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Motivation: Data Alignment Problem

Correlated data structures

Data collection (from many sources) is ubiquitous.

Different data structures/sources offer many great benefits for
inference.

Understanding and quantifying the correlation between data
structures are among the most fundamental tasks in statistics!

Modern challenges: data structures are high-d, noisy,
unlabeled/scrambled.

This precludes “direct” inference/data junction.

General goal: determine if ∃ a correspondence under which
the sources are “correlated”.
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Pictorially...

Multiple data structures/sources are available.

Each source provides information for entities (e.g., users).

If “correlation” is sufficiently large maybe it is possible to
glean something about the correspondence.
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Motivation: Data Alignment Problem (Cont’d)

Pictorially...

Multiple data structures/sources are available.

Each source provides information for entities (e.g., users).

Valuable tool to recover missing information by labeling
unlabeled features and allowing the junction of data coming
from different sources.

Data
Struc.#1
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Motivation: Data Alignment Problem (Cont’d)

Pictorially...

Multiple data structures/sources are available.

Each source provides information for entities (e.g., users).

Crucial to understand limitations of data alignment so as to
assess the feasibility and reliability of alignment procedures.

Data
Struc.#1

Data
Struc.#2
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Motivation: Folklore Example

Netflix Prize

Netflix prize: take dataset and come up with a better
recommendation algorithm.

Dataset: lists of features for a set of entities, say, users.

4 / 17



Motivation: Folklore Example

Netflix Prize

Netflix prize: take dataset and come up with a better
recommendation algorithm.

Privacy concern: unique identifying sensitive information (e.g.,
names, user IDs) is deleted from a database while other
features (e.g., movie ratings) are left unchanged.

4 / 17



Motivation: Folklore Example

Netflix Prize

Netflix prize: take dataset and come up with a better
recommendation algorithm.

Privacy concern: unique identifying sensitive information (e.g.,
names, user IDs) is deleted from a database while other
features (e.g., movie ratings) are left unchanged.

No side information: could be effective for protecting user
privacy (while providing access to data).

4 / 17



Motivation: Folklore Example

Netflix Prize

Netflix prize: take dataset and come up with a better
recommendation algorithm.

Privacy concern: unique identifying sensitive information (e.g.,
names, user IDs) is deleted from a database while other
features (e.g., movie ratings) are left unchanged.

Side information is abundant in the public domain!

4 / 17



Motivation: Folklore Example

Netflix Prize

Netflix prize: take dataset and come up with a better
recommendation algorithm.

Privacy concern: unique identifying sensitive information (e.g.,
names, user IDs) is deleted from a database while other
features (e.g., movie ratings) are left unchanged.

Side information is abundant in the public domain!

[Narayanan&Shmatikov’08,09]: many Netflix user IDs can be
matched with IMDb profiles.

Netflix prize dataset (anonymized): User IDs, movie IDs,
movie ratings.

IMDb dataset (public): Usernames, movie names, movie
ratings.
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Motivation: Folklore Example

Netflix Prize

Netflix prize: take dataset and come up with a better
recommendation algorithm.

Privacy concern: unique identifying sensitive information (e.g.,
names, user IDs) is deleted from a database while other
features (e.g., movie ratings) are left unchanged.

Side information is abundant in the public domain!

Crucial to understand the conditions that allow/prevent
privacy breaches, and vulnerability of de-anony. schemes.
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Motivation: Graph Alignment/(Noisy) Graph Isomorphism

“Interactions among users”

In many modern applications, observations appear as graphs.

[Wu&Xu&Yu’21]
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“Interactions among users”

In many modern applications, observations appear as graphs.

Goal: Find/detect node correspondence.

Social network analysis: two friendship networks on different
social platforms share structural similarities?

Computational biology: assess the correlation of two biological
networks in two different species.

Natural language processing: uncovering the correlation
between two knowledge graphs that are in either different
languages.

Significant attention and beautiful strong results, e.g., [Barak
et. al.’19], [Cullina,Kiyavash’16,20], [Wu,Xu,Yu’21], [Ding, Ma, Wu,
Xu’21], [Hall,Massoulié’21], [Ding,Li’22], [Ding,Du’23], and many
references therein.
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The Database Alignment Problem

Generative Correlation Model

Databases X,Y ∈ Rn×d: n “users” each with d “features”.
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Databases X,Y ∈ Rn×d: n “users” each with d “features”.

There is a latent (hidden, planted) correspondence (matching,
permutation) π ∈ Sn between the rows of X and Y.

Features (Xi,Yπi) associated with user i are dependent, while
different pairs are independent.
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The Database Alignment Problem

Generative Correlation Model
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The Database Alignment Problem

Generative Correlation Model

Recovery/alignment problem: given X,Y recover π.

Received significant attention, e.g.,
[Cullina,Mittal,Kiyavash’18],[Dai,Mittal,Kiyavash’19],
[Wang,Wu,Xu,Yolou’22].
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The Database Alignment Problem

Generative Correlation Model

In this talk, we focus on the detection variant of this problem.
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Detecting Correlated Databases

Detection/Hypothesis Testing

Null: X and Y are Gaussian and independent, i.e.,

(X1,Y1), . . . , (Xn,Yn)
i.i.d.∼ N⊗d(02×1, I2×2)
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([
0
0

]
,

[
1 ρ
ρ 1

]
≜ Σρ

)
For a test ϕ : Rn×d × Rn×d → {0, 1}, the “risk” is:

R(ϕ) ≜ PH0 [ϕ(X,Y) = 1] + Eπ∼Unif(Sn)PH1|π[ϕ(X,Y) = 0].

Possibility: strong detection if lim dTV(PH0 ,PH1) = 1, and
weak detection if lim inf dTV(PH0 ,PH1) > 0.

Impossibility: strong detection if dTV(PH0 ,PH1) ≤ 1− Ω(1),
and weak detection if dTV(PH0 ,PH1) = o(1). 7 / 17



Prior Work (Correlated Databases)

Known Results and Gaps

[Dai,Cullina,Kiyavash’19]: Perfect recovery is possible if
ρ2 = 1− o(n−4/d) and impossible if ρ2 = 1− ω(n−4/d),
assuming 1 ≪ d = O(log n).

E.g., if d = ω(log n) then rec. is possible if ρ2 = ω
(
logn
d

)
.
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[Dai,Cullina,Kiyavash’19]: Perfect recovery is possible if
ρ2 = 1− o(n−4/d) and impossible if ρ2 = 1− ω(n−4/d),
assuming 1 ≪ d = O(log n).

[Wang,Wu,Xu,Yolou’22]: Improved the above result by a
factor of log d, and hold for any d ≥ 1.

Almost perfect recovery [Dai,Cullina,Kiyavash’20], feature
deletions and repetitions [Bakirtas,Erkip’20,21], etc.

[Zeynep,Nazer’21,22]: (Efficient) strong detection possible if
ρ2d→ ∞, and impossible if ρ2d

√
n→ 0 and d = Ω(log n)

Most notably, there is a
√
n gap, and upper bound is

independent of n.

[Tamir’22,23]: Joint correlation detection and recovery.
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Main Results (Correlated Databases)

We show in [Elimelech,Huleihel’23,24]

Weak Detection Strong Detection

Asymptotics Possible Impossible Possible Impossible

n, d→ ∞ Ω(d−1) o(d−1) ω(d−1) (1− ε)d−1

d→ ∞, n constant Ω(d−1) o(d−1) ω(d−1) O(d−1)

n→ ∞, d constant ρ2 = Ω(1) o(1) 1− o(n−
4
d ) ρ⋆(d)

If at least d→ ∞, then
√
n is not needed, namely, upper

bound from [Zeynep,Nazer’21,22] is the truth.
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Main Results (Correlated Databases)

We show in [Elimelech,Huleihel’23,24]

Weak Detection Strong Detection

Asymptotics Possible Impossible Possible Impossible

n, d→ ∞ Ω(d−1) o(d−1) ω(d−1) (1− ε)d−1

d→ ∞, n constant Ω(d−1) o(d−1) ω(d−1) O(d−1)

n→ ∞, d constant ρ2 = Ω(1) o(1) 1− o(n−
4
d ) ρ⋆(d)

If at least d→ ∞, then
√
n is not needed, namely, upper

bound from [Zeynep,Nazer’21,22] is the truth.

Fixed d is the interesting and more challenging regime.

We use: dρ2 → 0 ⇔ ρ2 = o(d−1) ⇔ dρ2 = o(1).
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(
−dρ

2

60

)
.

1 Strong detection if dρ2 = ωd(1).
2 Weak detection if ρ2 > 60 log 2

d .
3 Completely independent of n.
4 If d is fixed, then strong detection using ϕsum is not

possible.
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Upper Bounds (or, Algorithms)

Counting products [Elimelech,Huleihel’24]: Consider

ϕcount(X,Y) ≜ 1
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1− ρ2
XT
i Yj

Theorem (Count test strong detection)

Fix d ∈ N. Then, R(ϕcount) → 0, as n→ ∞, if ρ2 = 1− o(n−4/d).

1 Coincides with the recovery threshold (via ML).
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Upper Bounds (or, Algorithms)

Counting products [Elimelech,Huleihel’24]: Consider

ϕcount(X,Y) ≜ 1


n∑

i,j=1

1 {L(Xi,Yj) ≥ d · τcount} ≥ nPd

2


where

L(Xi,Yj) ≜ −d
2
log(1− ρ2)− dρ2

2(1− ρ2)
+

ρ

1− ρ2
XT
i Yj

Theorem (Count test strong detection)

Fix d ∈ N. Then, R(ϕcount) → 0, as n→ ∞, if ρ2 = 1− o(n−4/d).

1 Coincides with the recovery threshold (via ML).
2 Decay rate is not optimal.
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Upper Bounds (or, Algorithms)

Counting products [Elimelech,Huleihel’24]: Consider

ϕcount(X,Y) ≜ 1


n∑

i,j=1

1 {L(Xi,Yj) ≥ d · τcount} ≥ nPd

2


Proof sketch: first moment

PH0 (ϕcount = 1) = PH0

 n∑
i,j=1

Gij ≥
nPd

2

 ≤ 2nQd

Pd
,

where

Qd ≜ PN⊗d(0,I)[L(A,B) ≥ d · τcount] ≤ e−d·EQ(τcount)

Pd ≜ PN⊗d(0,Σρ)[L(A,B) ≥ d · τcount] ≥ 1− e−d·EP (τcount)
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Upper Bounds (or, Algorithms)

Counting products [Elimelech,Huleihel’24]: Consider

ϕcount(X,Y) ≜ 1


n∑

i,j=1

1 {L(Xi,Yj) ≥ d · τcount} ≥ nPd

2


Proof sketch: second moment (w.l.o.g. π = Id),

PH1 (ϕcount = 0) = PH1

 n∑
i,j=1

Gij <
nPd

2


≤ PH1

(
n∑

i=1

Gii <
nPd

2

)

≤
4 · Varρ (

∑n
i=1 Gii)

n2P2
ρ

=
4(1− Pd)

nPd
≤ 4

nPd
.
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Upper Bounds (or, Algorithms)

Comparison test [Elimelech,Huleihel’24]: Define,

ϕcomp(X,Y) ≜ 1


∣∣∣∣∣∣
∑
i,j

(Xij − Yij)

∣∣∣∣∣∣ ≤ θ


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Upper Bounds (or, Algorithms)

Comparison test [Elimelech,Huleihel’24]: Define,

ϕcomp(X,Y) ≜ 1


∣∣∣∣∣∣
∑
i,j

(Xij − Yij)

∣∣∣∣∣∣ ≤ θ


Take θ as the value for which

dTV (N (0, 1),N (0, 1− |ρ|))

= P
(
|G| ≥ θ√

2nd

)
− P

(
|G′| ≥ θ√

2nd

)
,

where G ∼ N (0, 1) and G′ ∼ N (0, 1− |ρ|).
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Upper Bounds (or, Algorithms)

Comparison test [Elimelech,Huleihel’24]: Define,

ϕcomp(X,Y) ≜ 1


∣∣∣∣∣∣
∑
i,j

(Xij − Yij)

∣∣∣∣∣∣ ≤ θ


Take θ as the value for which

dTV (N (0, 1),N (0, 1− |ρ|))

= P
(
|G| ≥ θ√

2nd

)
− P

(
|G′| ≥ θ√

2nd

)
,

where G ∼ N (0, 1) and G′ ∼ N (0, 1− |ρ|).

Theorem

Fix d ∈ N. If ρ2 = Ω(1) then limn→∞ R(ϕcomp) < 1.
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Upper Bounds (or, Algorithms)

Comparison test [Elimelech,Huleihel’24]: Define,

ϕcomp(X,Y) ≜ 1


∣∣∣∣∣∣
∑
i,j

(Xij − Yij)

∣∣∣∣∣∣ ≤ θ


Proof sketch: Let G1 ≜

∑
ij Xij and G2 ≜

∑
ij Yij . Then,

G1 − G2
H0∼ N (0, 2nd) and G1 − G2

H1∼ N (0, 2nd(1− ρ)).
Therefore,

1− R(ϕcomp) = PH0(|G1 − G2| ≥ θ)− PH1(|G1 − G2| ≥ θ)

= P(|N (0, 2nd)| ≥ θ)

− P(|N (0, 2n(1− ρ))| ≥ θ)

= dTV (N (0, 1),N (0, 1− ρ)) = Ω(1).
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Lower Bound (d → ∞)

We start with the regime where at least d→ ∞.
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Lower Bound (d → ∞)

We start with the regime where at least d→ ∞.

Second moment calculation: let Ln(X,Y) ≜
PH1

(X,Y)

PH0
(X,Y) , then

R⋆ = 1− dTV(PH1 ,PH0)

EH0

[
L2n
]
= O(1)

=⇒ dTV(PH1 ,PH0) ≤ 1− Ω(1)

EH0

[
L2n
]
= 1 + o(1)

=⇒ dTV(PH1 ,PH0) ≤ o(1)
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Lower Bound (d → ∞)

We start with the regime where at least d→ ∞.

Second moment calculation: let Ln(X,Y) ≜
PH1

(X,Y)

PH0
(X,Y) , then

R⋆ = 1− dTV(PH1 ,PH0)

EH0

[
L2n
]
= O(1)

=⇒ dTV(PH1 ,PH0) ≤ 1− Ω(1)

EH0

[
L2n
]
= 1 + o(1)

=⇒ dTV(PH1 ,PH0) ≤ o(1)

Thus, it is suffice to analyze the second moment of the likelihood.
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Lower Bound (d → ∞)

Recall that

Ln(X,Y) =
PH1(X,Y)

PH0(X,Y)

=
Eπ[PH1|π(X,Y)]

PH0(X,Y)
= Eπ

[PH1|π(X,Y)

PH0(X,Y)

]
.

11 / 17



Lower Bound (d → ∞)

Recall that
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PH1(X,Y)

PH0(X,Y)

=
Eπ[PH1|π(X,Y)]

PH0(X,Y)
= Eπ

[PH1|π(X,Y)

PH0(X,Y)

]
.

Then,

[Ln]
2 = Eπ |= π′

[PH1|π

PH0

·
PH1|π′

PH0

]
.
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Lower Bound (d → ∞)

Recall that

Ln(X,Y) =
PH1(X,Y)

PH0(X,Y)

=
Eπ[PH1|π(X,Y)]

PH0(X,Y)
= Eπ

[PH1|π(X,Y)

PH0(X,Y)

]
.

Then,

[Ln]
2 = Eπ |= π′

[PH1|π

PH0

·
PH1|π′

PH0

]
.

Thus, Ingster-Suslina method (Fubini’s theorem)

EH0 [L
2
n] = Eπ |= π′

[
EH0

[PH1|π

PH0

·
PH1|π′

PH0

]]
.
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Lower Bound (d → ∞)

Invariance: fix π′ = Id,

EH0 [L
2
n] = Eπ

[
EH0

[PH1|π

PH0

·
PH1|Id

PH0

]]
.
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Lower Bound (d → ∞)

Invariance: fix π′ = Id,

EH0 [L
2
n] = Eπ

[
EH0

[PH1|π

PH0

·
PH1|Id

PH0

]]
.

Recall that pairs {(Xi,Yπi)}i∈[n] are i.i.d.,

PH1|π(X,Y)

PH0(X,Y)
=

n∏
i=1

L(Xi,Yπi)

PH1|Id(X,Y)

PH0(X,Y)
=

n∏
i=1

L(Xi,Yi),

where L(Xi,Yi) ≜
P⊗d
XY (Xi,Yi)

Q⊗d
XY (Xi,Yi)

.
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Lower Bound (d → ∞)

Invariance: fix π′ = Id,

EH0 [L
2
n] = Eπ

[
EH0

[PH1|π

PH0

·
PH1|Id

PH0

]]
.

Thus,

PH1|π

PH0

·
PH1|Id

PH0

=
n∏

i=1

L(Xi,Yπi)L(Xi,Yi) ≜
n∏

i=1

Zi
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Lower Bound (d → ∞)

Invariance: fix π′ = Id,

EH0 [L
2
n] = Eπ

[
EH0

[PH1|π

PH0

·
PH1|Id

PH0

]]
.

Accordingly,

EH0 [L
2
n] = Eπ

[
EH0

(
n∏

i=1

Zi

)]
.

Problem: {Zi}ni=1 are dependent random variables

Solution: cycle decomposition!
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Lower Bound (d → ∞)

Facts on cycles (orbits)

For each element a ∈ [n], its orbit is a cycle (a0, . . . , ak−1),
where ai = πi(a), for i = 0, . . . , k − 1 and π(ak−1) = a.

For example: Consider π ∈ S7 that
1 Keeps 1 in the same place
2 Swaps 2 with 3
3 Cyclically shifts 4567

Then, π consists of three orbits in canonical notation

π = (1)(23)(4567)
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Lower Bound (d → ∞)

Facts on cycles (orbits)

For each element a ∈ [n], its orbit is a cycle (a0, . . . , ak−1),
where ai = πi(a), for i = 0, . . . , k − 1 and π(ak−1) = a.

If |O| = k, we call O a k-orbit.

Set of orbits of a permutation induce a partition of [n]

Let {O}O∈O be the orbit/cycle decomposition of π. For O ∈ O,

ZO ≜
∏
i∈O

Zi =⇒
n∏

i=1

Zi =
∏
O∈O

ZO

The random variables {ZO}O are independent (under PH0),

EH0 [L
2
n] = EπEH0

[
n∏

i=1

Zi

]
= EπEH0

[∏
O∈O

ZO

]
= Eπ

∏
O∈O

EH0 [ZO].
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Lower Bound (d → ∞)

For a fixed orbit O of a permutation π,

EH0 [ZO] =
1

(1− ρ2|O|)d
.
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(1− ρ2|O|)d
.

If Nk(π) is the number of k-orbits of π, then

E0[L
2
n] = Eπ

[∏
C

EH0 [ZO]

]
= Eπ

[
n∏

k=1
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(1− ρ2k)d·Nk

]
.
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Lower Bound (d → ∞)

For a fixed orbit O of a permutation π,

EH0 [ZO] =
1

(1− ρ2|O|)d
.

If Nk(π) is the number of k-orbits of π, then

E0[L
2
n] = Eπ

[∏
C

EH0 [ZO]

]
= Eπ

[
n∏

k=1

1

(1− ρ2k)d·Nk

]
.

Use statistical properties of k-orbits of π ∼ Unif(Sn).
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Lower Bound (d → ∞)

For a fixed orbit O of a permutation π,

EH0 [ZO] =
1

(1− ρ2|O|)d
.

If Nk(π) is the number of k-orbits of π, then

E0[L
2
n] = Eπ

[∏
C

EH0 [ZO]

]
= Eπ

[
n∏

k=1

1

(1− ρ2k)d·Nk

]
.

In particular, [Arratia,Tavaré’92]

dTV (L (N1, N2, . . . , Nk) ,L (P1, P2, . . . , Pk)) ≤ F
(n
k

)
,

for any 1 ≤ k ≤ n, and {Pi}ni=1 independent sequence with
Pi ∼ Poisson

(
i−1
)
, and logF (x) = −x log x(1 + o(1)) as x→ ∞
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Lower Bound (d → ∞)

In the Poisson world, for any m,

E

[
m∏

k=1

1

(1− ρ2k)d·Pk

]
≤ exp

(
dρ2

1− ρ2
+

c(d, ρ2)ρ4

1− ρ4

)
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In the Poisson world, for any m,

E

[
m∏

k=1

1

(1− ρ2k)d·Pk

]
≤ exp

(
dρ2

1− ρ2
+

c(d, ρ2)ρ4

1− ρ4

)
Decompose,

n∏
k=1

1

(1− ρ2k)d·Nk
=

⌈logn⌉∏
k=1

1

(1− ρ2k)d·Nk

n∏
k=⌈logn⌉+1

1

(1− ρ2k)d·Nk
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Lower Bound (d → ∞)

In the Poisson world, for any m,

E

[
m∏

k=1

1

(1− ρ2k)d·Pk

]
≤ exp

(
dρ2

1− ρ2
+

c(d, ρ2)ρ4

1− ρ4

)
Decompose,

n∏
k=1

1

(1− ρ2k)d·Nk
=

⌈logn⌉∏
k=1

1

(1− ρ2k)d·Nk

n∏
k=⌈logn⌉+1

1

(1− ρ2k)d·Nk

For the tail (m = ⌈logn⌉),
n∏

k=m+1

1

(1− ρ2k)d·Nk
≤

(
1

1− ρ2m

)d
∑n

k=m Nk

=

(
1

1− ρ2m

)dn

≤ exp

(
dnρ2m

1− ρ2m

)
= 1 + o(1),

for dρ2 = o(1).
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Lower Bound (d → ∞)

In the Poisson world, for any m,

E

[
m∏

k=1

1

(1− ρ2k)d·Pk

]
≤ exp

(
dρ2

1− ρ2
+

c(d, ρ2)ρ4

1− ρ4

)
Decompose,

n∏
k=1

1

(1− ρ2k)d·Nk
=

⌈logn⌉∏
k=1

1

(1− ρ2k)d·Nk

n∏
k=⌈logn⌉+1

1

(1− ρ2k)d·Nk

Thus,

n∏
k=1

1

(1− ρ2k)d·Nk
= (1 + o(1)) ·

⌈logn⌉∏
k=1

1

(1− ρ2k)d·Nk
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Lower Bound (d → ∞)

In the Poisson world, for any m,

E

[
m∏

k=1

1

(1− ρ2k)d·Pk

]
≤ exp

(
dρ2

1− ρ2
+

c(d, ρ2)ρ4

1− ρ4

)
Now,

Eπ

[
m∏

k=1

(
1

1− ρ2k

)dNk
]
≤ Eπ

[
m∏

k=1

(
1

1− ρ2k

)dPk
]

+ dTV (L (Nm
1 ) ,L (Pm

1 )) ·
(

1

1− ρ2

)dn
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Lower Bound (d → ∞)

In the Poisson world, for any m,

E

[
m∏

k=1

1

(1− ρ2k)d·Pk

]
≤ exp

(
dρ2

1− ρ2
+

c(d, ρ2)ρ4

1− ρ4

)
Now,

Eπ

[
m∏

k=1

(
1

1− ρ2k

)dNk
]
≤ Eπ

[
m∏

k=1

(
1

1− ρ2k

)dPk
]

+ dTV (L (Nm
1 ) ,L (Pm

1 )) ·
(

1

1− ρ2

)dn

≤ exp

(
dρ2

1− ρ2
+

c(d, ρ2)ρ4

1− ρ4

)
+ F

(
n

⌈logn⌉

)(
1

1− ρ2

)dn

= 1 + o(1),

if dρ2 = o(1).
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Finite d: Detecting Correlated Vectors [Elimelech, H’24]

When d is fixed, and n→ ∞, the above technique gives

Theorem (Impossibility)

Strong detection is impossible if d < log(ρ2)
log(1−ρ2)

.

12 / 17



Finite d: Detecting Correlated Vectors [Elimelech, H’24]

When d is fixed, and n→ ∞, the above technique gives

Theorem (Impossibility)

Strong detection is impossible if d < log(ρ2)
log(1−ρ2)

.

Consider the simple case of d = 1,

H0 H1

n

X1

X2

X3

X4

...

Xn

π

X1

X2

X3

X4

...

Xn

Y1

Y2

Y3

Y4

...

Yn

Y1

Y2

Y3

Y4

...

Yn
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Lower bound: for d = 1, we get the condition ρ2 < 1/2.
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What is the source for this significant gap? Computational?
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Finite d: Detecting Correlated Vectors [Elimelech, H’24]

When d is fixed, and n→ ∞, the above technique gives

Theorem (Impossibility)

Strong detection is impossible if d < log(ρ2)
log(1−ρ2)

.

Lower bound: for d = 1, we get the condition ρ2 < 1/2.

Upper bound is ρ2 = 1− o(n−4).

What is the source for this significant gap? Computational?

Not clear yet! But, we can prove a better lower bound.

12 / 17



Finite d: Detecting Correlated Vectors [Elimelech, H’24]

We have the following result.

Theorem (Impossibility for d = 1)

Strong detection is impossible for any ρ2 < 1.
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Finite d: Detecting Correlated Vectors [Elimelech, H’24]

Proof sketch: We use polynomial decomposition:

12 / 17



Finite d: Detecting Correlated Vectors [Elimelech, H’24]

Proof sketch: We use polynomial decomposition:

We want to analyze EH0 [L
2
n].

12 / 17



Finite d: Detecting Correlated Vectors [Elimelech, H’24]

Proof sketch: We use polynomial decomposition:

We want to analyze EH0 [L
2
n].

Idea: decompose Ln into its orthogonal components.

12 / 17



Finite d: Detecting Correlated Vectors [Elimelech, H’24]

Proof sketch: We use polynomial decomposition:

We want to analyze EH0 [L
2
n].

Idea: decompose Ln into its orthogonal components.

Univariate Hermite polynomials: for k ∈ N,

hk(x) ≜ (−1)kex
2/2 d

k

dxk
e−x2/2,

are orthonormal w.r.t. the standard Gaussian measure,

EX∼∼N(0,1) [hk(X)hℓ(X)] = δ[k − ℓ].
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Finite d: Detecting Correlated Vectors [Elimelech, H’24]

Proof sketch: We use polynomial decomposition:

We want to analyze EH0 [L
2
n].

Idea: decompose Ln into its orthogonal components.

Multivariate Hermite polynomials:
Let Hθ(x) =

∏n
i=1 hθi(xi) for θ ∈ Nn, and it holds

EX∼N (0,I) [Hα(X)Hγ(X)] = δ[α− γ].
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Finite d: Detecting Correlated Vectors [Elimelech, H’24]

Proof sketch: We use polynomial decomposition:

We want to analyze EH0 [L
2
n].

Idea: decompose Ln into its orthogonal components.

Multivariate Hermite polynomials:
Let Hθ(x) =

∏n
i=1 hθi(xi) for θ ∈ Nn, and it holds

EX∼N (0,I) [Hα(X)Hγ(X)] = δ[α− γ].

Form a complete orthonormal system in L2(H0),

Ln(X,Y) =
∑

α,β∈Nn

⟨Hα,β(X,Y), Ln(X,Y)⟩H0
Hα,β(X,Y),

where Hα,β(X,Y) ≜ Hα(X)Hβ(Y), and

⟨ϕ, ψ⟩H0
≜ EH0 [ψ(X,Y) · ϕ(X,Y)] .
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Finite d: Detecting Correlated Vectors [Elimelech, H’24]

Proof sketch: We use polynomial decomposition:

We want to analyze EH0 [L
2
n].

Idea: decompose Ln into its orthogonal components.

Parseval’s identity,

EH0

[
L2n
]
= ∥Ln∥2H0

=
∑

α,β∈Nn

⟨Hα,β(X,Y), Ln(X,Y)⟩2H0
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Finite d: Detecting Correlated Vectors [Elimelech, H’24]

Proof sketch: We use polynomial decomposition:

We want to analyze EH0 [L
2
n].

Idea: decompose Ln into its orthogonal components.

Parseval’s identity,

EH0

[
L2n
]
= ∥Ln∥2H0

=
∑

α,β∈Nn

⟨Hα,β(X,Y), Ln(X,Y)⟩2H0

It can be shown that

⟨Hα,β(X,Y), Ln(X,Y)⟩H0
= ρ|α| · P[π(β) = α]

where π(α) ∈ Nn denotes the vector obtained by permuting
the coordinates of α using π
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Finite d: Detecting Correlated Vectors [Elimelech, H’24]

Proof sketch: We use polynomial decomposition:

We want to analyze EH0 [L
2
n].

Idea: decompose Ln into its orthogonal components.

Parseval’s identity,

EH0

[
L2n
]
= ∥Ln∥2H0

=
∑

α,β∈Nn

⟨Hα,β(X,Y), Ln(X,Y)⟩2H0

It can be shown that

⟨Hα,β(X,Y), Ln(X,Y)⟩H0
= ρ|α| · P[π(β) = α]

where π(α) ∈ Nn denotes the vector obtained by permuting
the coordinates of α using π

Goal: find P[π(β) = α].
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Finite d: Detecting Correlated Vectors [Elimelech, H’24]

Proof sketch: We use polynomial decomposition:

We want to analyze EH0 [L
2
n].

Integer distribution function: for α ∈ Nn,

pα(ℓ) ≜ |i ∈ [n] : αi = ℓ| , ℓ ∈ N.

Note that,
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Proof sketch: We use polynomial decomposition:

We want to analyze EH0 [L
2
n].

Integer distribution function: for α ∈ Nn,

pα(ℓ) ≜ |i ∈ [n] : αi = ℓ| , ℓ ∈ N.

Note that,
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We want to analyze EH0 [L
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Integer distribution function: for α ∈ Nn,

pα(ℓ) ≜ |i ∈ [n] : αi = ℓ| , ℓ ∈ N.

Note that,

We say α ≡ β iff there is π ∈ Sn s.t. π(β) = α.
α ≡ β iff pα = pβ .
Let [α] denote the equivalence class of α.

Then,

P[π(β) = α] =
1

|[α]|
1α≡β.
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Finite d: Detecting Correlated Vectors [Elimelech, H’24]

Proof sketch: We use polynomial decomposition:

We want to analyze EH0 [L
2
n].

Thus,

EH0

[
L2n
]
=

∑
α,β∈Nn

⟨Hα,β(X,Y), Ln(X,Y)⟩2H0

=
∑

α,β∈Nn

ρ2|α|
1

|[α]|2
1α≡β

=

∞∑
m=0

|{[α] : |α| = m}| · ρ2m

=

∞∑
m=0

|Par(m,≤n)| · ρ2m

where Par(m,≤n) is the set of integer partitions of m to at
most n elements.
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Proof sketch: We use polynomial decomposition:

We want to analyze EH0 [L
2
n].

EH0

[
L2n
]
≤

∞∑
m=0

|Par(m,≤∞)| · ρ2m (⋆)

Hardy-Ramanujan Formula: ∃c > 0, s.t.

|Par(m,≤∞)| ≤ c · 1

4
√
3m

exp

(
π

√
2m

3

)
.
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EH0

[
L2n
]
≤

∞∑
m=0

|Par(m,≤∞)| · ρ2m (⋆)

Hardy-Ramanujan Formula: ∃c > 0, s.t.

|Par(m,≤∞)| ≤ c · 1

4
√
3m

exp

(
π

√
2m

3

)
.

Thus, |Par(m,≤∞)| is sub-exponential in m, and hence (⋆)
converges to a finite number, for any ρ2 < 1.
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Finite d: Detecting Correlated Vectors [Elimelech, H’24]

Theorem (Impossibility for d ∈ N)
Strong detection is impossible for any dρ2 < 1.

This is proved using the same techniques ending up with
complicated high-dimensional distribution functions.
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H1 : (X1,Yπ1), . . . , (Xn,Yπn)
i.i.d∼ P⊗d

XY ,

with PX = PY and denote QXY = PX × PY .

Theorem (Impossibility of weak detection)

Weak detection is impossible if

d · χ2(PXY ||QXY ) = o(1).

where χ2(P||Q) =
∫

dP2

dQ − 1.
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H0 : (X1,Y1), . . . , (Xn,Yn)
i.i.d∼ P⊗d

X × P⊗d
Y

H1 : (X1,Yπ1), . . . , (Xn,Yπn)
i.i.d∼ P⊗d

XY ,

with PX = PY and denote QXY = PX × PY .

Theorem (Possibility of strong detection)

If

d ·
d2SKL(PXY ||QXY )

VarQXY
(K(A,B))

= ω(1)

then, R(ϕsum) → 0, as d→ ∞.

13 / 17



Detecting Dependent Databases [Paslev, H’23]

Proof sketch:

For any x ∈ X and y ∈ Y, we let L(x, y) ≜ PXY (x,y)
QXY (x,y) .

13 / 17



Detecting Dependent Databases [Paslev, H’23]

Proof sketch:

For any x ∈ X and y ∈ Y, we let L(x, y) ≜ PXY (x,y)
QXY (x,y) .

For any f s.t. EQf
2 <∞, consider the induced operator

defined by the projection (Lf)(x) ≜ EY∼QY
[L(x, Y )f(Y )] .

13 / 17



Detecting Dependent Databases [Paslev, H’23]

Proof sketch:

For any x ∈ X and y ∈ Y, we let L(x, y) ≜ PXY (x,y)
QXY (x,y) .

For any f s.t. EQf
2 <∞, consider the induced operator

defined by the projection (Lf)(x) ≜ EY∼QY
[L(x, Y )f(Y )] .

We assume that L(x, y) = L(y, x), and hence self-adjoint and
Hilbert-Schmidt, diagonazable, with eigenvalues {λi}i≥0.

13 / 17



Detecting Dependent Databases [Paslev, H’23]

Proof sketch:

For any x ∈ X and y ∈ Y, we let L(x, y) ≜ PXY (x,y)
QXY (x,y) .

For any f s.t. EQf
2 <∞, consider the induced operator

defined by the projection (Lf)(x) ≜ EY∼QY
[L(x, Y )f(Y )] .

We assume that L(x, y) = L(y, x), and hence self-adjoint and
Hilbert-Schmidt, diagonazable, with eigenvalues {λi}i≥0.

Recall that

EH0 [L
2
n] = Eπ

[∏
O∈O

EH0 [ZO]

]
.

13 / 17



Detecting Dependent Databases [Paslev, H’23]

Proof sketch:

For any x ∈ X and y ∈ Y, we let L(x, y) ≜ PXY (x,y)
QXY (x,y) .

For any f s.t. EQf
2 <∞, consider the induced operator

defined by the projection (Lf)(x) ≜ EY∼QY
[L(x, Y )f(Y )] .

We assume that L(x, y) = L(y, x), and hence self-adjoint and
Hilbert-Schmidt, diagonazable, with eigenvalues {λi}i≥0.

Recall that

EH0 [L
2
n] = Eπ

[∏
O∈O

EH0 [ZO]

]
.

Then, with the notation above, it can be shown that,

EH0 [ZC ] =

(∑
i∈N

λ
2|C|
i

)d

.

13 / 17
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Proof sketch:

For any x ∈ X and y ∈ Y, we let L(x, y) ≜ PXY (x,y)
QXY (x,y) .

For any f s.t. EQf
2 <∞, consider the induced operator

defined by the projection (Lf)(x) ≜ EY∼QY
[L(x, Y )f(Y )] .

We assume that L(x, y) = L(y, x), and hence self-adjoint and
Hilbert-Schmidt, diagonazable, with eigenvalues {λi}i≥0.

Recall that

EH0 [L
2
n] = Eπ

[∏
O∈O

EH0 [ZO]

]
.

Substituting, massaging, it can be shown that weak detection
is impossible if

d ·
∑
i≥1

λ2i
1− λ2i

= o(1).
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What if the databases are only partially correlated?

Consider the following detection problem:

H0 : (X1,Y1), . . . , (Xn,Yn)
i.i.d∼ N⊗d(0, I2×2)

H1 :


{(Xi,Yπi)}i∈K

i.i.d∼ N⊗d(0,Σρ)

{(Xi,Yπi)}i/∈K
i.i.d∼ N⊗d(0, I2×2)

{(Xi,Yπi)}i/∈K |= {(Xi,Yπi)}i∈K

where π ∼ Unif(Sn) and K ∼ Unif
([n]
k

)
.
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{(Xi,Yπi)}i/∈K
i.i.d∼ N⊗d(0, I2×2)

{(Xi,Yπi)}i/∈K |= {(Xi,Yπi)}i∈K

where π ∼ Unif(Sn) and K ∼ Unif
([n]
k

)
.

So, only a planted set K of k ≤ n “users” is common to the
two databases.
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Partial Correlation

Theorem (Impossibility weak detection)

If, (
k

n

)2
(

k∏
i=1

1

1− (dρ2)i
− 1

)
= o(1),

then weak detection is impossible.
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Partial Correlation

Theorem (Impossibility weak detection)

If, (
k

n

)2
(

k∏
i=1

1

1− (dρ2)i
− 1

)
= o(1),

then weak detection is impossible.

For example, if k = O(log n), then we get

ρ2 <
1

d

[
1−

(
C
k

n

) 2
k

]
,

and we note that (k/n)
2
k = o(1).
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Testing Dependency of Random Graphs [Oren,Paslev,H’24]

In many modern applications, the observations may be in the
form of graphs.
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H0 : (Aij ,Bij)
i.i.d.∼ QAB = PA × PB

H1 : (Aij ,Bπiπj )
i.i.d.∼ PAB|π ∼ Unif(Sn),

where PA = PB.

The Bernoulli case was analyzes thoroughly in the literaturea,
both from the statistical and computational point of views!
Here, PA = PB = Bernoulli(τp), for some p ∈ (0, 1) and
τ ∈ [0, 1]. Under PAB, we have A ∼ Bernoulli(τp), and

B|A ∼

{
Bernoulli(τ), if X = 1

Bernoulli
(
τp(1−τ)
1−τp

)
, if X = 0.

aE.g., [Wu,Xu,Yu’21], [Ding,Du,’23], [Ding,Du,Li’23].
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The Gaussian case was studied from the statistical point of
view [Wu,Xu,Yu’21].
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Consider the following detection problem:

H0 : (Aij ,Bij)
i.i.d.∼ QAB = PA × PB

H1 : (Aij ,Bπiπj )
i.i.d.∼ PAB|π ∼ Unif(Sn),

where PA = PB.

Theorem (Impossibility of weak detection)

Weak detection is statistically impossible if

χ2 (P||Q) ≤ (2− ϵ) log n

αn
, and

dKL (P||Q) + δn · VarP (logL) ≤ (2− ϵ) log n

n
,

for any ω(1) = δn = o(log n), and any constant ϵ > 0.
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H1 : (Aij ,Bπiπj )
i.i.d.∼ PAB|π ∼ Unif(Sn),

where PA = PB.

For the class of distributions for which there is a constant
C > 1 such that χ2 (P||Q) ≤ C · dKL (P||Q), weak detection
is impossible if

dKL (P||Q) ≤ (2− ϵ) log n

n
.

Coincides with [Wu,Xu,Yu’21] for Bernoulli and Gaussian.
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Testing Dependency of Random Graphs [Oren,Paslev,H’24]

Consider the following detection problem:

H0 : (Aij ,Bij)
i.i.d.∼ QAB = PA × PB

H1 : (Aij ,Bπiπj )
i.i.d.∼ PAB|π ∼ Unif(Sn),

where PA = PB.

Theorem (Strong detection upper bound)

Suppose there is a θ̄ ∈ (−dKL(Q||P), dKL(P||Q)) with

EQ(θ̄) ≥
2 log(n/e)

n− 1
+O(n−2 log n),

EP(θ̄) = ω(n−2).

Then, Rn(ϕGLRT) → 0, as n→ ∞.
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where PA = PB.

For pairs of distributions (P,Q) with sub-exponential
likelihood function, strong detection is possible if

dKL (P||Q) ≥ 2 log n

n− 1
.

Complements lower bound.

GLRT is exhibits exponential computational complexity. What
about poly-time algorithms?
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Consider the following detection problem:

H0 : (Aij ,Bij)
i.i.d.∼ QAB = PA × PB

H1 : (Aij ,Bπiπj )
i.i.d.∼ PAB|π ∼ Unif(Sn),

where PA = PB.

Theorem (Weak detection upper bound)

If |corr(Q,P)| ≜ |covP (A,B)|
VarQ(A) = Ω(1), and

EQ|A−B|3

Var
3/2
Q (A)

,
EP |A−B|3

Var
3/2
Q (A)(1− |corr(Q,P)|)3/2

= o(n),

then limn→∞ Rn(ϕsum) < 1.
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H1 : (Aij ,Bπiπj )
i.i.d.∼ PAB|π ∼ Unif(Sn),

where PA = PB.

In the Gaussian and Bernoulli cases this boils down to
ρ2 = Ω(1), while GLRT allows for a vanishing correlation.

Conjecture: this is fundamental in the sense that this is a
barrier for what can be achieved using polynomial-time
algorithms.

In the Bernoulli case [Ding,Du,Li’23] prove computational
lower bound based on the low-degree polynomial conjecture.
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Testing Dependency of Random Graphs [Oren,Paslev,H’24]

Consider the following detection problem:

H0 : (Aij ,Bij)
i.i.d.∼ QAB = PA × PB

H1 : (Aij ,Bπiπj )
i.i.d.∼ PAB|π ∼ Unif(Sn),

where PA = PB.

Theorem (LDP computational lower bound)

For a certain class of pairs of distributions (P,Q), if
|corr(Q,P)| = o(1), then ∥Ln,≤D∥H0

≤ O(1), for any

D = O(|corr(Q,P)|−1).

Here, Ln,≤D is the projection of Ln to the linear subspace of
polynomials of degree at most D ∈ N.
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We considered the problem of testing correlated/dependent
databases and characterize the statistical limits (in some
asymptotic regimes).
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Concluding Remarks

We considered the problem of testing correlated/dependent
databases and characterize the statistical limits (in some
asymptotic regimes).

The impossibility proofs are based on delicate analysis of the
second moment using properties of random permutation cycles
and integer partition function via polynomial decomposition.

There is a gap between lower and upper bound when d is
fixed.

Open Problems:

Close the gap, and obtain sharp bounds.

Prove existence of/close the computational gaps.
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Thank You!
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