ho(xvY) " PHO(X’Y)
Then,
Py |7 Py |7r’:|
=y [P ]
[ ] TI'J_|_7T ]P)HO ]P)HO

11 /17



Lower Bound (d — o0)

Recall that
Py, (X,Y)
L,(X,Y) = 2 )
( ) Py (X,Y)
_ EW[PH1|W(X7Y)] - F |:P’H1|7r(X7Y):|
Py (XvY) " P (X’Y)
Then,

PH1|7’I’ ) P?—[1|7r’:|

Ln ? = E ’ |:
[ ] TI'J_|_7T ]P)HO ]P)HO

Thus, Ingster-Suslina method (Fubini’s theorem)

PHﬂﬂ' . II‘J)?"[1|7T’:|:|
Py, Py,

EHO [L72“L] = Eﬂ"J_l_ﬂ'/ |:]EHO |:
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Lower Bound (d — o0)

Invariance: fix 7/ = Id,

Py x P
By, [L2] = E, [EHO[ | ’“"dH

Py, Py

0
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Lower Bound (d — o0)

Invariance: fix 7/ = Id,

Py Paypia
EHO[L%] =K, [EHO [1| . 1| _

Py, P,

Recall that pairs {(Xi, Yx,) }ign) are i.id.,

Poyn(X,Y) 1
L(X;, Ya;)
Py, (X,Y) H i- Ym)

P a(XY)
L(X;,Y:),
Py, (X, Y) H

PR (Xi,Ys)

where L(X;,Y;) = ey
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Lower Bound (d — o0)

Invariance: fix 7/ = Id,

Pyyjr Py
By, [L2] = E, [EHO[ e ZHad ]

Py, Py

0

Thus,

n

Prir Pra T A
. = [ LOXs, Ya, )L(Xi, Y5) = | | Zs
CR i | (CARIERARY |
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Lower Bound (d — o0)

Invariance: fix 7/ = Id,

0

0

oo 1))

Problem: {Z;}!"_, are dependent random variables

Accordingly,

EHO [LEL] =Er

Solution: cycle decomposition!

]P)H1|7r ) ]P)’H1||d:|:|

11 /17



Lower Bound (d — o0)

Facts on cycles (orbits)
@ For each element a € [n], its orbit is a cycle (ag, ..., ar—1),
where a; = 7*(a), for i =0,...,k — 1 and 7(ax_1) = a.
For example: Consider m € S; that

© Keeps 1 in the same place
@ Swaps 2 with 3
© Cyclically shifts 4567

Then, 7 consists of three orbits in canonical notation

m = (1)(23)(4567)
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Lower Bound (d — o0)

Facts on cycles (orbits)

@ For each element a € [n], its orbit is a cycle (ag, ..., ar—1),
where a; = 7(a), for i =0,...,k — 1 and 7(ax_1) = a.

o If |O| =k, we call O a k-orbit.

@ Set of orbits of a permutation induce a partition of [n]

Let {O}oco be the orbit/cycle decomposition of 7. For O € O,

zoéHzi = HszHzo

€0 0e0

The random variables {Zp}o are independent (under Py,),

Hz] = E,Ez, HZO] =E [[ ExolZol-

i=1 0eO 0eO 1117

E’Ho [L ] E EHO




Lower Bound (d — o0)

For a fixed orbit O of a permutation T,

1

Ey,[Zo] = 1= on"
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Lower Bound (d — o0)

For a fixed orbit O of a permutation T,

1
E3,([Zo] =

If Ni () is the number of k-orbits of m, then

= E, [H B, [Z0)
C
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Lower Bound (d — o0)

For a fixed orbit O of a permutation T,
1
Ey,[Zo] =

If Ni () is the number of k-orbits of m, then

= E, [H B, [Z0)
C

n

=1 g

o2k de] :

Use statistical properties of k-orbits of m ~ Unif(S,,).
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Lower Bound (d — o0)

For a fixed orbit O of a permutation T,

1

Proltol = = oy

If Ni () is the number of k-orbits of m, then

= E, [H B, [Z0)
C

In particular, [Arratia, Tavaré'92]

n
drv (L (N1, No,...,Np), L (P, Py, ..., Py)) < F(E)

for any 1 < k <n, and {F;}!"_; independent sequence with
P; ~ Poisson (i71), and log F(z) = —zlog z(1 + o(1)) as x — oo

11 /17



Lower Bound (d — o0)

In the Poisson world, for any m,

. 1 dp* | e(d, p*)p’
| 1T g | <o (55 + 22

11 /17



Lower Bound (d — o0)

In the Poisson world, for any m,

s 1 dp®>  c(d,p®)p*
| 1T g | <o (55 + 22

Decompose,

n Mog n] n

1 1
i = 1 e, I e

k:l k=1 k=[logn]+1
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Lower Bound (d — o0)

In the Poisson world, for any m,

M 1 dp®>  c(d,p®)p*
| 1T g | <o (55 + 22

Decompose,

n [logn] n

1 1

H (1= p2F)dNi = H — 2k\d'N, H — 2k\d'N,

k=1 » k=1 (1 p ) * k=[logn]+1 (1 p ) *
For the tail (m = [logn]),

n d3 3 Nk

1 1 k=m
(1 — p2k)d-Ni §(1, om
k=m+1 p p
1 dn d p2m
= < =1 1
1—027”) eXp<1 p*m ol

for dp? = o(1).
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Lower Bound (d — o0)

In the Poisson world, for any m,

M 1 dp®>  c(d,p®)p*
| 1T g | <o (55 + 22

Decompose,

[logn] n

k=1 k=1 k=[logn]+1
Thus,
n 1 [log n] 1
Il 7—a =0+ ] +—=rav
—_ p2k\d-Ng — p2k\d-N
i (1= p2k)d-No L (1= pPh)d N

L 1 1 1
[ g—Fmem = Il gpmam Il g—yam

11 /17



Lower Bound (d — o0)

In the Poisson world, for any m,

. 1 dp* | e(d, p*)p’
| 1T g | <o (55 + 22

,ﬁl ( 1 —192’“ ) dP’“]

Now,

i)

k=1
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Lower Bound (d — o0)

In the Poisson world, for any m,

. 1 dp* | e(d, p*)p’
| 1T g | <o (55 + 22

i1()"]

+mw£w?%£@””( 1 Yn

1—p2
dp® | e(d, p*)p*
<
_eXp<1—p2+ 1—pf

+F(w£M)(1fw>m

=1+o0(1),

Now,

i)

k=1

if dp® = o(1).

11 /17



Finite d: Detecting Correlated Vectors [Elimelech, H'24]

When d is fixed, and n — oo, the above technique gives

Theorem (Impossibility)

. .. . . 1og(p2)
Strong detection is impossible if d < Tog(1—p7) -
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Finite d: Detecting Correlated Vectors [Elimelech, H'24]

When d is fixed, and n — oo, the above technique gives

log(p?)

Theorem (Impossibility)
Strong detection is impossible if d < Tog(1—p7) - J

Consider the simple case of d =1,

A
[
[
[
[
[

[
N
[
[

[

[

[

[
v
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Finite d: Detecting Correlated Vectors [Elimelech, H'24]

When d is fixed, and n — oo, the above technique gives

Theorem (Impossibility)

Strong detection is impossible if d < %.

Lower bound: for d = 1, we get the condition p? < 1/2.
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Finite d: Detecting Correlated Vectors [Elimelech, H'24]

When d is fixed, and n — oo, the above technique gives

Theorem (Impossibility)

log(p?)

Strong detection is impossible if d < Toa(1—p2) "

Lower bound: for d = 1, we get the condition p? < 1/2.

Upper bound is p? =1 — o(n™%).
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Finite d: Detecting Correlated Vectors [Elimelech, H'24]

When d is fixed, and n — oo, the above technique gives
Theorem (Impossibility)

Strong detection is impossible if d < %.

Lower bound: for d = 1, we get the condition p? < 1/2.
Upper bound is p? =1 — o(n™%).

What is the source for this significant gap? Computational?
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Finite d: Detecting Correlated Vectors [Elimelech, H'24]

When d is fixed, and n — oo, the above technique gives

Theorem (Impossibility)

og(p?)

. .. . . 1
Strong detection is impossible if d < Toa(1—p2) "

Lower bound: for d = 1, we get the condition p? < 1/2.
Upper bound is p? = 1 — o(n™%).
What is the source for this significant gap? Computational?

Not clear yet! But, we can prove a better lower bound.
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Finite d: Detecting Correlated Vectors [Elimelech, H'24]

We have the following result.

Theorem (Impossibility for d = 1)
Strong detection is impossible for any p* < 1. J
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Finite d: Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:
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Finite d: Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:

e We want to analyze Eq;,[L2].
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Finite d: Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:
e We want to analyze Eq;,[L2].
@ Idea: decompose L,, into its orthogonal components.
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Finite d: Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:
e We want to analyze Eq;,[L2].
@ Idea: decompose L,, into its orthogonal components.
@ Univariate Hermite polynomials: for k € N,
Bl

hi(z) £ (_l)keﬁ/zﬁe—x?/z’

are orthonormal w.r.t. the standard Gaussian measure,

Excnn(0,1) e(X)he(X)] = o[k — £].
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Finite d: Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:

e We want to analyze Eq;,[L2].

@ Idea: decompose L,, into its orthogonal components.

@ Multivariate Hermite polynomials:
Let Hy(z) =[]}, he,(z;) for # € N, and it holds

Exnr0,1) [Ha(X)Hy (X)] = 6[a — 7].
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Finite d: Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:
e We want to analyze Eq;,[L2].
@ Idea: decompose L,, into its orthogonal components.

@ Multivariate Hermite polynomials:
Let Hy(z) =[]}, he,(z;) for # € N, and it holds

Exnr0,1) [Ha(X)Hy (X)] = 6[a — 7].
e Form a complete orthonormal system in L?(Hg),

L.(X,Y) = Z (Hos(X,Y), Ln(X,Y)) 5y, Has(X,Y),
a,ENT

where H, 5(X,Y) £ H,(X)Hs(Y), and

<¢7 ¢>H0 = IE'Ho W(Xa Y) ’ ¢(X7Y)] .
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Finite d: Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:
e We want to analyze Eq;,[L2].
@ Idea: decompose L,, into its orthogonal components.

@ Parseval’s identity,

By L] = ILalf = D (Hap(XY),La(X,Y))3,,
a,EN”
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Finite d: Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:
e We want to analyze Eq;,[L2].
@ Idea: decompose L,, into its orthogonal components.

@ Parseval’s identity,

By L] = ILalf = D (Hap(XY),La(X,Y))3,,
a,EN”

@ It can be shown that
(Hag(X,Y), La(X,Y)) g, = o1 - P(8) = o

where 7(a)) € N™ denotes the vector obtained by permuting
the coordinates of « using 7
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Finite d: Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:
e We want to analyze Eq;,[L2].
@ Idea: decompose L,, into its orthogonal components.

@ Parseval’s identity,

By L] = ILalf = D (Hap(XY),La(X,Y))3,,
a,EN”

@ It can be shown that
(Hag(X,Y), La(X,Y)) g, = o1 - P(8) = o

where 7(a)) € N™ denotes the vector obtained by permuting
the coordinates of « using 7

Goal: find P[n(8) = a].
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Finite d: Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:
e We want to analyze Eq;,[L2].
@ Integer distribution function: for a € N,

pa(l)2licn]:a; =¥, (€N

Note that,
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Finite d: Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:
e We want to analyze Eq;,[L2].
@ Integer distribution function: for a € N,

pa(l)2licn]:a; =¥, (€N

Note that,
o We say a = § iff thereis m € §,, s.t. 7(8) = a.
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Finite d: Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:
e We want to analyze Eq;,[L2].
@ Integer distribution function: for a € N,

pa(l)2licn]:a; =¥, (€N

Note that,
o We say a = § iff thereis m € §,, s.t. 7(8) = a.
o a=fiff p, =ps.
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Finite d: Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:
e We want to analyze Eq;,[L2].
@ Integer distribution function: for a € N,

pa(l)2licn]:a; =¥, (€N

Note that,
o We say a = § iff thereis m € §,, s.t. 7(8) = a.

o a=fiff p, =ps.
o Let [a] denote the equivalence class of a.
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Finite d: Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:
e We want to analyze Eq;,[L2].
@ Integer distribution function: for a € N,

pa(l)2licn]:a; =¥, (€N

Note that,
o We say a = § iff thereis m € §,, s.t. 7(8) = a.
o a=fiff p, =ps.
o Let [a] denote the equivalence class of a.

Then,

P[n() = o] = @nazﬁ.

12 /17



Finite d: Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:
e We want to analyze Eq;,[L2].
@ Thus,

Ero [L2] = > (Hap(X,Y), La(X, )2,
a,EN”

1
— E 2|al 1
= P a=
[a]]2"=*

a,FEN”

= > o] : [al =m}|- p*"
m=0

0o
= Z Par(m, <»)| - P
m=0

where Par(m, <,) is the set of integer partitions of m to at

most n elements.
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Finite d: Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:
e We want to analyze Eq;,[L2].
@ Thus,

Ero [L2] = > (Hap(X,Y), La(X, )2,
a,EN”

1
— E 2|al 1
= P a=
[a]]2"=*

a,FEN”

= Hlal:lo] =m}|-p*"
m=0

< 3" [Par(m, <oo)| - 92"
m=0

where |Par(m, <,)| is the number of integer partitions of the

number m.
12 /17



Finite d: Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:

e We want to analyze Eq;,[L2].

By [L2] <) [Par(m, <oo)| - o™ ()
m=0

@ Hardy-Ramanujan Formula: Jc > 0, s.t.

3

1 2
|Par(m, <s)| < c¢- ——=—exp (77 m) .

4/3m
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Finite d: Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:

e We want to analyze Eq;,[L2].

By [L2] <) [Par(m, <oo)| - o™ ()
m=0

@ Hardy-Ramanujan Formula: Jc > 0, s.t.

1 2
|Par(m, <s)| < c¢- ——=—exp m/—m .
4v/3m 3

@ Thus, |Par(m, <. )| is sub-exponential in m, and hence (%)
converges to a finite number, for any p? < 1.
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Finite d: Detecting Correlated Vectors [Elimelech, H'24]

Theorem (Impossibility for d € N)
Strong detection is impossible for any dp? < 1. J

This is proved using the same techniques ending up with
complicated high-dimensional distribution functions.
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Detecting Dependent Databases [Paslev, H'23]

@ What if the databases are not Gaussian?
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Detecting Dependent Databases [Paslev, H'23]

@ What if the databases are not Gaussian?

@ Consider the following detection problem:
iid
Ho : (X1, Y1), -0y K, Vi) 'K PE? x PE?

iid

Hl : (X17Y71'1)7"'7(Xn7Y7rn) ~ ng()ii/7

with Px = Py and denote QQxy = Px X Py.
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Detecting Dependent Databases [Paslev, H'23]

@ What if the databases are not Gaussian?

@ Consider the following detection problem:

ii.d
Ho : (X1, Y1), -0y K, Vi) 'K PE? x PE?

iid
Hl : (X17Y71'1)7 ey (Xn7Y7rn) lflv ngg');i/7
with Px = Py and denote QQxy = Px X Py.

Theorem (Impossibility of weak detection)

Weak detection is impossible if
d- x*(Pxyl|Qxy) = o(1).

where x2(P||Q) = [ % — 1.
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Detecting Dependent Databases [Paslev, H'23]

@ What if the databases are not Gaussian?

@ Consider the following detection problem:

ii.d
Ho : (X1, Y1), -0y K, Vi) 'K PE? x PE?

iid
Hl : (X17Y71'1)7 ey (Xn7Y7rn) lflv ngg');i/7
with Px = Py and denote QQxy = Px X Py.

Theorem (Possibility of strong detection)
If

4. Bk (Pxv]|@xy)
VarQXY (’C(A7 B))

=w(1)

then, R(¢sym) — 0, as d — oo.
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Detecting Dependent Databases [Paslev, H'23]

Proof sketch:

e Foranyx € X and y € ), we let L(z,y) = SX#%_
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Detecting Dependent Databases [Paslev, H'23]

Proof sketch:

e Foranyx € X and y € ), we let L(z,y) = SX#((%))_

@ For any f s.t. IEQf2 < 00, consider the induced operator

defined by the projection (Lf)(x) £ Ey~q, [L(z,Y)f(Y)].
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Detecting Dependent Databases [Paslev, H'23]

Proof sketch:
o Foranyz € X and y € Y, we let L(z,y) £ %_

@ For any f s.t. IEQf2 < 00, consider the induced operator
defined by the projection (Lf)(x) £ Ey~q, [L(z,Y)f(Y)].

e We assume that L(x,y) = L(y, ), and hence self-adjoint and
Hilbert-Schmidt, diagonazable, with eigenvalues {\;}i>0.
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Detecting Dependent Databases [Paslev, H'23]

Proof sketch:

o Forany z € X and y € ), we let L(x, wﬁ%

@ For any f s.t. IEQf2 < 00, consider the induced operator
defined by the projection (Lf)(x) £ Ey~q, [L(z,Y)f(Y)].

e We assume that L(x,y) = L(y, ), and hence self-adjoint and
Hilbert-Schmidt, diagonazable, with eigenvalues {\;}i>0.

@ Recall that

Egy, [L2] =

| 1] Eno Zo]

0ecO
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Detecting Dependent Databases [Paslev, H'23]

Proof sketch:

@ Forany x € X and y € ), we let L(z, y)AM

Qxvy(zy)”

@ For any f s.t. IEQf2 < 00, consider the induced operator
defined by the projection (Lf)(x) £ Ey~q, [L(z,Y)f(Y)].

e We assume that L(x,y) = L(y, ), and hence self-adjoint and
Hilbert-Schmidt, diagonazable, with eigenvalues {\;}i>0.

@ Recall that

Egy, [L2] =

| 1] Eno Zo]

0ecO

@ Then, with the notation above, it can be shown that,

Ey,[Zc] = (Z )\QC|>

€N
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Detecting Dependent Databases [Paslev, H'23]

Proof sketch:

A Pxy(z,y)
Qxvy (z,y)"

For any f s.t. IEQf2 < 00, consider the induced operator
defined by the projection (Lf)(x) £ Ey~q, [L(z,Y)f(Y)].
We assume that L£(x,y) = L(y,x), and hence self-adjoint and
Hilbert-Schmidt, diagonazable, with eigenvalues {\;}i>0.

Recall that

Foranyxz € X and y € Y, we let L(x,y) =

Egy, [L2] =

o | 1] Buo Zo]

0ecO

Substituting, massaging, it can be shown that weak detection
is impossible if

13 /17



Partial Correlation

@ What if the databases are only partially correlated?
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Partial Correlation

@ What if the databases are only partially correlated?

@ Consider the following detection problem:

Mo+ (X1, Y1),y Xy o) "R N0, I )
ii.d
{(Xi7Y7ri)}ielC N N®d(07 Ep)
Hi: (X Y igie ™ NE9(0, Tp,0)
{(Xi7YWi)}igch-l—{(Xiva)}ieK

where 7 ~ Unif(S,) and K ~ Unif (")),
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Partial Correlation

@ What if the databases are only partially correlated?

@ Consider the following detection problem:

Mo+ (X1, Y1),y Xy o) "R N0, I )
ii.d
{(Xi7Y7ri)}ielC N N®d(07 Ep)
Hi: (X Y igie ™ NE9(0, Tp,0)
{(Xi7Ym‘)}iglCJ-l—{(Xiva)}ielC

where 7 ~ Unif(S,) and K ~ Unif (")),

@ So, only a planted set I of £ < n "users" is common to the
two databases.
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Partial Correlation

Theorem (Impossibility weak detection)

If,
(&) (Tt ) =

then weak detection is impossible.
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Partial Correlation

Theorem (Impossibility weak detection)

If
AN 1
<n> (El—(dp?)i_l):"“)’

then weak detection is impossible.

For example, if £ = O(logn), then we get

2

1 kY
2<-1-(c2

p<d[ (n :

=o(1).

=

and we note that (k/n)
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Testing Dependency of Random Graphs [Oren,Paslev,H'24]

@ In many modern applications, the observations may be in the
form of graphs.
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Testing Dependency of Random Graphs [Oren,Paslev,H'24]

@ Consider the following detection problem:

Ho : (Aij, Bij) " Qg = Pa x Pg
id.

Hl : (Aiju B7r¢7rj) ! PAB|7T ~ Unlf(Sn),

where Pa = Pp.

@ The Bernoulli case was analyzes thoroughly in the literature?,
both from the statistical and computational point of views!
Here, Pa = Pg = Bernoulli(7p), for some p € (0,1) and
7 € [0,1]. Under Pag, we have A ~ Bernoulli(7p), and

BIA Bernoulli(7), if X =1
A~ Bernoulli <Tzi(_1;;)> . if X =0.

’E.g., [Wu,Xu,Yu'21], [Ding,Du,23], [Ding,Du,Li'23].
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@ Consider the following detection problem:

Ho : (Aij,Bij) "X Qap = Pa x P
Hl : (Aiju B7r,-7rj) ’1\(“1 PAB|7T ~ Unlf(Sn),

1

where Pa = Pp.

@ The Gaussian case was studied from the statistical point of
view [Wu,Xu,Yu'21].
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Testing Dependency of Random Graphs [Oren,Paslev,H'24]

@ Consider the following detection problem:

Ho : (Aij, Bij) " Qg = Pa x Pg
id.

Hl : (Aiju B7r,-7rj) . PAB|7T ~ Unlf(Sn),

1

where Pa = Pp.

Theorem (Impossibility of weak detection)

Weak detection is statistically impossible if

(Plo) < Bz9lsn
an
2—¢)l
dgL (P||Q) + 9, - Varp (log £) < (jz()gn’

for any w(1) = 6, = o(logn), and any constant € > 0.
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@ Consider the following detection problem:

Ho : (Aij, Bij) " Qg = Pa x Pg
id.

Hl : (Aiju B7r¢7rj) ! PAB|7T ~ Unlf(Sn),
where Py = Pg.

@ For the class of distributions for which there is a constant

C > 1 such that x2 (P||Q) < C-dk. (P]|Q), weak detection
is impossible if

dke (P]|Q) < (2_210(%”-
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Testing Dependency of Random Graphs [Oren,Paslev,H'24]
@ Consider the following detection problem:
Ho : (Aij, Bij) " Qg = Pa x Pg
M1 : (Aij,Bryr,) = Paglm ~ Unif(S,),
where Pa = Ppg.
@ For the class of distributions for which there is a constant

C > 1 such that x2 (P||Q) < C-dk. (P]|Q), weak detection
is impossible if

dke (P]|Q) < (2_210(%”-

e Coincides with [Wu,Xu,Yu'21] for Bernoulli and Gaussian.
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@ Consider the following detection problem:

Ho : (Aij,Bij) "X Qap = Pa x P
Hl : (Aij, B7r,-7rj) ’1\(“1 PAB|7T ~ Unlf(Sn),

1

where Pa = Pp.
Theorem (Strong detection upper bound)

Suppose there is a 0 € (—dkL(Q||P), dkL(P||Q)) with

—_ 2log(n/e)
EQ(Q) > Ta—1

Ep(0) = w(n™?).

+O(n"%logn),

Then, R, (¢GLrT) — 0, as n — oc.
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@ Consider the following detection problem:

Ho : (Aij, Bij) " Qg = Pa x Pg
id.

Hl : (Aiju B7r¢7rj) . PAB|7T ~ Unlf(Sn),

1

where Pa = Pp.

e For pairs of distributions (P, Q) with sub-exponential
likelihood function, strong detection is possible if

2logn

deL (PI1Q) 2 ——7
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Hl : (Aiju B7r¢7rj) ll\(“i PAB|7T ~ Unlf(Sn),
where Py = Pg.

e For pairs of distributions (P, Q) with sub-exponential
likelihood function, strong detection is possible if

2logn
> :
deL (PI1Q) 2

@ Complements lower bound.
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@ Consider the following detection problem:

Ho : (Aij, Bij) " Qg = Pa x Pg
id.

Hl : (Aiju B7r¢7rj) ! PAB|7T ~ Unlf(Sn),
where Py = Pg.

e For pairs of distributions (P, Q) with sub-exponential
likelihood function, strong detection is possible if

2logn
> :
deL (PI1Q) 2

@ Complements lower bound.

@ GLRT is exhibits exponential computational complexity. What
about poly-time algorithms?
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@ Consider the following detection problem:

Ho : (Aij,Bij) "X Qap = Pa x P
Hl : (Aij, B7r,-7rj) ’1\(“1 PAB|7T ~ Unlf(Sn),

1

where Pa = Pp.

Theorem (Weak detection upper bound)

If |corr(Q,P)| & %7’?;{@ =Q(1), and

Eg|A - BJ? Ep|A - BJ?
Varg*(A) Varg(A)(1 — |corr(Q, P)|)?/2

then lim,, o0 Ry (¢sum) < 1.

= o(n),
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M1 : (Aij,Bryr,) = Paglm ~ Unif(S,),
where Pa = Ppg.
@ In the Gaussian and Bernoulli cases this boils down to
p? = Q(1), while GLRT allows for a vanishing correlation.

@ Conjecture: this is fundamental in the sense that this is a
barrier for what can be achieved using polynomial-time
algorithms.
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@ Consider the following detection problem:

Ho : (Aij,Bij) "X Qap = Pa x P
Hl : (Aiju B7r¢7rj) ll\(’i PAB|7T ~ Unlf(Sn),
where Py = Pg.

@ In the Gaussian and Bernoulli cases this boils down to
p? = Q(1), while GLRT allows for a vanishing correlation.

@ Conjecture: this is fundamental in the sense that this is a
barrier for what can be achieved using polynomial-time
algorithms.

@ In the Bernoulli case [Ding,Du,Li'23] prove computational
lower bound based on the low-degree polynomial conjecture.
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Testing Dependency of Random Graphs [Oren,Paslev,H'24]

@ Consider the following detection problem:

Ho : (Aij, Bij) " Qg = Pa x Pg
id.

Hl : (Aiju B7r,-7rj) ! PAB|7T ~ Unlf(Sn),
where Py = Pg.

Theorem (LDP computational lower bound)

For a certain class of pairs of distributions (P, Q), if
|corr(Q, P)[ = o(1), then L, <plly, < O(1), for any
D = O(|corr(Q,P)|71).

Here, L,, <p is the projection of L,, to the linear subspace of
polynomials of degree at most D € N.
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Concluding Remarks

@ We considered the problem of testing correlated /dependent
databases and characterize the statistical limits (in some
asymptotic regimes).
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Concluding Remarks

@ We considered the problem of testing correlated /dependent
databases and characterize the statistical limits (in some
asymptotic regimes).

@ The impossibility proofs are based on delicate analysis of the
second moment using properties of random permutation cycles
and integer partition function via polynomial decomposition.

@ There is a gap between lower and upper bound when d is
fixed.

Open Problems:

@ Close the gap, and obtain sharp bounds.

@ Prove existence of/close the computational gaps.
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