Testing Dependency of Databases

Wasim Huleihel

Tel Aviv University
Department of Electrical Engineering - Systems
February 28, 2024

EnCORE Workshop on Computational vs Statistical Gaps in
Learning and Optimization

Motivation: Data Alignment Problem

Correlated data structures

- Data collection (from many sources) is ubiquitous.

Motivation: Data Alignment Problem

Correlated data structures

- Data collection (from many sources) is ubiquitous.
- Different data structures/sources offer many great benefits for inference.

Motivation: Data Alignment Problem

Correlated data structures

- Data collection (from many sources) is ubiquitous.
- Different data structures/sources offer many great benefits for inference.
- Understanding and quantifying the correlation between data structures are among the most fundamental tasks in statistics!

Motivation: Data Alignment Problem

Correlated data structures

- Data collection (from many sources) is ubiquitous.
- Different data structures/sources offer many great benefits for inference.
- Understanding and quantifying the correlation between data structures are among the most fundamental tasks in statistics!
- Modern challenges: data structures are high- d, noisy, unlabeled/scrambled.

Motivation: Data Alignment Problem

Correlated data structures

- Data collection (from many sources) is ubiquitous.
- Different data structures/sources offer many great benefits for inference.
- Understanding and quantifying the correlation between data structures are among the most fundamental tasks in statistics!
- Modern challenges: data structures are high- d, noisy, unlabeled/scrambled.
- This precludes "direct" inference/data junction.

Motivation: Data Alignment Problem

Correlated data structures

- Data collection (from many sources) is ubiquitous.
- Different data structures/sources offer many great benefits for inference.
- Understanding and quantifying the correlation between data structures are among the most fundamental tasks in statistics!
- Modern challenges: data structures are high- d, noisy, unlabeled/scrambled.
- This precludes "direct" inference/data junction.
- General goal: determine if \exists a correspondence under which the sources are "correlated".

Motivation: Data Alignment Problem (Cont'd)

Pictorially...

- Multiple data structures/sources are available.

Data
Struc.\#1 Struc.\#2

Motivation: Data Alignment Problem (Cont'd)

Pictorially...

- Multiple data structures/sources are available.
- Each source provides information for entities (e.g., users).

Data
Struc.\#1 Struc.\#2

Motivation: Data Alignment Problem (Cont'd)

Pictorially...

- Multiple data structures/sources are available.
- Each source provides information for entities (e.g., users).
- The correspondence between different sources is unknown/obfuscated.

Data Struc.\#1

Data
Struc.\#2

Motivation: Data Alignment Problem (Cont'd)

Pictorially...

- Multiple data structures/sources are available.
- Each source provides information for entities (e.g., users).
- If "correlation" is sufficiently large maybe it is possible to glean something about the correspondence.

Motivation: Data Alignment Problem (Cont'd)

Pictorially...

- Multiple data structures/sources are available.
- Each source provides information for entities (e.g., users).
- Valuable tool to recover missing information by labeling unlabeled features and allowing the junction of data coming from different sources.

Motivation: Data Alignment Problem (Cont'd)

Pictorially...

- Multiple data structures/sources are available.
- Each source provides information for entities (e.g., users).
- Crucial to understand limitations of data alignment so as to assess the feasibility and reliability of alignment procedures.

Motivation: Folklore Example

Netflix Prize

- Netflix prize: take dataset and come up with a better recommendation algorithm.
- Dataset: lists of features for a set of entities, say, users.

Motivation: Folklore Example

Netflix Prize

- Netflix prize: take dataset and come up with a better recommendation algorithm.
- Privacy concern: unique identifying sensitive information (e.g., names, user IDs) is deleted from a database while other features (e.g., movie ratings) are left unchanged.

Motivation: Folklore Example

Netflix Prize

- Netflix prize: take dataset and come up with a better recommendation algorithm.
- Privacy concern: unique identifying sensitive information (e.g., names, user IDs) is deleted from a database while other features (e.g., movie ratings) are left unchanged.
- No side information: could be effective for protecting user privacy (while providing access to data).

Motivation: Folklore Example

Netflix Prize

- Netflix prize: take dataset and come up with a better recommendation algorithm.
- Privacy concern: unique identifying sensitive information (e.g., names, user IDs) is deleted from a database while other features (e.g., movie ratings) are left unchanged.
- Side information is abundant in the public domain!

Motivation: Folklore Example

Netflix Prize

- Netflix prize: take dataset and come up with a better recommendation algorithm.
- Privacy concern: unique identifying sensitive information (e.g., names, user IDs) is deleted from a database while other features (e.g., movie ratings) are left unchanged.
- Side information is abundant in the public domain!
- [Narayanan\&Shmatikov'08,09]: many Netflix user IDs can be matched with IMDb profiles.
- Netflix prize dataset (anonymized): User IDs, movie IDs, movie ratings.
- IMDb dataset (public): Usernames, movie names, movie ratings.

Motivation: Folklore Example

Netflix Prize

- Netflix prize: take dataset and come up with a better recommendation algorithm.
- Privacy concern: unique identifying sensitive information (e.g., names, user IDs) is deleted from a database while other features (e.g., movie ratings) are left unchanged.
- Side information is abundant in the public domain!
- Crucial to understand the conditions that allow/prevent privacy breaches, and vulnerability of de-anony. schemes.

Motivation: Graph Alignment/(Noisy) Graph Isomorphism

"Interactions among users"

- In many modern applications, observations appear as graphs.

[Wu\&Xu\&Yu'21]

Motivation: Graph Alignment/(Noisy) Graph Isomorphism

"Interactions among users"

- In many modern applications, observations appear as graphs.
- Node labels may be absent or scrambled.

[Wu\&Xu\&Yu'21]

Motivation: Graph Alignment/(Noisy) Graph Isomorphism

"Interactions among users"

- In many modern applications, observations appear as graphs.
- Goal: Find/detect node correspondence.

Motivation: Graph Alignment/(Noisy) Graph Isomorphism

"Interactions among users"

- In many modern applications, observations appear as graphs.
- Goal: Find/detect node correspondence.
- Social network analysis: two friendship networks on different social platforms share structural similarities?
- Computational biology: assess the correlation of two biological networks in two different species.
- Natural language processing: uncovering the correlation between two knowledge graphs that are in either different languages.

Motivation: Graph Alignment/(Noisy) Graph Isomorphism

"Interactions among users"

- In many modern applications, observations appear as graphs.
- Goal: Find/detect node correspondence.
- Social network analysis: two friendship networks on different social platforms share structural similarities?
- Computational biology: assess the correlation of two biological networks in two different species.
- Natural language processing: uncovering the correlation between two knowledge graphs that are in either different languages.
- Significant attention and beautiful strong results, e.g., [Barak et. al.'19], [Cullina,Kiyavash'16,20], [Wu,Xu,Yu'21], [Ding, Ma, Wu, Xu'21], [Hall,Massoulié'21], [Ding,Li'22], [Ding,Du'23], and many references therein.

The Database Alignment Problem

Generative Correlation Model

- Databases $\mathrm{X}, \mathrm{Y} \in \mathbb{R}^{n \times d}: n$ "users" each with d "features".

The Database Alignment Problem

Generative Correlation Model

- Databases $\mathrm{X}, \mathrm{Y} \in \mathbb{R}^{n \times d}$: n "users" each with d "features".
- For now, databases include the same set of users.

The Database Alignment Problem

Generative Correlation Model

- Databases $\mathrm{X}, \mathrm{Y} \in \mathbb{R}^{n \times d}: n$ "users" each with d "features".
- We will assume features are i.i.d.

The Database Alignment Problem

Generative Correlation Model

- Databases $\mathrm{X}, \mathrm{Y} \in \mathbb{R}^{n \times d}: n$ "users" each with d "features".
- There is a latent (hidden, planted) correspondence (matching, permutation) $\pi \in \mathbb{S}_{n}$ between the rows of X and Y .

The Database Alignment Problem

Generative Correlation Model

- Databases $\mathrm{X}, \mathrm{Y} \in \mathbb{R}^{n \times d}: n$ "users" each with d "features".
- There is a latent (hidden, planted) correspondence (matching, permutation) $\pi \in \mathbb{S}_{n}$ between the rows of X and Y .
- Features $\left(\mathrm{X}_{i}, \mathrm{Y}_{\pi_{i}}\right)$ associated with user i are dependent, while different pairs are independent.

The Database Alignment Problem

Generative Correlation Model

- Recovery/alignment problem: given X, Y recover π.

The Database Alignment Problem

Generative Correlation Model

- Recovery/alignment problem: given X, Y recover π.
- Received significant attention, e.g., [Cullina,Mittal,Kiyavash'18],[Dai,Mittal,Kiyavash'19], [Wang, Wu, Xu, Yolou'22].

The Database Alignment Problem

Generative Correlation Model

- In this talk, we focus on the detection variant of this problem.

Detecting Correlated Databases

Detection/Hypothesis Testing

- Null: X and Y are Gaussian and independent, i.e.,

$$
\left(\mathrm{X}_{1}, \mathrm{Y}_{1}\right), \ldots,\left(\mathrm{X}_{n}, \mathrm{Y}_{n}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}^{\otimes d}\left(0_{2 \times 1}, \mathbf{I}_{2 \times 2}\right)
$$

Detecting Correlated Databases

Detection/Hypothesis Testing

- Null: X and Y are Gaussian and independent, i.e.,

$$
\left(\mathrm{X}_{1}, \mathrm{Y}_{1}\right), \ldots,\left(\mathrm{X}_{n}, \mathrm{Y}_{n}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}^{\otimes d}\left(0_{2 \times 1}, \mathbf{I}_{2 \times 2}\right)
$$

- Alternative: cond. on $\pi \sim \operatorname{Unif}\left(\mathbb{S}_{n}\right)\left(\right.$ or $\left.\exists \pi \in \mathbb{S}_{n}\right)$

$$
\left(\mathrm{X}_{1}, \mathrm{Y}_{\pi_{1}}\right), \ldots,\left(\mathrm{X}_{n}, \mathrm{Y}_{\pi_{n}}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}^{\otimes d}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right] \triangleq \Sigma_{\rho}\right)
$$

Detecting Correlated Databases

Detection/Hypothesis Testing

- Null: X and Y are Gaussian and independent, i.e.,

$$
\left(\mathrm{X}_{1}, \mathrm{Y}_{1}\right), \ldots,\left(\mathrm{X}_{n}, \mathrm{Y}_{n}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}^{\otimes d}\left(0_{2 \times 1}, \mathbf{I}_{2 \times 2}\right)
$$

- Alternative: cond. on $\pi \sim \operatorname{Unif}\left(\mathbb{S}_{n}\right)\left(\right.$ or $\left.\exists \pi \in \mathbb{S}_{n}\right)$

$$
\left(\mathrm{X}_{1}, \mathrm{Y}_{\pi_{1}}\right), \ldots,\left(\mathrm{X}_{n}, \mathrm{Y}_{\pi_{n}}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}^{\otimes d}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right] \triangleq \Sigma_{\rho}\right)
$$

- For a test $\phi: \mathbb{R}^{n \times d} \times \mathbb{R}^{n \times d} \rightarrow\{0,1\}$, the "risk" is:

$$
\mathrm{R}(\phi) \triangleq \mathbb{P}_{\mathcal{H}_{0}}[\phi(\mathrm{X}, \mathrm{Y})=1]+\mathbb{E}_{\pi \sim U n i f\left(\mathbb{S}_{n}\right)} \mathbb{P}_{\mathcal{H}_{1} \mid \pi}[\phi(\mathrm{X}, \mathrm{Y})=0]
$$

Detecting Correlated Databases

Detection/Hypothesis Testing

- Null: X and Y are Gaussian and independent, i.e.,

$$
\left(\mathrm{X}_{1}, \mathrm{Y}_{1}\right), \ldots,\left(\mathrm{X}_{n}, \mathrm{Y}_{n}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}^{\otimes d}\left(0_{2 \times 1}, \mathbf{I}_{2 \times 2}\right)
$$

- Alternative: cond. on $\pi \sim \operatorname{Unif}\left(\mathbb{S}_{n}\right)\left(\right.$ or $\left.\exists \pi \in \mathbb{S}_{n}\right)$

$$
\left(\mathrm{X}_{1}, \mathrm{Y}_{\pi_{1}}\right), \ldots,\left(\mathrm{X}_{n}, \mathrm{Y}_{\pi_{n}}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}^{\otimes d}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right] \triangleq \Sigma_{\rho}\right)
$$

- For a test $\phi: \mathbb{R}^{n \times d} \times \mathbb{R}^{n \times d} \rightarrow\{0,1\}$, the "risk" is:

$$
\mathrm{R}(\phi) \triangleq \mathbb{P}_{\mathcal{H}_{0}}[\phi(\mathrm{X}, \mathrm{Y})=1]+\mathbb{E}_{\pi \sim U n i f\left(\mathbb{S}_{n}\right)} \mathbb{P}_{\mathcal{H}_{1} \mid \pi}[\phi(\mathrm{X}, \mathrm{Y})=0]
$$

- Minimal (optimal) risk $\mathrm{R}^{\star}=\inf _{\phi} \mathrm{R}(\phi)$.

Detecting Correlated Databases

Detection/Hypothesis Testing

- Null: X and Y are Gaussian and independent, i.e.,

$$
\left(\mathrm{X}_{1}, \mathrm{Y}_{1}\right), \ldots,\left(\mathrm{X}_{n}, \mathrm{Y}_{n}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}^{\otimes d}\left(0_{2 \times 1}, \mathbf{I}_{2 \times 2}\right)
$$

- Alternative: cond. on $\pi \sim \operatorname{Unif}\left(\mathbb{S}_{n}\right)\left(\right.$ or $\left.\exists \pi \in \mathbb{S}_{n}\right)$

$$
\left(\mathrm{X}_{1}, \mathrm{Y}_{\pi_{1}}\right), \ldots,\left(\mathrm{X}_{n}, \mathrm{Y}_{\pi_{n}}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}^{\otimes d}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right] \triangleq \Sigma_{\rho}\right)
$$

- For a test $\phi: \mathbb{R}^{n \times d} \times \mathbb{R}^{n \times d} \rightarrow\{0,1\}$, the "risk" is:

$$
\mathrm{R}(\phi) \triangleq \mathbb{P}_{\mathcal{H}_{0}}[\phi(\mathrm{X}, \mathrm{Y})=1]+\mathbb{E}_{\pi \sim U n i f\left(\mathbb{S}_{n}\right)} \mathbb{P}_{\mathcal{H}_{1} \mid \pi}[\phi(\mathrm{X}, \mathrm{Y})=0]
$$

- Possibility: strong detection if $\mathrm{R}(\phi)=o(1)$, and weak detection if $\lim \mathrm{R}(\phi)<1$.

Detecting Correlated Databases

Detection/Hypothesis Testing

- Null: X and Y are Gaussian and independent, i.e.,

$$
\left(\mathrm{X}_{1}, \mathrm{Y}_{1}\right), \ldots,\left(\mathrm{X}_{n}, \mathrm{Y}_{n}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}^{\otimes d}\left(0_{2 \times 1}, \mathbf{I}_{2 \times 2}\right)
$$

- Alternative: cond. on $\pi \sim \operatorname{Unif}\left(\mathbb{S}_{n}\right)\left(\right.$ or $\left.\exists \pi \in \mathbb{S}_{n}\right)$

$$
\left(\mathrm{X}_{1}, \mathrm{Y}_{\pi_{1}}\right), \ldots,\left(\mathrm{X}_{n}, \mathrm{Y}_{\pi_{n}}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}^{\otimes d}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right] \triangleq \Sigma_{\rho}\right)
$$

- For a test $\phi: \mathbb{R}^{n \times d} \times \mathbb{R}^{n \times d} \rightarrow\{0,1\}$, the "risk" is:

$$
\mathrm{R}(\phi) \triangleq \mathbb{P}_{\mathcal{H}_{0}}[\phi(\mathrm{X}, \mathrm{Y})=1]+\mathbb{E}_{\pi \sim \operatorname{Unif}\left(\mathbb{S}_{n}\right)} \mathbb{P}_{\mathcal{H}_{1} \mid \pi}[\phi(\mathrm{X}, \mathrm{Y})=0]
$$

- Possibility: strong detection if $\mathrm{R}(\phi)=o(1)$, and weak detection if $\lim \mathrm{R}(\phi)<1$.
- Impossibility: strong detection if $\mathrm{R}^{\star}=\Omega(1)$, and weak detection if $\mathrm{R}^{\star}=1-o(1)$.

Detecting Correlated Databases

Detection/Hypothesis Testing

- Null: X and Y are Gaussian and independent, i.e.,

$$
\left(\mathrm{X}_{1}, \mathrm{Y}_{1}\right), \ldots,\left(\mathrm{X}_{n}, \mathrm{Y}_{n}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}^{\otimes d}\left(0_{2 \times 1}, \mathbf{I}_{2 \times 2}\right)
$$

- Alternative: cond. on $\pi \sim \operatorname{Unif}\left(\mathbb{S}_{n}\right)\left(\right.$ or $\left.\exists \pi \in \mathbb{S}_{n}\right)$

$$
\left(\mathrm{X}_{1}, \mathrm{Y}_{\pi_{1}}\right), \ldots,\left(\mathrm{X}_{n}, \mathrm{Y}_{\pi_{n}}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}^{\otimes d}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right] \triangleq \Sigma_{\rho}\right)
$$

- For a test $\phi: \mathbb{R}^{n \times d} \times \mathbb{R}^{n \times d} \rightarrow\{0,1\}$, the "risk" is:

$$
\mathrm{R}(\phi) \triangleq \mathbb{P}_{\mathcal{H}_{0}}[\phi(\mathrm{X}, \mathrm{Y})=1]+\mathbb{E}_{\pi \sim \operatorname{Unif}\left(\mathbb{S}_{n}\right)} \mathbb{P}_{\mathcal{H}_{1} \mid \pi}[\phi(\mathrm{X}, \mathrm{Y})=0]
$$

- Possibility: strong detection if $\lim d_{\mathrm{TV}}\left(\mathbb{P}_{\mathcal{H}_{0}}, \mathbb{P}_{\mathcal{H}_{1}}\right)=1$, and weak detection if $\liminf d_{\mathrm{TV}}\left(\mathbb{P}_{\mathcal{H}_{0}}, \mathbb{P}_{\mathcal{H}_{1}}\right)>0$.
- Impossibility: strong detection if $d_{\mathrm{TV}}\left(\mathbb{P}_{\mathcal{H}_{0}}, \mathbb{P}_{\mathcal{H}_{1}}\right) \leq 1-\Omega(1)$, and weak detection if $d_{\mathrm{TV}}\left(\mathbb{P}_{\mathcal{H}_{0}}, \mathbb{P}_{\mathcal{H}_{1}}\right)=o(1)$.

Prior Work (Correlated Databases)

Known Results and Gaps

- [Dai,Cullina,Kiyavash'19]: Perfect recovery is possible if $\rho^{2}=1-o\left(n^{-4 / d}\right)$ and impossible if $\rho^{2}=1-\omega\left(n^{-4 / d}\right)$, assuming $1 \ll d=O(\log n)$.
E.g., if $d=\omega(\log n)$ then rec. is possible if $\rho^{2}=\omega\left(\frac{\log n}{d}\right)$.

Prior Work (Correlated Databases)

Known Results and Gaps

- [Dai,Cullina,Kiyavash'19]: Perfect recovery is possible if $\rho^{2}=1-o\left(n^{-4 / d}\right)$ and impossible if $\rho^{2}=1-\omega\left(n^{-4 / d}\right)$, assuming $1 \ll d=O(\log n)$.
- [Wang, Wu, Xu,Yolou'22]: Improved the above result by a factor of $\log d$, and hold for any $d \geq 1$.

Prior Work (Correlated Databases)

Known Results and Gaps

- [Dai,Cullina,Kiyavash'19]: Perfect recovery is possible if $\rho^{2}=1-o\left(n^{-4 / d}\right)$ and impossible if $\rho^{2}=1-\omega\left(n^{-4 / d}\right)$, assuming $1 \ll d=O(\log n)$.
- [Wang, Wu, Xu,Yolou'22]: Improved the above result by a factor of $\log d$, and hold for any $d \geq 1$.
- Almost perfect recovery [Dai,Cullina,Kiyavash'20], feature deletions and repetitions [Bakirtas,Erkip'20,21], etc.

Prior Work (Correlated Databases)

Known Results and Gaps

- [Dai,Cullina,Kiyavash'19]: Perfect recovery is possible if $\rho^{2}=1-o\left(n^{-4 / d}\right)$ and impossible if $\rho^{2}=1-\omega\left(n^{-4 / d}\right)$, assuming $1 \ll d=O(\log n)$.
- [Wang, Wu, Xu, Yolou'22]: Improved the above result by a factor of $\log d$, and hold for any $d \geq 1$.
- Almost perfect recovery [Dai,Cullina,Kiyavash'20], feature deletions and repetitions [Bakirtas,Erkip'20,21], etc.
- [Zeynep,Nazer'21,22]: (Efficient) strong detection possible if $\rho^{2} d \rightarrow \infty$, and impossible if $\rho^{2} d \sqrt{n} \rightarrow 0$ and $d=\Omega(\log n)$

Prior Work (Correlated Databases)

Known Results and Gaps

- [Dai,Cullina,Kiyavash'19]: Perfect recovery is possible if $\rho^{2}=1-o\left(n^{-4 / d}\right)$ and impossible if $\rho^{2}=1-\omega\left(n^{-4 / d}\right)$, assuming $1 \ll d=O(\log n)$.
- [Wang, Wu, Xu, Yolou'22]: Improved the above result by a factor of $\log d$, and hold for any $d \geq 1$.
- Almost perfect recovery [Dai,Cullina,Kiyavash'20], feature deletions and repetitions [Bakirtas,Erkip'20,21], etc.
- [Zeynep,Nazer'21,22]: (Efficient) strong detection possible if $\rho^{2} d \rightarrow \infty$, and impossible if $\rho^{2} d \sqrt{n} \rightarrow 0$ and $d=\Omega(\log n)$
- Most notably, there is a \sqrt{n} gap, and upper bound is independent of n.

Prior Work (Correlated Databases)

Known Results and Gaps

- [Dai,Cullina,Kiyavash'19]: Perfect recovery is possible if $\rho^{2}=1-o\left(n^{-4 / d}\right)$ and impossible if $\rho^{2}=1-\omega\left(n^{-4 / d}\right)$, assuming $1 \ll d=O(\log n)$.
- [Wang, Wu, Xu, Yolou'22]: Improved the above result by a factor of $\log d$, and hold for any $d \geq 1$.
- Almost perfect recovery [Dai,Cullina,Kiyavash'20], feature deletions and repetitions [Bakirtas,Erkip'20,21], etc.
- [Zeynep,Nazer'21,22]: (Efficient) strong detection possible if $\rho^{2} d \rightarrow \infty$, and impossible if $\rho^{2} d \sqrt{n} \rightarrow 0$ and $d=\Omega(\log n)$
- Most notably, there is a \sqrt{n} gap, and upper bound is independent of n.
- [Tamir'22,23]: Joint correlation detection and recovery.

Main Results (Correlated Databases)

We show in [Elimelech,Huleihel'23,24]

	Weak Detection		Strong Detection	
Asymptotics	Possible	Impossible	Possible	Impossible
$n, d \rightarrow \infty$	$\Omega\left(d^{-1}\right)$	$o\left(d^{-1}\right)$	$\omega\left(d^{-1}\right)$	$(1-\varepsilon) d^{-1}$
$d \rightarrow \infty, n$ constant	$\Omega\left(d^{-1}\right)$	$o\left(d^{-1}\right)$	$\omega\left(d^{-1}\right)$	$O\left(d^{-1}\right)$
$n \rightarrow \infty, d$ constant	$\rho^{2}=\Omega(1)$	$o(1)$	$1-o\left(n^{\left.-\frac{4}{d}\right)}\right.$	$\rho^{\star}(d)$

- If at least $d \rightarrow \infty$, then \sqrt{n} is not needed, namely, upper bound from [Zeynep,Nazer'21,22] is the truth.

Main Results (Correlated Databases)

We show in [Elimelech,Huleihel'23,24]

	Weak Detection		Strong Detection	
Asymptotics	Possible	Impossible	Possible	Impossible
$n, d \rightarrow \infty$	$\Omega\left(d^{-1}\right)$	$o\left(d^{-1}\right)$	$\omega\left(d^{-1}\right)$	$(1-\varepsilon) d^{-1}$
$d \rightarrow \infty, n$ constant	$\Omega\left(d^{-1}\right)$	$o\left(d^{-1}\right)$	$\omega\left(d^{-1}\right)$	$O\left(d^{-1}\right)$
$n \rightarrow \infty, d$ constant	$\rho^{2}=\Omega(1)$	$o(1)$	$1-o\left(n^{\left.-\frac{4}{d}\right)}\right.$	$\rho^{\star}(d)$

- If at least $d \rightarrow \infty$, then \sqrt{n} is not needed, namely, upper bound from [Zeynep,Nazer'21,22] is the truth.
- Fixed d is the interesting and more challenging regime.

Main Results (Correlated Databases)

We show in [Elimelech,Huleihel'23,24]

	Weak Detection		Strong Detection	
Asymptotics	Possible	Impossible	Possible	Impossible
$n, d \rightarrow \infty$	$\Omega\left(d^{-1}\right)$	$o\left(d^{-1}\right)$	$\omega\left(d^{-1}\right)$	$(1-\varepsilon) d^{-1}$
$d \rightarrow \infty, n$ constant	$\Omega\left(d^{-1}\right)$	$o\left(d^{-1}\right)$	$\omega\left(d^{-1}\right)$	$O\left(d^{-1}\right)$
$n \rightarrow \infty, d$ constant	$\rho^{2}=\Omega(1)$	$o(1)$	$1-o\left(n^{\left.-\frac{4}{d}\right)}\right.$	$\rho^{\star}(d)$

- If at least $d \rightarrow \infty$, then \sqrt{n} is not needed, namely, upper bound from [Zeynep,Nazer'21,22] is the truth.
- Fixed d is the interesting and more challenging regime.
- We use: $d \rho^{2} \rightarrow 0 \Leftrightarrow \rho^{2}=o\left(d^{-1}\right) \Leftrightarrow d \rho^{2}=o(1)$.

Upper Bounds (or, Algorithms)

Upper Bounds (or, Algorithms)

- Total sum [Zeynep,Nazer'21,22]: Threshold the sum of inner-products

$$
\phi_{\text {sum }}(\mathrm{X}, \mathrm{Y}) \triangleq \mathbb{1}\left\{\sum_{i, j=1}^{n} \mathrm{X}_{i}^{T} \mathrm{Y}_{j}>\frac{d n \rho}{2}\right\}
$$

Upper Bounds (or, Algorithms)

- Total sum [Zeynep,Nazer'21,22]: Threshold the sum of inner-products

$$
\phi_{\text {sum }}(\mathrm{X}, \mathrm{Y}) \triangleq \mathbb{1}\left\{\sum_{i, j=1}^{n} \mathrm{X}_{i}^{T} \mathrm{Y}_{j}>\frac{d n \rho}{2}\right\}
$$

Chernoff's bound gives:

$$
\mathrm{R}\left(\phi_{\text {sum }}\right) \leq 2 \cdot \exp \left(-\frac{d \rho^{2}}{60}\right)
$$

Upper Bounds (or, Algorithms)

- Total sum [Zeynep,Nazer'21,22]: Threshold the sum of inner-products

$$
\phi_{\text {sum }}(\mathrm{X}, \mathrm{Y}) \triangleq \mathbb{1}\left\{\sum_{i, j=1}^{n} \mathrm{X}_{i}^{T} \mathrm{Y}_{j}>\frac{d n \rho}{2}\right\}
$$

Chernoff's bound gives:

$$
\mathrm{R}\left(\phi_{\text {sum }}\right) \leq 2 \cdot \exp \left(-\frac{d \rho^{2}}{60}\right)
$$

(1) Strong detection if $d \rho^{2}=\omega_{d}(1)$.

Upper Bounds (or, Algorithms)

- Total sum [Zeynep,Nazer'21,22]: Threshold the sum of inner-products

$$
\phi_{\text {sum }}(\mathrm{X}, \mathrm{Y}) \triangleq \mathbb{1}\left\{\sum_{i, j=1}^{n} \mathrm{X}_{i}^{T} \mathrm{Y}_{j}>\frac{d n \rho}{2}\right\}
$$

Chernoff's bound gives:

$$
\mathrm{R}\left(\phi_{\text {sum }}\right) \leq 2 \cdot \exp \left(-\frac{d \rho^{2}}{60}\right)
$$

(1) Strong detection if $d \rho^{2}=\omega_{d}(1)$.
(2) Weak detection if $\rho^{2}>\frac{60 \log 2}{d}$.

Upper Bounds (or, Algorithms)

- Total sum [Zeynep,Nazer'21,22]: Threshold the sum of inner-products

$$
\phi_{\text {sum }}(\mathrm{X}, \mathrm{Y}) \triangleq \mathbb{1}\left\{\sum_{i, j=1}^{n} \mathrm{X}_{i}^{T} \mathrm{Y}_{j}>\frac{d n \rho}{2}\right\}
$$

Chernoff's bound gives:

$$
\mathrm{R}\left(\phi_{\text {sum }}\right) \leq 2 \cdot \exp \left(-\frac{d \rho^{2}}{60}\right)
$$

(1) Strong detection if $d \rho^{2}=\omega_{d}(1)$.
(2) Weak detection if $\rho^{2}>\frac{60 \log 2}{d}$.
(3) Completely independent of n.

Upper Bounds (or, Algorithms)

- Total sum [Zeynep,Nazer'21,22]: Threshold the sum of inner-products

$$
\phi_{\mathrm{sum}}(\mathrm{X}, \mathrm{Y}) \triangleq \mathbb{1}\left\{\sum_{i, j=1}^{n} \mathrm{X}_{i}^{T} \mathrm{Y}_{j}>\frac{d n \rho}{2}\right\}
$$

Chernoff's bound gives:

$$
\mathrm{R}\left(\phi_{\text {sum }}\right) \leq 2 \cdot \exp \left(-\frac{d \rho^{2}}{60}\right)
$$

(1) Strong detection if $d \rho^{2}=\omega_{d}(1)$.
(2) Weak detection if $\rho^{2}>\frac{60 \log 2}{d}$.
(3) Completely independent of n.
(9) If d is fixed, then strong detection using $\phi_{\text {sum }}$ is not possible.

Upper Bounds (or, Algorithms)

- Counting products [Elimelech,Huleihel'24]: Consider

$$
\phi_{\text {count }}(\mathrm{X}, \mathrm{Y}) \triangleq \mathbb{1}\left\{\sum_{i, j=1}^{n} \mathbb{1}\left\{\mathrm{~L}\left(\mathrm{X}_{i}, \mathrm{Y}_{j}\right) \geq d \cdot \tau_{\text {count }}\right\} \geq \frac{n \mathcal{P}_{d}}{2}\right\}
$$

where

$$
\mathrm{L}\left(\mathrm{X}_{i}, \mathrm{Y}_{j}\right) \triangleq-\frac{d}{2} \log \left(1-\rho^{2}\right)-\frac{d \rho^{2}}{2\left(1-\rho^{2}\right)}+\frac{\rho}{1-\rho^{2}} \mathrm{X}_{i}^{T} \mathrm{Y}_{j}
$$

Upper Bounds (or, Algorithms)

- Counting products [Elimelech,Huleihel'24]: Consider

$$
\phi_{\text {count }}(\mathrm{X}, \mathrm{Y}) \triangleq \mathbb{1}\left\{\sum_{i, j=1}^{n} \mathbb{1}\left\{\mathrm{~L}\left(\mathrm{X}_{i}, \mathrm{Y}_{j}\right) \geq d \cdot \tau_{\text {count }}\right\} \geq \frac{n \mathcal{P}_{d}}{2}\right\}
$$

where

$$
\begin{aligned}
\mathrm{L}\left(\mathrm{X}_{i}, \mathrm{Y}_{j}\right) & \triangleq-\frac{d}{2} \log \left(1-\rho^{2}\right)-\frac{d \rho^{2}}{2\left(1-\rho^{2}\right)}+\frac{\rho}{1-\rho^{2}} \mathrm{X}_{i}^{T} \mathrm{Y}_{j} \\
& =\log \frac{P_{X Y}^{\otimes d}\left(\mathrm{X}_{i}, \mathrm{Y}_{j}\right)}{Q_{X Y}^{\otimes d}\left(\mathrm{X}_{i}, \mathrm{Y}_{j}\right)}
\end{aligned}
$$

Upper Bounds (or, Algorithms)

- Counting products [Elimelech,Huleihel'24]: Consider

$$
\phi_{\text {count }}(\mathrm{X}, \mathrm{Y}) \triangleq \mathbb{1}\left\{\sum_{i, j=1}^{n} \mathbb{1}\left\{\mathrm{~L}\left(\mathrm{X}_{i}, \mathrm{Y}_{j}\right) \geq d \cdot \tau_{\text {count }}\right\} \geq \frac{n \mathcal{P}_{d}}{2}\right\}
$$

where

$$
\mathrm{L}\left(\mathrm{X}_{i}, \mathrm{Y}_{j}\right) \triangleq-\frac{d}{2} \log \left(1-\rho^{2}\right)-\frac{d \rho^{2}}{2\left(1-\rho^{2}\right)}+\frac{\rho}{1-\rho^{2}} \mathrm{X}_{i}^{T} \mathrm{Y}_{j}
$$

Theorem (Count test strong detection)

Fix $d \in \mathbb{N}$. Then, $\mathrm{R}\left(\phi_{\text {count }}\right) \rightarrow 0$, as $n \rightarrow \infty$, if $\rho^{2}=1-o\left(n^{-4 / d}\right)$.

Upper Bounds (or, Algorithms)

- Counting products [Elimelech,Huleihel'24]: Consider

$$
\phi_{\text {count }}(\mathrm{X}, \mathrm{Y}) \triangleq \mathbb{1}\left\{\sum_{i, j=1}^{n} \mathbb{1}\left\{\mathrm{~L}\left(\mathrm{X}_{i}, \mathrm{Y}_{j}\right) \geq d \cdot \tau_{\text {count }}\right\} \geq \frac{n \mathcal{P}_{d}}{2}\right\}
$$

where

$$
\mathrm{L}\left(\mathrm{X}_{i}, \mathrm{Y}_{j}\right) \triangleq-\frac{d}{2} \log \left(1-\rho^{2}\right)-\frac{d \rho^{2}}{2\left(1-\rho^{2}\right)}+\frac{\rho}{1-\rho^{2}} \mathrm{X}_{i}^{T} \mathrm{Y}_{j}
$$

Theorem (Count test strong detection)

Fix $d \in \mathbb{N}$. Then, $\mathrm{R}\left(\phi_{\text {count }}\right) \rightarrow 0$, as $n \rightarrow \infty$, if $\rho^{2}=1-o\left(n^{-4 / d}\right)$.
(1) Coincides with the recovery threshold (via ML).

Upper Bounds (or, Algorithms)

- Counting products [Elimelech,Huleihel'24]: Consider

$$
\phi_{\text {count }}(\mathrm{X}, \mathrm{Y}) \triangleq \mathbb{1}\left\{\sum_{i, j=1}^{n} \mathbb{1}\left\{\mathrm{~L}\left(\mathrm{X}_{i}, \mathrm{Y}_{j}\right) \geq d \cdot \tau_{\text {count }}\right\} \geq \frac{n \mathcal{P}_{d}}{2}\right\}
$$

where

$$
\mathrm{L}\left(\mathrm{X}_{i}, \mathrm{Y}_{j}\right) \triangleq-\frac{d}{2} \log \left(1-\rho^{2}\right)-\frac{d \rho^{2}}{2\left(1-\rho^{2}\right)}+\frac{\rho}{1-\rho^{2}} \mathrm{X}_{i}^{T} \mathrm{Y}_{j}
$$

Theorem (Count test strong detection)

Fix $d \in \mathbb{N}$. Then, $\mathrm{R}\left(\phi_{\text {count }}\right) \rightarrow 0$, as $n \rightarrow \infty$, if $\rho^{2}=1-o\left(n^{-4 / d}\right)$.
(1) Coincides with the recovery threshold (via ML).
(2) Decay rate is not optimal.

Upper Bounds (or, Algorithms)

- Counting products [Elimelech,Huleihel'24]: Consider

$$
\phi_{\text {count }}(\mathrm{X}, \mathrm{Y}) \triangleq \mathbb{1}\left\{\sum_{i, j=1}^{n} \mathbb{1}\left\{\mathrm{~L}\left(\mathrm{X}_{i}, \mathrm{Y}_{j}\right) \geq d \cdot \tau_{\text {count }}\right\} \geq \frac{n \mathcal{P}_{d}}{2}\right\}
$$

Proof sketch: first moment

$$
\mathbb{P}_{\mathcal{H}_{0}}\left(\phi_{\text {count }}=1\right)=\mathbb{P}_{\mathcal{H}_{0}}\left(\sum_{i, j=1}^{n} \mathrm{G}_{i j} \geq \frac{n \mathcal{P}_{d}}{2}\right) \leq \frac{2 n \mathcal{Q}_{d}}{\mathcal{P}_{d}}
$$

where

$$
\begin{aligned}
& \mathcal{Q}_{d} \triangleq \mathbb{P}_{\mathcal{N} \otimes d(0, \mathbf{I})}\left[\mathrm{L}(\mathrm{~A}, \mathrm{~B}) \geq d \cdot \tau_{\text {count }}\right] \leq e^{-d \cdot E_{Q}\left(\tau_{\text {count }}\right)} \\
& \mathcal{P}_{d} \triangleq \mathbb{P}_{\mathcal{N} \otimes d}\left(0, \Sigma_{\rho}\right)
\end{aligned}\left[\mathrm{L}(\mathrm{~A}, \mathrm{~B}) \geq d \cdot \tau_{\text {count }}\right] \geq 1-e^{-d \cdot E_{P}\left(\tau_{\text {count }}\right)}
$$

Upper Bounds (or, Algorithms)

- Counting products [Elimelech,Huleihel'24]: Consider

$$
\phi_{\text {count }}(\mathrm{X}, \mathrm{Y}) \triangleq \mathbb{1}\left\{\sum_{i, j=1}^{n} \mathbb{1}\left\{\mathrm{~L}\left(\mathrm{X}_{i}, \mathrm{Y}_{j}\right) \geq d \cdot \tau_{\text {count }}\right\} \geq \frac{n \mathcal{P}_{d}}{2}\right\}
$$

Proof sketch: second moment (w.l.o.g. $\pi=\mathrm{ld}$),

$$
\begin{aligned}
\mathbb{P}_{\mathcal{H}_{1}}\left(\phi_{\text {count }}=0\right) & =\mathbb{P}_{\mathcal{H}_{1}}\left(\sum_{i, j=1}^{n} \mathrm{G}_{i j}<\frac{n \mathcal{P}_{d}}{2}\right) \\
& \leq \mathbb{P}_{\mathcal{H}_{1}}\left(\sum_{i=1}^{n} \mathrm{G}_{i i}<\frac{n \mathcal{P}_{d}}{2}\right) \\
& \leq \frac{4 \cdot \operatorname{Var}_{\rho}\left(\sum_{i=1}^{n} \mathrm{G}_{i i}\right)}{n^{2} \mathcal{P}_{\rho}^{2}}=\frac{4\left(1-\mathcal{P}_{d}\right)}{n \mathcal{P}_{d}} \leq \frac{4}{n \mathcal{P}_{d}}
\end{aligned}
$$

Upper Bounds (or, Algorithms)

- Comparison test [Elimelech,Huleihel'24]: Define,

$$
\phi_{\text {comp }}(\mathrm{X}, \mathrm{Y}) \triangleq \mathbb{1}\left\{\left|\sum_{i, j}\left(\mathrm{X}_{i j}-\mathrm{Y}_{i j}\right)\right| \leq \theta\right\}
$$

Upper Bounds (or, Algorithms)

- Comparison test [Elimelech,Huleihel'24]: Define,

$$
\phi_{\text {comp }}(\mathrm{X}, \mathrm{Y}) \triangleq \mathbb{1}\left\{\left|\sum_{i, j}\left(\mathrm{X}_{i j}-\mathrm{Y}_{i j}\right)\right| \leq \theta\right\}
$$

Take θ as the value for which

$$
\begin{aligned}
& d_{\mathrm{TV}}(\mathcal{N}(0,1), \mathcal{N}(0,1-|\rho|)) \\
& \quad=\mathbb{P}\left(|\mathrm{G}| \geq \frac{\theta}{\sqrt{2 n d}}\right)-\mathbb{P}\left(\left|\mathrm{G}^{\prime}\right| \geq \frac{\theta}{\sqrt{2 n d}}\right)
\end{aligned}
$$

where $\mathrm{G} \sim \mathcal{N}(0,1)$ and $\mathrm{G}^{\prime} \sim \mathcal{N}(0,1-|\rho|)$.

Upper Bounds (or, Algorithms)

- Comparison test [Elimelech,Huleihel'24]: Define,

$$
\phi_{\mathrm{comp}}(\mathrm{X}, \mathrm{Y}) \triangleq \mathbb{1}\left\{\left|\sum_{i, j}\left(\mathrm{X}_{i j}-\mathrm{Y}_{i j}\right)\right| \leq \theta\right\}
$$

Take θ as the value for which

$$
\begin{aligned}
& d_{\mathrm{TV}}(\mathcal{N}(0,1), \mathcal{N}(0,1-|\rho|)) \\
& \quad=\mathbb{P}\left(|\mathrm{G}| \geq \frac{\theta}{\sqrt{2 n d}}\right)-\mathbb{P}\left(\left|\mathrm{G}^{\prime}\right| \geq \frac{\theta}{\sqrt{2 n d}}\right)
\end{aligned}
$$

where $\mathrm{G} \sim \mathcal{N}(0,1)$ and $\mathrm{G}^{\prime} \sim \mathcal{N}(0,1-|\rho|)$.

Theorem

Fix $d \in \mathbb{N}$. If $\rho^{2}=\Omega(1)$ then $\lim _{n \rightarrow \infty} \mathrm{R}\left(\phi_{\text {comp }}\right)<1$.

Upper Bounds (or, Algorithms)

- Comparison test [Elimelech,Huleihel'24]: Define,

$$
\phi_{\text {comp }}(\mathrm{X}, \mathrm{Y}) \triangleq \mathbb{1}\left\{\left|\sum_{i, j}\left(\mathrm{X}_{i j}-\mathrm{Y}_{i j}\right)\right| \leq \theta\right\}
$$

Proof sketch: Let $\mathrm{G}_{1} \triangleq \sum_{i j} \mathrm{X}_{i j}$ and $\mathrm{G}_{2} \triangleq \sum_{i j} \mathrm{Y}_{i j}$. Then, $\mathrm{G}_{1}-\mathrm{G}_{2} \stackrel{\mathcal{H}_{0}}{\sim} \mathcal{N}(0,2 n d)$ and $\mathrm{G}_{1}-\mathrm{G}_{2} \stackrel{\mathcal{H}_{1}}{\sim} \mathcal{N}(0,2 n d(1-\rho))$.
Therefore,

$$
\begin{aligned}
1-\mathrm{R}\left(\phi_{\text {comp }}\right)= & \mathbb{P}_{\mathcal{H}_{0}}\left(\left|\mathrm{G}_{1}-\mathrm{G}_{2}\right| \geq \theta\right)-\mathbb{P}_{\mathcal{H}_{1}}\left(\left|\mathrm{G}_{1}-\mathrm{G}_{2}\right| \geq \theta\right) \\
= & \mathbb{P}(|\mathcal{N}(0,2 n d)| \geq \theta) \\
& -\mathbb{P}(|\mathcal{N}(0,2 n(1-\rho))| \geq \theta) \\
= & d_{\mathrm{TV}}(\mathcal{N}(0,1), \mathcal{N}(0,1-\rho))=\Omega(1) .
\end{aligned}
$$

Lower Bound $(d \rightarrow \infty)$

We start with the regime where at least $d \rightarrow \infty$.

Lower Bound $(d \rightarrow \infty)$

We start with the regime where at least $d \rightarrow \infty$.
Second moment calculation: let $L_{n}(X, Y) \triangleq \frac{\mathbb{P}_{\mathcal{H}_{1}}(X, Y)}{\mathbb{P}_{\mathcal{H}_{0}}(X, Y)}$, then

$$
\mathrm{R}^{\star}=1-d_{\mathrm{TV}}\left(\mathbb{P}_{\mathcal{H}_{1}}, \mathbb{P}_{\mathcal{H}_{0}}\right)
$$

$$
\begin{aligned}
\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right]=O(1) & \\
& \Longrightarrow d_{\mathrm{TV}}\left(\mathbb{P}_{\mathcal{H}_{1}}, \mathbb{P}_{\mathcal{H}_{0}}\right) \leq 1-\Omega(1) \\
\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right]=1+o(1) & \Longrightarrow d_{\mathrm{TV}}\left(\mathbb{P}_{\mathcal{H}_{1}}, \mathbb{P}_{\mathcal{H}_{0}}\right) \leq o(1)
\end{aligned}
$$

Lower Bound $(d \rightarrow \infty)$

We start with the regime where at least $d \rightarrow \infty$.
Second moment calculation: let $L_{n}(X, Y) \triangleq \frac{\mathbb{P}_{\mathcal{H}_{1}}(X, Y)}{\mathbb{P}_{\mathcal{H}_{0}}(X, Y)}$, then

$$
\mathrm{R}^{\star}=1-d_{\mathrm{TV}}\left(\mathbb{P}_{\mathcal{H}_{1}}, \mathbb{P}_{\mathcal{H}_{0}}\right)
$$

$$
\begin{aligned}
\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right]=O(1) & \\
& \Longrightarrow d_{\mathrm{TV}}\left(\mathbb{P}_{\mathcal{H}_{1}}, \mathbb{P}_{\mathcal{H}_{0}}\right) \leq 1-\Omega(1) \\
\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right]=1+o(1) & \Longrightarrow d_{\mathrm{TV}}\left(\mathbb{P}_{\mathcal{H}_{1}}, \mathbb{P}_{\mathcal{H}_{0}}\right) \leq o(1)
\end{aligned}
$$

Thus, it is suffice to analyze the second moment of the likelihood.

Lower Bound $(d \rightarrow \infty)$

Recall that

$$
\begin{aligned}
\mathrm{L}_{n}(\mathrm{X}, \mathrm{Y}) & =\frac{\mathbb{P}_{\mathcal{H}_{1}}(\mathrm{X}, \mathrm{Y})}{\mathbb{P}_{\mathcal{H}_{0}}(\mathrm{X}, \mathrm{Y})} \\
& =\frac{\mathbb{E}_{\pi}\left[\mathbb{P}_{\mathcal{H}_{1} \mid \pi}(\mathrm{X}, \mathrm{Y})\right]}{\mathbb{P}_{\mathcal{H}_{0}}(\mathrm{X}, \mathrm{Y})}=\mathbb{E}_{\pi}\left[\frac{\mathbb{P}_{\mathcal{H}_{1} \mid \pi}(\mathrm{X}, \mathrm{Y})}{\mathbb{P}_{\mathcal{H}_{0}}(\mathrm{X}, \mathrm{Y})}\right]
\end{aligned}
$$

Lower Bound $(d \rightarrow \infty)$

Recall that

$$
\begin{aligned}
\mathrm{L}_{n}(\mathrm{X}, \mathrm{Y}) & =\frac{\mathbb{P}_{\mathcal{H}_{1}}(\mathrm{X}, \mathrm{Y})}{\mathbb{P}_{\mathcal{H}_{0}}(\mathrm{X}, \mathrm{Y})} \\
& =\frac{\mathbb{E}_{\pi}\left[\mathbb{P}_{\mathcal{H}_{1} \mid \pi}(\mathrm{X}, \mathrm{Y})\right]}{\mathbb{P}_{\mathcal{H}_{0}}(\mathrm{X}, \mathrm{Y})}=\mathbb{E}_{\pi}\left[\frac{\mathbb{P}_{\mathcal{H}_{1} \mid \pi}(\mathrm{X}, \mathrm{Y})}{\mathbb{P}_{\mathcal{H}_{0}}(\mathrm{X}, \mathrm{Y})}\right]
\end{aligned}
$$

Then,

$$
\left[\mathrm{L}_{n}\right]^{2}=\mathbb{E}_{\pi \Perp \pi^{\prime}}\left[\frac{\mathbb{P}_{\mathcal{H}_{1} \mid \pi}}{\mathbb{P}_{\mathcal{H}_{0}}} \cdot \frac{\mathbb{P}_{\mathcal{H}_{1} \mid \pi^{\prime}}}{\mathbb{P}_{\mathcal{H}_{0}}}\right]
$$

Lower Bound $(d \rightarrow \infty)$

Recall that

$$
\begin{aligned}
\mathrm{L}_{n}(\mathrm{X}, \mathrm{Y}) & =\frac{\mathbb{P}_{\mathcal{H}_{1}}(\mathrm{X}, \mathrm{Y})}{\mathbb{P}_{\mathcal{H}_{0}}(\mathrm{X}, \mathrm{Y})} \\
& =\frac{\mathbb{E}_{\pi}\left[\mathbb{P}_{\mathcal{H}_{1} \mid \pi}(\mathrm{X}, \mathrm{Y})\right]}{\mathbb{P}_{\mathcal{H}_{0}}(\mathrm{X}, \mathrm{Y})}=\mathbb{E}_{\pi}\left[\frac{\mathbb{P}_{\mathcal{H}_{1} \mid \pi}(\mathrm{X}, \mathrm{Y})}{\mathbb{P}_{\mathcal{H}_{0}}(\mathrm{X}, \mathrm{Y})}\right]
\end{aligned}
$$

Then,

$$
\left[\mathrm{L}_{n}\right]^{2}=\mathbb{E}_{\pi \Perp \pi^{\prime}}\left[\frac{\mathbb{P}_{\mathcal{H}_{1} \mid \pi}}{\mathbb{P}_{\mathcal{H}_{0}}} \cdot \frac{\mathbb{P}_{\mathcal{H}_{1} \mid \pi^{\prime}}}{\mathbb{P}_{\mathcal{H}_{0}}}\right] .
$$

Thus, Ingster-Suslina method (Fubini's theorem)

$$
\mathbb{E}_{\mathcal{H}_{0}}\left[L_{n}^{2}\right]=\mathbb{E}_{\pi \Perp \pi^{\prime}}\left[\mathbb{E}_{\mathcal{H}_{0}}\left[\frac{\mathbb{P}_{\mathcal{H}_{1} \mid \pi}}{\mathbb{P}_{\mathcal{H}_{0}}} \cdot \frac{\mathbb{P}_{\mathcal{H}_{1} \mid \pi^{\prime}}}{\mathbb{P}_{\mathcal{H}_{0}}}\right]\right]
$$

Lower Bound $(d \rightarrow \infty)$

Invariance: fix $\pi^{\prime}=\mathrm{Id}$,

$$
\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right]=\mathbb{E}_{\pi}\left[\mathbb{E}_{\mathcal{H}_{0}}\left[\frac{\mathbb{P}_{\mathcal{H}_{1} \mid \pi}}{\mathbb{P}_{\mathcal{H}_{0}}} \cdot \frac{\mathbb{P}_{\mathcal{H}_{1} \mid \mathrm{dd}}}{\mathbb{P}_{\mathcal{H}_{0}}}\right]\right]
$$

Lower Bound $(d \rightarrow \infty)$

Invariance: fix $\pi^{\prime}=\mathrm{Id}$,

$$
\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right]=\mathbb{E}_{\pi}\left[\mathbb{E}_{\mathcal{H}_{0}}\left[\frac{\mathbb{P}_{\mathcal{H}_{1} \mid \pi}}{\mathbb{P}_{\mathcal{H}_{0}}} \cdot \frac{\mathbb{P}_{\mathcal{H}_{1} \mid \mathrm{dd}}}{\mathbb{P}_{\mathcal{H}_{0}}}\right]\right]
$$

Recall that pairs $\left\{\left(\mathrm{X}_{i}, \mathrm{Y}_{\pi_{i}}\right)\right\}_{i \in[n]}$ are i.i.d.,

$$
\begin{array}{r}
\frac{\mathbb{P}_{\mathcal{H}_{1} \mid \pi}(\mathrm{X}, \mathrm{Y})}{\mathbb{P}_{\mathcal{H}_{0}}(\mathrm{X}, \mathrm{Y})}=\prod_{i=1}^{n} \mathrm{~L}\left(\mathrm{X}_{i}, \mathrm{Y}_{\pi_{i}}\right) \\
\frac{\mathbb{P}_{\mathcal{H}_{1} \mid \mathrm{Id}}(\mathrm{X}, \mathrm{Y})}{\mathbb{P}_{\mathcal{H}_{0}}(\mathrm{X}, \mathrm{Y})}=\prod_{i=1}^{n} \mathrm{~L}\left(\mathrm{X}_{i}, \mathrm{Y}_{i}\right)
\end{array}
$$

where $\mathrm{L}\left(\mathrm{X}_{i}, \mathrm{Y}_{i}\right) \triangleq \frac{P_{X Y}^{\otimes d}\left(\mathrm{X}_{i}, \mathrm{Y}_{i}\right)}{Q_{X Y}^{\otimes d}\left(\mathrm{X}_{i}, \mathrm{Y}_{i}\right)}$.

Lower Bound $(d \rightarrow \infty)$

Invariance: fix $\pi^{\prime}=\mathrm{Id}$,

$$
\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right]=\mathbb{E}_{\pi}\left[\mathbb{E}_{\mathcal{H}_{0}}\left[\frac{\mathbb{P}_{\mathcal{H}_{1} \mid \pi}}{\mathbb{P}_{\mathcal{H}_{0}}} \cdot \frac{\mathbb{P}_{\mathcal{H}_{1} \mid \mathrm{dd}}}{\mathbb{P}_{\mathcal{H}_{0}}}\right]\right]
$$

Thus,

$$
\frac{\mathbb{P}_{\mathcal{H}_{1} \mid \pi}}{\mathbb{P}_{\mathcal{H}_{0}}} \cdot \frac{\mathbb{P}_{\mathcal{H}_{1} \mid \mathrm{ld}}}{\mathbb{P}_{\mathcal{H}_{0}}}=\prod_{i=1}^{n} \mathrm{~L}\left(\mathrm{X}_{i}, \mathrm{Y}_{\pi_{i}}\right) \mathrm{L}\left(\mathrm{X}_{i}, \mathrm{Y}_{i}\right) \triangleq \prod_{i=1}^{n} \mathrm{Z}_{i}
$$

Lower Bound $(d \rightarrow \infty)$

Invariance: fix $\pi^{\prime}=\mathrm{Id}$,

$$
\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right]=\mathbb{E}_{\pi}\left[\mathbb{E}_{\mathcal{H}_{0}}\left[\frac{\mathbb{P}_{\mathcal{H}_{1} \mid \pi}}{\mathbb{P}_{\mathcal{H}_{0}}} \cdot \frac{\mathbb{P}_{\mathcal{H}_{1} \mid \mathrm{ld}}}{\mathbb{P}_{\mathcal{H}_{0}}}\right]\right]
$$

Accordingly,

$$
\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right]=\mathbb{E}_{\pi}\left[\mathbb{E}_{\mathcal{H}_{0}}\left(\prod_{i=1}^{n} \mathrm{Z}_{i}\right)\right]
$$

Problem: $\left\{Z_{i}\right\}_{i=1}^{n}$ are dependent random variables
Solution: cycle decomposition!

Lower Bound $(d \rightarrow \infty)$

Facts on cycles (orbits)

- For each element $a \in[n]$, its orbit is a cycle $\left(a_{0}, \ldots, a_{k-1}\right)$, where $a_{i}=\pi^{i}(a)$, for $i=0, \ldots, k-1$ and $\pi\left(a_{k-1}\right)=a$.
For example: Consider $\pi \in \mathbb{S}_{7}$ that
(1) Keeps 1 in the same place
(2) Swaps 2 with 3
(3) Cyclically shifts 4567

Then, π consists of three orbits in canonical notation

$$
\pi=(1)(23)(4567)
$$

Lower Bound $(d \rightarrow \infty)$

Facts on cycles (orbits)

- For each element $a \in[n]$, its orbit is a cycle $\left(a_{0}, \ldots, a_{k-1}\right)$, where $a_{i}=\pi^{i}(a)$, for $i=0, \ldots, k-1$ and $\pi\left(a_{k-1}\right)=a$.
- If $|O|=k$, we call O a k-orbit.
- Set of orbits of a permutation induce a partition of $[n]$

Let $\{O\}_{O \in \mathcal{O}}$ be the orbit/cycle decomposition of π. For $O \in \mathcal{O}$,

$$
\mathrm{Z}_{O} \triangleq \prod_{i \in O} \mathrm{Z}_{i} \Longrightarrow \prod_{i=1}^{n} \mathrm{Z}_{i}=\prod_{O \in \mathcal{O}} \mathrm{Z}_{O}
$$

The random variables $\left\{Z_{O}\right\}_{O}$ are independent (under $\mathbb{P}_{\mathcal{H}_{0}}$),

$$
\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right]=\mathbb{E}_{\pi} \mathbb{E}_{\mathcal{H}_{0}}\left[\prod_{i=1}^{n} \mathrm{Z}_{i}\right]=\mathbb{E}_{\pi} \mathbb{E}_{\mathcal{H}_{0}}\left[\prod_{O \in \mathcal{O}} \mathrm{Z}_{O}\right]=\mathbb{E}_{\pi} \prod_{O \in \mathcal{O}} \mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{Z}_{O}\right]
$$

Lower Bound $(d \rightarrow \infty)$

For a fixed orbit O of a permutation π,

$$
\mathbb{E}_{\mathcal{H}_{0}}\left[Z_{O}\right]=\frac{1}{\left(1-\rho^{2|O|}\right)^{d}}
$$

Lower Bound $(d \rightarrow \infty)$

For a fixed orbit O of a permutation π,

$$
\mathbb{E}_{\mathcal{H}_{0}}\left[Z_{O}\right]=\frac{1}{\left(1-\rho^{2|O|}\right)^{d}}
$$

If $N_{k}(\pi)$ is the number of k-orbits of π, then

$$
\mathbb{E}_{0}\left[\mathrm{~L}_{n}^{2}\right]=\mathbb{E}_{\pi}\left[\prod_{C} \mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{Z}_{O}\right]\right]=\mathbb{E}_{\pi}\left[\prod_{k=1}^{n} \frac{1}{\left(1-\rho^{2 k}\right)^{d \cdot N_{k}}}\right]
$$

Lower Bound $(d \rightarrow \infty)$

For a fixed orbit O of a permutation π,

$$
\mathbb{E}_{\mathcal{H}_{0}}\left[Z_{O}\right]=\frac{1}{\left(1-\rho^{2|O|}\right)^{d}}
$$

If $N_{k}(\pi)$ is the number of k-orbits of π, then

$$
\mathbb{E}_{0}\left[\mathrm{~L}_{n}^{2}\right]=\mathbb{E}_{\pi}\left[\prod_{C} \mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{Z}_{O}\right]\right]=\mathbb{E}_{\pi}\left[\prod_{k=1}^{n} \frac{1}{\left(1-\rho^{2 k}\right)^{d \cdot N_{k}}}\right]
$$

Use statistical properties of k-orbits of $\pi \sim \operatorname{Unif}\left(\mathbb{S}_{n}\right)$.

Lower Bound $(d \rightarrow \infty)$

For a fixed orbit O of a permutation π,

$$
\mathbb{E}_{\mathcal{H}_{0}}\left[Z_{O}\right]=\frac{1}{\left(1-\rho^{2|O|}\right)^{d}}
$$

If $N_{k}(\pi)$ is the number of k-orbits of π, then

$$
\mathbb{E}_{0}\left[\mathrm{~L}_{n}^{2}\right]=\mathbb{E}_{\pi}\left[\prod_{C} \mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{Z}_{O}\right]\right]=\mathbb{E}_{\pi}\left[\prod_{k=1}^{n} \frac{1}{\left(1-\rho^{2 k}\right)^{d \cdot N_{k}}}\right]
$$

In particular, [Arratia,Tavaré'92]

$$
d_{\mathrm{TV}}\left(\mathcal{L}\left(N_{1}, N_{2}, \ldots, N_{k}\right), \mathcal{L}\left(P_{1}, P_{2}, \ldots, P_{k}\right)\right) \leq F\left(\frac{n}{k}\right)
$$

for any $1 \leq k \leq n$, and $\left\{P_{i}\right\}_{i=1}^{n}$ independent sequence with $P_{i} \sim$ Poisson $\left(i^{-1}\right)$, and $\log F(x)=-x \log x(1+o(1))$ as $x \rightarrow \infty$

Lower Bound $(d \rightarrow \infty)$

In the Poisson world, for any m,

$$
\mathbb{E}\left[\prod_{k=1}^{m} \frac{1}{\left(1-\rho^{2 k}\right)^{d \cdot P_{k}}}\right] \leq \exp \left(\frac{d \rho^{2}}{1-\rho^{2}}+\frac{c\left(d, \rho^{2}\right) \rho^{4}}{1-\rho^{4}}\right)
$$

Lower Bound $(d \rightarrow \infty)$

In the Poisson world, for any m,

$$
\mathbb{E}\left[\prod_{k=1}^{m} \frac{1}{\left(1-\rho^{2 k}\right)^{d \cdot P_{k}}}\right] \leq \exp \left(\frac{d \rho^{2}}{1-\rho^{2}}+\frac{c\left(d, \rho^{2}\right) \rho^{4}}{1-\rho^{4}}\right)
$$

Decompose,

$$
\prod_{k=1}^{n} \frac{1}{\left(1-\rho^{2 k}\right)^{d \cdot N_{k}}}=\prod_{k=1}^{\lceil\log n\rceil} \frac{1}{\left(1-\rho^{2 k}\right)^{d \cdot N_{k}}} \prod_{k=\lceil\log n\rceil+1}^{n} \frac{1}{\left(1-\rho^{2 k}\right)^{d \cdot N_{k}}}
$$

Lower Bound $(d \rightarrow \infty)$

In the Poisson world, for any m,

$$
\mathbb{E}\left[\prod_{k=1}^{m} \frac{1}{\left(1-\rho^{2 k}\right)^{d \cdot P_{k}}}\right] \leq \exp \left(\frac{d \rho^{2}}{1-\rho^{2}}+\frac{c\left(d, \rho^{2}\right) \rho^{4}}{1-\rho^{4}}\right)
$$

Decompose,

$$
\prod_{k=1}^{n} \frac{1}{\left(1-\rho^{2 k}\right)^{d \cdot N_{k}}}=\prod_{k=1}^{\lceil\log n\rceil} \frac{1}{\left(1-\rho^{2 k}\right)^{d \cdot N_{k}}} \prod_{k=\lceil\log n\rceil+1}^{n} \frac{1}{\left(1-\rho^{2 k}\right)^{d \cdot N_{k}}}
$$

For the tail $(m=\lceil\log n\rceil)$,

$$
\begin{aligned}
\prod_{k=m+1}^{n} \frac{1}{\left(1-\rho^{2 k}\right)^{d \cdot N_{k}}} & \leq\left(\frac{1}{1-\rho^{2 m}}\right)^{d \sum_{k=m}^{n} N_{k}} \\
& =\left(\frac{1}{1-\rho^{2 m}}\right)^{d n} \leq \exp \left(\frac{d n \rho^{2 m}}{1-\rho^{2 m}}\right)=1+o(1)
\end{aligned}
$$

for $d \rho^{2}=o(1)$.

Lower Bound $(d \rightarrow \infty)$

In the Poisson world, for any m,

$$
\mathbb{E}\left[\prod_{k=1}^{m} \frac{1}{\left(1-\rho^{2 k}\right)^{d \cdot P_{k}}}\right] \leq \exp \left(\frac{d \rho^{2}}{1-\rho^{2}}+\frac{c\left(d, \rho^{2}\right) \rho^{4}}{1-\rho^{4}}\right)
$$

Decompose,

$$
\prod_{k=1}^{n} \frac{1}{\left(1-\rho^{2 k}\right)^{d \cdot N_{k}}}=\prod_{k=1}^{\lceil\log n\rceil} \frac{1}{\left(1-\rho^{2 k}\right)^{d \cdot N_{k}}} \prod_{k=\lceil\log n\rceil+1}^{n} \frac{1}{\left(1-\rho^{2 k}\right)^{d \cdot N_{k}}}
$$

Thus,

$$
\prod_{k=1}^{n} \frac{1}{\left(1-\rho^{2 k}\right)^{d \cdot N_{k}}}=(1+o(1)) \cdot \prod_{k=1}^{\lceil\log n\rceil} \frac{1}{\left(1-\rho^{2 k}\right)^{d \cdot N_{k}}}
$$

Lower Bound $(d \rightarrow \infty)$

In the Poisson world, for any m,

$$
\mathbb{E}\left[\prod_{k=1}^{m} \frac{1}{\left(1-\rho^{2 k}\right)^{d \cdot P_{k}}}\right] \leq \exp \left(\frac{d \rho^{2}}{1-\rho^{2}}+\frac{c\left(d, \rho^{2}\right) \rho^{4}}{1-\rho^{4}}\right)
$$

Now,

$$
\begin{aligned}
\mathbb{E}_{\pi}\left[\prod_{k=1}^{m}\left(\frac{1}{1-\rho^{2 k}}\right)^{d N_{k}}\right] \leq \mathbb{E}_{\pi} & {\left[\prod_{k=1}^{m}\left(\frac{1}{1-\rho^{2 k}}\right)^{d P_{k}}\right] } \\
& +d_{\mathrm{TV}}\left(\mathcal{L}\left(N_{1}^{m}\right), \mathcal{L}\left(P_{1}^{m}\right)\right) \cdot\left(\frac{1}{1-\rho^{2}}\right)^{d n}
\end{aligned}
$$

Lower Bound $(d \rightarrow \infty)$

In the Poisson world, for any m,

$$
\mathbb{E}\left[\prod_{k=1}^{m} \frac{1}{\left(1-\rho^{2 k}\right)^{d \cdot P_{k}}}\right] \leq \exp \left(\frac{d \rho^{2}}{1-\rho^{2}}+\frac{c\left(d, \rho^{2}\right) \rho^{4}}{1-\rho^{4}}\right)
$$

Now,

$$
\begin{aligned}
\mathbb{E}_{\pi}\left[\prod_{k=1}^{m}\left(\frac{1}{1-\rho^{2 k}}\right)^{d N_{k}}\right] \leq & \mathbb{E}_{\pi}
\end{aligned} \quad\left[\prod_{k=1}^{m}\left(\frac{1}{1-\rho^{2 k}}\right)^{d P_{k}}\right] .
$$

if $d \rho^{2}=o(1)$.

Finite d : Detecting Correlated Vectors [Elimelech, H'24]

When d is fixed, and $n \rightarrow \infty$, the above technique gives
Theorem (Impossibility)
Strong detection is impossible if $d<\frac{\log \left(\rho^{2}\right)}{\log \left(1-\rho^{2}\right)}$.

Finite d : Detecting Correlated Vectors [Elimelech, H'24]
When d is fixed, and $n \rightarrow \infty$, the above technique gives
Theorem (Impossibility)
Strong detection is impossible if $d<\frac{\log \left(\rho^{2}\right)}{\log \left(1-\rho^{2}\right)}$.
Consider the simple case of $d=1$,

Finite d : Detecting Correlated Vectors [Elimelech, H'24]

When d is fixed, and $n \rightarrow \infty$, the above technique gives
Theorem (Impossibility)
Strong detection is impossible if $d<\frac{\log \left(\rho^{2}\right)}{\log \left(1-\rho^{2}\right)}$.
Lower bound: for $d=1$, we get the condition $\rho^{2}<1 / 2$.

Finite d : Detecting Correlated Vectors [Elimelech, H'24]

When d is fixed, and $n \rightarrow \infty$, the above technique gives

Theorem (Impossibility)

Strong detection is impossible if $d<\frac{\log \left(\rho^{2}\right)}{\log \left(1-\rho^{2}\right)}$.
Lower bound: for $d=1$, we get the condition $\rho^{2}<1 / 2$.
Upper bound is $\rho^{2}=1-o\left(n^{-4}\right)$.

Finite d : Detecting Correlated Vectors [Elimelech, H'24]

When d is fixed, and $n \rightarrow \infty$, the above technique gives
Theorem (Impossibility)
Strong detection is impossible if $d<\frac{\log \left(\rho^{2}\right)}{\log \left(1-\rho^{2}\right)}$.
Lower bound: for $d=1$, we get the condition $\rho^{2}<1 / 2$.
Upper bound is $\rho^{2}=1-o\left(n^{-4}\right)$.
What is the source for this significant gap? Computational?

Finite d : Detecting Correlated Vectors [Elimelech, H'24]

When d is fixed, and $n \rightarrow \infty$, the above technique gives
Theorem (Impossibility)
Strong detection is impossible if $d<\frac{\log \left(\rho^{2}\right)}{\log \left(1-\rho^{2}\right)}$.
Lower bound: for $d=1$, we get the condition $\rho^{2}<1 / 2$.
Upper bound is $\rho^{2}=1-o\left(n^{-4}\right)$.
What is the source for this significant gap? Computational?
Not clear yet! But, we can prove a better lower bound.

Finite d : Detecting Correlated Vectors [Elimelech, H'24]

We have the following result.
Theorem (Impossibility for $d=1$)
Strong detection is impossible for any $\rho^{2}<1$.

Finite d : Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:

Finite d : Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:

- We want to analyze $\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right]$.

Finite d : Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:

- We want to analyze $\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right]$.
- Idea: decompose L_{n} into its orthogonal components.

Finite d : Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:

- We want to analyze $\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right]$.
- Idea: decompose L_{n} into its orthogonal components.
- Univariate Hermite polynomials: for $k \in \mathbb{N}$,

$$
h_{k}(x) \triangleq(-1)^{k} e^{x^{2} / 2} \frac{d^{k}}{d x^{k}} e^{-x^{2} / 2}
$$

are orthonormal w.r.t. the standard Gaussian measure,

$$
\mathbb{E}_{X \sim \sim N(0,1)}\left[h_{k}(X) h_{\ell}(X)\right]=\delta[k-\ell]
$$

Finite d : Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:

- We want to analyze $\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right]$.
- Idea: decompose L_{n} into its orthogonal components.
- Multivariate Hermite polynomials:

Let $H_{\theta}(x)=\prod_{i=1}^{n} h_{\theta_{i}}\left(x_{i}\right)$ for $\theta \in \mathbb{N}^{n}$, and it holds

$$
\mathbb{E}_{\mathbf{X} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})}\left[H_{\alpha}(\mathbf{X}) H_{\gamma}(\mathbf{X})\right]=\delta[\alpha-\gamma]
$$

Finite d : Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:

- We want to analyze $\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right]$.
- Idea: decompose L_{n} into its orthogonal components.
- Multivariate Hermite polynomials:

Let $H_{\theta}(x)=\prod_{i=1}^{n} h_{\theta_{i}}\left(x_{i}\right)$ for $\theta \in \mathbb{N}^{n}$, and it holds

$$
\mathbb{E}_{\mathbf{X} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})}\left[H_{\alpha}(\mathbf{X}) H_{\gamma}(\mathbf{X})\right]=\delta[\alpha-\gamma]
$$

- Form a complete orthonormal system in $L^{2}\left(\mathcal{H}_{0}\right)$,

$$
\mathrm{L}_{n}(\mathrm{X}, \mathrm{Y})=\sum_{\alpha, \beta \in \mathbb{N}^{n}}\left\langle H_{\alpha, \beta}(\mathrm{X}, \mathrm{Y}), \mathrm{L}_{n}(\mathrm{X}, \mathrm{Y})\right\rangle_{\mathcal{H}_{0}} H_{\alpha, \beta}(\mathrm{X}, \mathrm{Y})
$$

where $H_{\alpha, \beta}(\mathrm{X}, \mathrm{Y}) \triangleq H_{\alpha}(\mathrm{X}) H_{\beta}(\mathrm{Y})$, and

$$
\langle\phi, \psi\rangle_{\mathcal{H}_{0}} \triangleq \mathbb{E}_{\mathcal{H}_{0}}[\psi(\mathrm{X}, \mathrm{Y}) \cdot \phi(\mathrm{X}, \mathrm{Y})] .
$$

Finite d : Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:

- We want to analyze $\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right]$.
- Idea: decompose L_{n} into its orthogonal components.
- Parseval's identity,

$$
\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right]=\left\|\mathrm{L}_{n}\right\|_{\mathcal{H}_{0}}^{2}=\sum_{\alpha, \beta \in \mathbb{N}^{n}}\left\langle H_{\alpha, \beta}(\mathrm{X}, \mathrm{Y}), \mathrm{L}_{n}(\mathrm{X}, \mathrm{Y})\right\rangle_{\mathcal{H}_{0}}^{2}
$$

Finite d : Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:

- We want to analyze $\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right]$.
- Idea: decompose L_{n} into its orthogonal components.
- Parseval's identity,

$$
\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right]=\left\|\mathrm{L}_{n}\right\|_{\mathcal{H}_{0}}^{2}=\sum_{\alpha, \beta \in \mathbb{N}^{n}}\left\langle H_{\alpha, \beta}(\mathrm{X}, \mathrm{Y}), \mathrm{L}_{n}(\mathrm{X}, \mathrm{Y})\right\rangle_{\mathcal{H}_{0}}^{2}
$$

- It can be shown that

$$
\left\langle H_{\alpha, \beta}(\mathrm{X}, \mathrm{Y}), \mathrm{L}_{n}(\mathrm{X}, \mathrm{Y})\right\rangle_{\mathcal{H}_{0}}=\rho^{|\alpha|} \cdot \mathbb{P}[\pi(\beta)=\alpha]
$$

where $\pi(\alpha) \in \mathbb{N}^{n}$ denotes the vector obtained by permuting the coordinates of α using π

Finite d : Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:

- We want to analyze $\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right]$.
- Idea: decompose L_{n} into its orthogonal components.
- Parseval's identity,

$$
\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right]=\left\|\mathrm{L}_{n}\right\|_{\mathcal{H}_{0}}^{2}=\sum_{\alpha, \beta \in \mathbb{N}^{n}}\left\langle H_{\alpha, \beta}(\mathrm{X}, \mathrm{Y}), \mathrm{L}_{n}(\mathrm{X}, \mathrm{Y})\right\rangle_{\mathcal{H}_{0}}^{2}
$$

- It can be shown that

$$
\left\langle H_{\alpha, \beta}(\mathrm{X}, \mathrm{Y}), \mathrm{L}_{n}(\mathrm{X}, \mathrm{Y})\right\rangle_{\mathcal{H}_{0}}=\rho^{|\alpha|} \cdot \mathbb{P}[\pi(\beta)=\alpha]
$$

where $\pi(\alpha) \in \mathbb{N}^{n}$ denotes the vector obtained by permuting the coordinates of α using π

Goal: find $\mathbb{P}[\pi(\beta)=\alpha]$.

Finite d : Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:

- We want to analyze $\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right]$.
- Integer distribution function: for $\alpha \in \mathbb{N}^{n}$,

$$
p_{\alpha}(\ell) \triangleq\left|i \in[n]: \alpha_{i}=\ell\right|, \quad \ell \in \mathbb{N} .
$$

Note that,

Finite d : Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:

- We want to analyze $\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right]$.
- Integer distribution function: for $\alpha \in \mathbb{N}^{n}$,

$$
p_{\alpha}(\ell) \triangleq\left|i \in[n]: \alpha_{i}=\ell\right|, \quad \ell \in \mathbb{N} .
$$

Note that,

- We say $\alpha \equiv \beta$ iff there is $\pi \in \mathbb{S}_{n}$ s.t. $\pi(\beta)=\alpha$.

Finite d : Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:

- We want to analyze $\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right]$.
- Integer distribution function: for $\alpha \in \mathbb{N}^{n}$,

$$
p_{\alpha}(\ell) \triangleq\left|i \in[n]: \alpha_{i}=\ell\right|, \quad \ell \in \mathbb{N} .
$$

Note that,

- We say $\alpha \equiv \beta$ iff there is $\pi \in \mathbb{S}_{n}$ s.t. $\pi(\beta)=\alpha$.
- $\alpha \equiv \beta$ iff $p_{\alpha}=p_{\beta}$.

Finite d : Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:

- We want to analyze $\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right]$.
- Integer distribution function: for $\alpha \in \mathbb{N}^{n}$,

$$
p_{\alpha}(\ell) \triangleq\left|i \in[n]: \alpha_{i}=\ell\right|, \quad \ell \in \mathbb{N} .
$$

Note that,

- We say $\alpha \equiv \beta$ iff there is $\pi \in \mathbb{S}_{n}$ s.t. $\pi(\beta)=\alpha$.
- $\alpha \equiv \beta$ iff $p_{\alpha}=p_{\beta}$.
- Let $[\alpha]$ denote the equivalence class of α.

Finite d : Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:

- We want to analyze $\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right]$.
- Integer distribution function: for $\alpha \in \mathbb{N}^{n}$,

$$
p_{\alpha}(\ell) \triangleq\left|i \in[n]: \alpha_{i}=\ell\right|, \quad \ell \in \mathbb{N} .
$$

Note that,

- We say $\alpha \equiv \beta$ iff there is $\pi \in \mathbb{S}_{n}$ s.t. $\pi(\beta)=\alpha$.
- $\alpha \equiv \beta$ iff $p_{\alpha}=p_{\beta}$.
- Let $[\alpha]$ denote the equivalence class of α.

Then,

$$
\mathbb{P}[\pi(\beta)=\alpha]=\frac{1}{|[\alpha]|} \mathbb{1}_{\alpha \equiv \beta}
$$

Finite d : Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:

- We want to analyze $\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right]$.
- Thus,

$$
\begin{aligned}
\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right] & =\sum_{\alpha, \beta \in \mathbb{N}^{n}}\left\langle H_{\alpha, \beta}(\mathrm{X}, \mathrm{Y}), \mathrm{L}_{n}(\mathrm{X}, \mathrm{Y})\right\rangle_{\mathcal{H}_{0}}^{2} \\
& =\sum_{\alpha, \beta \in \mathbb{N}^{n}} \rho^{2|\alpha|} \frac{1}{|[\alpha]|^{2}} \mathbb{1}_{\alpha \equiv \beta} \\
& =\sum_{m=0}^{\infty}|\{[\alpha]:|\alpha|=m\}| \cdot \rho^{2 m} \\
& =\sum_{m=0}^{\infty}\left|\operatorname{Par}\left(m, \leq_{n}\right)\right| \cdot \rho^{2 m}
\end{aligned}
$$

where $\operatorname{Par}\left(m, \leq_{n}\right)$ is the set of integer partitions of m to at most n elements.

Finite d : Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:

- We want to analyze $\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right]$.
- Thus,

$$
\begin{aligned}
\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right] & =\sum_{\alpha, \beta \in \mathbb{N}^{n}}\left\langle H_{\alpha, \beta}(\mathrm{X}, \mathrm{Y}), \mathrm{L}_{n}(\mathrm{X}, \mathrm{Y})\right\rangle_{\mathcal{H}_{0}}^{2} \\
& =\sum_{\alpha, \beta \in \mathbb{N}^{n}} \rho^{2|\alpha|} \frac{1}{|[\alpha]|^{2}} \mathbb{1}_{\alpha \equiv \beta} \\
& =\sum_{m=0}^{\infty}|\{[\alpha]:|\alpha|=m\}| \cdot \rho^{2 m} \\
& \leq \sum_{m=0}^{\infty}\left|\operatorname{Par}\left(m, \leq_{\infty}\right)\right| \cdot \rho^{2 m}
\end{aligned}
$$

where $\left|\operatorname{Par}\left(m, \leq_{\infty}\right)\right|$ is the number of integer partitions of the number m.

Finite d : Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:

- We want to analyze $\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right]$.

$$
\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right] \leq \sum_{m=0}^{\infty}\left|\operatorname{Par}\left(m, \leq_{\infty}\right)\right| \cdot \rho^{2 m}
$$

- Hardy-Ramanujan Formula: $\exists c>0$, s.t.

$$
\left|\operatorname{Par}\left(m, \leq_{\infty}\right)\right| \leq c \cdot \frac{1}{4 \sqrt{3} m} \exp \left(\pi \sqrt{\frac{2 m}{3}}\right)
$$

Finite d : Detecting Correlated Vectors [Elimelech, H'24]

Proof sketch: We use polynomial decomposition:

- We want to analyze $\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right]$.

$$
\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right] \leq \sum_{m=0}^{\infty}\left|\operatorname{Par}\left(m, \leq_{\infty}\right)\right| \cdot \rho^{2 m} \quad(\star)
$$

- Hardy-Ramanujan Formula: $\exists c>0$, s.t.

$$
\left|\operatorname{Par}\left(m, \leq_{\infty}\right)\right| \leq c \cdot \frac{1}{4 \sqrt{3} m} \exp \left(\pi \sqrt{\frac{2 m}{3}}\right)
$$

- Thus, $\left|\operatorname{Par}\left(m, \leq_{\infty}\right)\right|$ is sub-exponential in m, and hence (\star) converges to a finite number, for any $\rho^{2}<1$.

Finite d : Detecting Correlated Vectors [Elimelech, H'24]

Theorem (Impossibility for $d \in \mathbb{N}$)

Strong detection is impossible for any $d \rho^{2}<1$.

This is proved using the same techniques ending up with complicated high-dimensional distribution functions.

Detecting Dependent Databases [Paslev, H'23]

- What if the databases are not Gaussian?

Detecting Dependent Databases [Paslev, H'23]

- What if the databases are not Gaussian?
- Consider the following detection problem:

$$
\begin{aligned}
& \mathcal{H}_{0}:\left(\mathrm{X}_{1}, \mathrm{Y}_{1}\right), \ldots,\left(\mathrm{X}_{n}, \mathrm{Y}_{n}\right) \stackrel{\text { i.i.d }}{\sim} P_{X}^{\otimes d} \times P_{Y}^{\otimes d} \\
& \mathcal{H}_{1}:\left(\mathrm{X}_{1}, \mathrm{Y}_{\pi_{1}}\right), \ldots,\left(\mathrm{X}_{n}, \mathrm{Y}_{\pi_{n}}\right) \stackrel{\text { i.i.d }}{\sim} P_{X Y}^{\otimes d},
\end{aligned}
$$

with $P_{X}=P_{Y}$ and denote $Q_{X Y}=P_{X} \times P_{Y}$.

Detecting Dependent Databases [Paslev, H'23]

- What if the databases are not Gaussian?
- Consider the following detection problem:

$$
\begin{aligned}
& \mathcal{H}_{0}:\left(\mathrm{X}_{1}, \mathrm{Y}_{1}\right), \ldots,\left(\mathrm{X}_{n}, \mathrm{Y}_{n}\right) \stackrel{\text { i.i.d }}{\sim} P_{X}^{\otimes d} \times P_{Y}^{\otimes d} \\
& \mathcal{H}_{1}:\left(\mathrm{X}_{1}, \mathrm{Y}_{\pi_{1}}\right), \ldots,\left(\mathrm{X}_{n}, \mathrm{Y}_{\pi_{n}}\right) \stackrel{\text { i.i.d }}{\sim} P_{X Y}^{\otimes d}
\end{aligned}
$$

with $P_{X}=P_{Y}$ and denote $Q_{X Y}=P_{X} \times P_{Y}$.
Theorem (Impossibility of weak detection)
Weak detection is impossible if

$$
d \cdot \chi^{2}\left(P_{X Y} \| Q_{X Y}\right)=o(1)
$$

where $\chi^{2}(\mathbb{P} \| \mathbb{Q})=\int \frac{\mathbb{P}^{2}}{\mathrm{dQ}}-1$.

Detecting Dependent Databases [Paslev, H'23]

- What if the databases are not Gaussian?
- Consider the following detection problem:

$$
\begin{aligned}
& \mathcal{H}_{0}:\left(\mathrm{X}_{1}, \mathrm{Y}_{1}\right), \ldots,\left(\mathrm{X}_{n}, \mathrm{Y}_{n}\right) \stackrel{\text { i.i.d }}{\sim} P_{X}^{\otimes d} \times P_{Y}^{\otimes d} \\
& \mathcal{H}_{1}:\left(\mathrm{X}_{1}, \mathrm{Y}_{\pi_{1}}\right), \ldots,\left(\mathrm{X}_{n}, \mathrm{Y}_{\pi_{n}}\right) \stackrel{\text { i.i.d }}{\sim} P_{X Y}^{\otimes d}
\end{aligned}
$$

with $P_{X}=P_{Y}$ and denote $Q_{X Y}=P_{X} \times P_{Y}$.
Theorem (Possibility of strong detection)
If

$$
d \cdot \frac{d_{\mathrm{SKL}}^{2}\left(P_{X Y} \| Q_{X Y}\right)}{\operatorname{Var}_{Q_{X Y}}(\mathcal{K}(A, B))}=\omega(1)
$$

then, $\mathrm{R}\left(\phi_{\text {sum }}\right) \rightarrow 0$, as $d \rightarrow \infty$.

Detecting Dependent Databases [Paslev, H'23]

Proof sketch:

- For any $x \in \mathcal{X}$ and $y \in \mathcal{Y}$, we let $\mathcal{L}(x, y) \triangleq \frac{P_{X Y}(x, y)}{Q_{X Y}(x, y)}$.

Detecting Dependent Databases [Paslev, H'23]

Proof sketch:

- For any $x \in \mathcal{X}$ and $y \in \mathcal{Y}$, we let $\mathcal{L}(x, y) \triangleq \frac{P_{X Y}(x, y)}{Q_{X Y}(x, y)}$.
- For any f s.t. $\mathbb{E}_{Q} f^{2}<\infty$, consider the induced operator defined by the projection $(\mathcal{L} f)(x) \triangleq \mathbb{E}_{Y \sim Q_{Y}}[\mathcal{L}(x, Y) f(Y)]$.

Detecting Dependent Databases [Paslev, H'23]

Proof sketch:

- For any $x \in \mathcal{X}$ and $y \in \mathcal{Y}$, we let $\mathcal{L}(x, y) \triangleq \frac{P_{X Y}(x, y)}{Q_{X Y}(x, y)}$.
- For any f s.t. $\mathbb{E}_{Q} f^{2}<\infty$, consider the induced operator defined by the projection $(\mathcal{L} f)(x) \triangleq \mathbb{E}_{Y \sim Q_{Y}}[\mathcal{L}(x, Y) f(Y)]$.
- We assume that $\mathcal{L}(x, y)=\mathcal{L}(y, x)$, and hence self-adjoint and Hilbert-Schmidt, diagonazable, with eigenvalues $\left\{\lambda_{i}\right\}_{i \geq 0}$.

Detecting Dependent Databases [Paslev, H'23]

Proof sketch:

- For any $x \in \mathcal{X}$ and $y \in \mathcal{Y}$, we let $\mathcal{L}(x, y) \triangleq \frac{P_{X Y}(x, y)}{Q_{X Y}(x, y)}$.
- For any f s.t. $\mathbb{E}_{Q} f^{2}<\infty$, consider the induced operator defined by the projection $(\mathcal{L} f)(x) \triangleq \mathbb{E}_{Y \sim Q_{Y}}[\mathcal{L}(x, Y) f(Y)]$.
- We assume that $\mathcal{L}(x, y)=\mathcal{L}(y, x)$, and hence self-adjoint and Hilbert-Schmidt, diagonazable, with eigenvalues $\left\{\lambda_{i}\right\}_{i \geq 0}$.
- Recall that

$$
\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right]=\mathbb{E}_{\pi}\left[\prod_{O \in \mathcal{O}} \mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{Z}_{O}\right]\right]
$$

Detecting Dependent Databases [Paslev, H'23]

Proof sketch:

- For any $x \in \mathcal{X}$ and $y \in \mathcal{Y}$, we let $\mathcal{L}(x, y) \triangleq \frac{P_{X Y}(x, y)}{Q_{X Y}(x, y)}$.
- For any f s.t. $\mathbb{E}_{Q} f^{2}<\infty$, consider the induced operator defined by the projection $(\mathcal{L} f)(x) \triangleq \mathbb{E}_{Y \sim Q_{Y}}[\mathcal{L}(x, Y) f(Y)]$.
- We assume that $\mathcal{L}(x, y)=\mathcal{L}(y, x)$, and hence self-adjoint and Hilbert-Schmidt, diagonazable, with eigenvalues $\left\{\lambda_{i}\right\}_{i \geq 0}$.
- Recall that

$$
\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right]=\mathbb{E}_{\pi}\left[\prod_{O \in \mathcal{O}} \mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{Z}_{O}\right]\right]
$$

- Then, with the notation above, it can be shown that,

$$
\mathbb{E}_{\mathcal{H}_{0}}\left[\mathbb{Z}_{C}\right]=\left(\sum_{i \in \mathbb{N}} \lambda_{i}^{2|C|}\right)^{d}
$$

Detecting Dependent Databases [Paslev, H'23]

Proof sketch:

- For any $x \in \mathcal{X}$ and $y \in \mathcal{Y}$, we let $\mathcal{L}(x, y) \triangleq \frac{P_{X Y}(x, y)}{Q_{X Y}(x, y)}$.
- For any f s.t. $\mathbb{E}_{Q} f^{2}<\infty$, consider the induced operator defined by the projection $(\mathcal{L} f)(x) \triangleq \mathbb{E}_{Y \sim Q_{Y}}[\mathcal{L}(x, Y) f(Y)]$.
- We assume that $\mathcal{L}(x, y)=\mathcal{L}(y, x)$, and hence self-adjoint and Hilbert-Schmidt, diagonazable, with eigenvalues $\left\{\lambda_{i}\right\}_{i \geq 0}$.
- Recall that

$$
\mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{~L}_{n}^{2}\right]=\mathbb{E}_{\pi}\left[\prod_{O \in \mathcal{O}} \mathbb{E}_{\mathcal{H}_{0}}\left[\mathrm{Z}_{O}\right]\right]
$$

- Substituting, massaging, it can be shown that weak detection is impossible if

$$
d \cdot \sum_{i \geq 1} \frac{\lambda_{i}^{2}}{1-\lambda_{i}^{2}}=o(1)
$$

Partial Correlation

- What if the databases are only partially correlated?

Partial Correlation

- What if the databases are only partially correlated?
- Consider the following detection problem:

$$
\begin{aligned}
& \mathcal{H}_{0}:\left(\mathrm{X}_{1}, \mathrm{Y}_{1}\right), \ldots,\left(\mathrm{X}_{n}, \mathrm{Y}_{n}\right) \stackrel{\text { i.i.d }}{\sim} \mathcal{N}^{\otimes d}\left(0, I_{2 \times 2}\right) \\
& \mathcal{H}_{1}:\left\{\begin{array}{l}
\left\{\left(\mathrm{X}_{i}, \mathrm{Y}_{\pi_{i}}\right)\right\}_{i \in \mathcal{K}} \stackrel{\stackrel{\text { i.i.d }}{ }}{\sim} \mathcal{N}^{\otimes d}\left(\mathbf{0}, \Sigma_{\rho}\right) \\
\left\{\left(\mathrm{X}_{i}, \mathrm{Y}_{\pi_{i}}\right)\right\}_{i \notin \mathcal{K}} \stackrel{\text { i.i.d }}{\sim} \mathcal{N}^{\otimes d}\left(\mathbf{0}, \mathbf{I}_{2 \times 2}\right) \\
\left\{\left(\mathrm{X}_{i}, \mathrm{Y}_{\pi_{i}}\right)\right\}_{i \notin \mathcal{K}} \Perp\left\{\left(\mathrm{X}_{i}, \mathrm{Y}_{\pi_{i}}\right)\right\}_{i \in \mathcal{K}}
\end{array}\right.
\end{aligned}
$$

where $\pi \sim \operatorname{Unif}\left(\mathbb{S}_{n}\right)$ and $\mathcal{K} \sim \operatorname{Unif}\binom{[n]}{k}$.

Partial Correlation

- What if the databases are only partially correlated?
- Consider the following detection problem:

$$
\begin{aligned}
\mathcal{H}_{0}: & \left(\mathrm{X}_{1}, \mathrm{Y}_{1}\right), \ldots,\left(\mathrm{X}_{n}, \mathrm{Y}_{n}\right) \stackrel{\text { i.i.d }}{\sim} \mathcal{N}^{\otimes d}\left(0, I_{2 \times 2}\right) \\
\mathcal{H}_{1}: & \left\{\begin{array}{l}
\left\{\left(\mathrm{X}_{i}, \mathrm{Y}_{\pi_{i}}\right)\right\}_{i \in \mathcal{K}} \stackrel{\stackrel{\text { i.i.d }}{ }}{\sim} \mathcal{N}^{\otimes d}\left(\mathbf{0}, \Sigma_{\rho}\right) \\
\left\{\left(\mathrm{X}_{i}, \mathrm{Y}_{\pi_{i}}\right)\right\}_{i \notin \mathcal{K}} \stackrel{\text { i.i.d }}{\sim} \mathcal{N}^{\otimes d}\left(\mathbf{0}, \mathbf{I}_{2 \times 2}\right) \\
\left\{\left(\mathrm{X}_{i}, \mathrm{Y}_{\pi_{i}}\right)\right\}_{i \notin \mathcal{K}} \Perp\left\{\left(\mathrm{X}_{i}, \mathrm{Y}_{\pi_{i}}\right)\right\}_{i \in \mathcal{K}}
\end{array}\right.
\end{aligned}
$$

where $\pi \sim \operatorname{Unif}\left(\mathbb{S}_{n}\right)$ and $\mathcal{K} \sim \operatorname{Unif}\binom{[n]}{k}$.

- So, only a planted set \mathcal{K} of $k \leq n$ "users" is common to the two databases.

Partial Correlation

Theorem (Impossibility weak detection)
If,

$$
\left(\frac{k}{n}\right)^{2}\left(\prod_{i=1}^{k} \frac{1}{1-\left(d \rho^{2}\right)^{i}}-1\right)=o(1)
$$

then weak detection is impossible.

Partial Correlation

Theorem (Impossibility weak detection)
If,

$$
\left(\frac{k}{n}\right)^{2}\left(\prod_{i=1}^{k} \frac{1}{1-\left(d \rho^{2}\right)^{i}}-1\right)=o(1)
$$

then weak detection is impossible.
For example, if $k=O(\log n)$, then we get

$$
\rho^{2}<\frac{1}{d}\left[1-\left(\mathrm{C} \frac{k}{n}\right)^{\frac{2}{k}}\right]
$$

and we note that $(k / n)^{\frac{2}{k}}=o(1)$.

Testing Dependency of Random Graphs [Oren,Paslev,H'24]

- In many modern applications, the observations may be in the form of graphs.

Testing Dependency of Random Graphs [Oren,Paslev,H'24]

- Consider the following detection problem:

$$
\begin{aligned}
& \mathcal{H}_{0}:\left(\mathrm{A}_{i j}, \mathrm{~B}_{i j}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{Q}_{\mathrm{AB}}=\mathcal{P}_{\mathrm{A}} \times \mathcal{P}_{\mathrm{B}} \\
& \mathcal{H}_{1}:\left(\mathrm{A}_{i j}, \mathrm{~B}_{\pi_{i} \pi_{j}}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{P}_{\mathrm{AB}} \mid \pi \sim \operatorname{Unif}\left(\mathbb{S}_{n}\right),
\end{aligned}
$$

where $\mathcal{P}_{\mathrm{A}}=\mathcal{P}_{\mathrm{B}}$.

Testing Dependency of Random Graphs [Oren,Paslev,H'24]

- Consider the following detection problem:

$$
\begin{aligned}
& \mathcal{H}_{0}:\left(\mathrm{A}_{i j}, \mathrm{~B}_{i j}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{Q}_{\mathrm{AB}}=\mathcal{P}_{\mathrm{A}} \times \mathcal{P}_{\mathrm{B}} \\
& \mathcal{H}_{1}:\left(\mathrm{A}_{i j}, \mathrm{~B}_{\pi_{i} \pi_{j}}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{P}_{\mathrm{AB}} \mid \pi \sim \operatorname{Unif}\left(\mathbb{S}_{n}\right),
\end{aligned}
$$

where $\mathcal{P}_{\mathrm{A}}=\mathcal{P}_{\mathrm{B}}$.

- The Bernoulli case was analyzes thoroughly in the literature ${ }^{a}$, both from the statistical and computational point of views! Here, $\mathcal{P}_{\mathrm{A}}=\mathcal{P}_{\mathrm{B}}=\operatorname{Bernoulli}(\tau p)$, for some $p \in(0,1)$ and $\tau \in[0,1]$. Under $\mathcal{P}_{\mathrm{AB}}$, we have $A \sim \operatorname{Bernoulli}(\tau p)$, and

$$
\mathrm{B} \left\lvert\, \mathrm{A} \sim \begin{cases}\operatorname{Bernoulli}(\tau), & \text { if } X=1 \\ \operatorname{Bernoulli}\left(\frac{\tau p(1-\tau)}{1-\tau p}\right), & \text { if } X=0 .\end{cases}\right.
$$

${ }^{\text {a }}$ E.g., [Wu, Xu, Yu'21], [Ding,Du,'23], [Ding,Du,Li'23].

Testing Dependency of Random Graphs [Oren,Paslev,H'24]

- Consider the following detection problem:

$$
\begin{aligned}
& \mathcal{H}_{0}:\left(\mathrm{A}_{i j}, \mathrm{~B}_{i j}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{Q}_{\mathrm{AB}}=\mathcal{P}_{\mathrm{A}} \times \mathcal{P}_{\mathrm{B}} \\
& \mathcal{H}_{1}:\left(\mathrm{A}_{i j}, \mathrm{~B}_{\pi_{i} \pi_{j}}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{P}_{\mathrm{AB}} \mid \pi \sim \operatorname{Unif}\left(\mathbb{S}_{n}\right),
\end{aligned}
$$

where $\mathcal{P}_{\mathrm{A}}=\mathcal{P}_{\mathrm{B}}$.

- The Gaussian case was studied from the statistical point of view [Wu, Xu, Yu'21].

Testing Dependency of Random Graphs [Oren,Paslev,H'24]

- Consider the following detection problem:

$$
\begin{aligned}
& \mathcal{H}_{0}:\left(\mathrm{A}_{i j}, \mathrm{~B}_{i j}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{Q}_{\mathrm{AB}}=\mathcal{P}_{\mathrm{A}} \times \mathcal{P}_{\mathrm{B}} \\
& \mathcal{H}_{1}:\left(\mathrm{A}_{i j}, \mathrm{~B}_{\pi_{i} \pi_{j}}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{P}_{\mathrm{AB}} \mid \pi \sim \operatorname{Unif}\left(\mathbb{S}_{n}\right),
\end{aligned}
$$

where $\mathcal{P}_{\mathrm{A}}=\mathcal{P}_{\mathrm{B}}$.

Theorem (Impossibility of weak detection)

Weak detection is statistically impossible if

$$
\begin{aligned}
& \chi^{2}(\mathcal{P} \| \mathcal{Q}) \leq \frac{(2-\epsilon) \log n}{\alpha n}, \quad \text { and } \\
& d_{\mathrm{KL}}(\mathcal{P} \| \mathcal{Q})+\delta_{n} \cdot \operatorname{Var}_{\mathcal{P}}(\log \mathcal{L}) \leq \frac{(2-\epsilon) \log n}{n}
\end{aligned}
$$

for any $\omega(1)=\delta_{n}=o(\log n)$, and any constant $\epsilon>0$.

Testing Dependency of Random Graphs [Oren,Paslev,H'24]

- Consider the following detection problem:

$$
\begin{aligned}
& \mathcal{H}_{0}:\left(\mathrm{A}_{i j}, \mathrm{~B}_{i j}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{Q}_{\mathrm{AB}}=\mathcal{P}_{\mathrm{A}} \times \mathcal{P}_{\mathrm{B}} \\
& \mathcal{H}_{1}:\left(\mathrm{A}_{i j}, \mathrm{~B}_{\pi_{i} \pi_{j}}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{P}_{\mathrm{AB}} \mid \pi \sim \operatorname{Unif}\left(\mathbb{S}_{n}\right),
\end{aligned}
$$

where $\mathcal{P}_{\mathrm{A}}=\mathcal{P}_{\mathrm{B}}$.

- For the class of distributions for which there is a constant $\mathrm{C}>1$ such that $\chi^{2}(\mathcal{P} \| \mathcal{Q}) \leq \mathrm{C} \cdot d_{\mathrm{KL}}(\mathcal{P} \| \mathcal{Q})$, weak detection is impossible if

$$
d_{\mathrm{KL}}(\mathcal{P} \| \mathcal{Q}) \leq \frac{(2-\epsilon) \log n}{n}
$$

Testing Dependency of Random Graphs [Oren,Paslev,H'24]

- Consider the following detection problem:

$$
\begin{aligned}
& \mathcal{H}_{0}:\left(\mathrm{A}_{i j}, \mathrm{~B}_{i j}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{Q}_{\mathrm{AB}}=\mathcal{P}_{\mathrm{A}} \times \mathcal{P}_{\mathrm{B}} \\
& \mathcal{H}_{1}:\left(\mathrm{A}_{i j}, \mathrm{~B}_{\pi_{i} \pi_{j}}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{P}_{\mathrm{AB}} \mid \pi \sim \operatorname{Unif}\left(\mathbb{S}_{n}\right),
\end{aligned}
$$

where $\mathcal{P}_{\mathrm{A}}=\mathcal{P}_{\mathrm{B}}$.

- For the class of distributions for which there is a constant $\mathrm{C}>1$ such that $\chi^{2}(\mathcal{P} \| \mathcal{Q}) \leq \mathrm{C} \cdot d_{\mathrm{KL}}(\mathcal{P} \| \mathcal{Q})$, weak detection is impossible if

$$
d_{\mathrm{KL}}(\mathcal{P} \| \mathcal{Q}) \leq \frac{(2-\epsilon) \log n}{n}
$$

- Coincides with [Wu, Xu,Yu'21] for Bernoulli and Gaussian.

Testing Dependency of Random Graphs [Oren,Paslev,H'24]

- Consider the following detection problem:

$$
\begin{aligned}
& \mathcal{H}_{0}:\left(\mathrm{A}_{i j}, \mathrm{~B}_{i j}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{Q}_{\mathrm{AB}}=\mathcal{P}_{\mathrm{A}} \times \mathcal{P}_{\mathrm{B}} \\
& \mathcal{H}_{1}:\left(\mathrm{A}_{i j}, \mathrm{~B}_{\pi_{i} \pi_{j}}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{P}_{\mathrm{AB}} \mid \pi \sim \operatorname{Unif}\left(\mathbb{S}_{n}\right),
\end{aligned}
$$

where $\mathcal{P}_{\mathrm{A}}=\mathcal{P}_{\mathrm{B}}$.
Theorem (Strong detection upper bound)
Suppose there is a $\bar{\theta} \in\left(-d_{\mathrm{KL}}(\mathcal{Q} \| \mathcal{P}), d_{\mathrm{KL}}(\mathcal{P} \| \mathcal{Q})\right)$ with

$$
\begin{aligned}
& E_{\mathcal{Q}}(\bar{\theta}) \geq \frac{2 \log (n / e)}{n-1}+O\left(n^{-2} \log n\right) \\
& E_{\mathcal{P}}(\bar{\theta})=\omega\left(n^{-2}\right)
\end{aligned}
$$

Then, $\mathrm{R}_{n}\left(\phi_{\mathrm{GLRT}}\right) \rightarrow 0$, as $n \rightarrow \infty$.

Testing Dependency of Random Graphs [Oren,Paslev,H'24]

- Consider the following detection problem:

$$
\begin{aligned}
& \mathcal{H}_{0}:\left(\mathrm{A}_{i j}, \mathrm{~B}_{i j}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{Q}_{\mathrm{AB}}=\mathcal{P}_{\mathrm{A}} \times \mathcal{P}_{\mathrm{B}} \\
& \mathcal{H}_{1}:\left(\mathrm{A}_{i j}, \mathrm{~B}_{\pi_{i} \pi_{j}}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{P}_{\mathrm{AB}} \mid \pi \sim \operatorname{Unif}\left(\mathbb{S}_{n}\right),
\end{aligned}
$$

where $\mathcal{P}_{\mathrm{A}}=\mathcal{P}_{\mathrm{B}}$.

- For pairs of distributions $(\mathcal{P}, \mathcal{Q})$ with sub-exponential likelihood function, strong detection is possible if

$$
d_{\mathrm{KL}}(\mathcal{P} \| \mathcal{Q}) \geq \frac{2 \log n}{n-1}
$$

Testing Dependency of Random Graphs [Oren,Paslev,H'24]

- Consider the following detection problem:

$$
\begin{aligned}
& \mathcal{H}_{0}:\left(\mathrm{A}_{i j}, \mathrm{~B}_{i j}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{Q}_{\mathrm{AB}}=\mathcal{P}_{\mathrm{A}} \times \mathcal{P}_{\mathrm{B}} \\
& \mathcal{H}_{1}:\left(\mathrm{A}_{i j}, \mathrm{~B}_{\pi_{i} \pi_{j}}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{P}_{\mathrm{AB}} \mid \pi \sim \operatorname{Unif}\left(\mathbb{S}_{n}\right),
\end{aligned}
$$

where $\mathcal{P}_{\mathrm{A}}=\mathcal{P}_{\mathrm{B}}$.

- For pairs of distributions $(\mathcal{P}, \mathcal{Q})$ with sub-exponential likelihood function, strong detection is possible if

$$
d_{\mathrm{KL}}(\mathcal{P} \| \mathcal{Q}) \geq \frac{2 \log n}{n-1}
$$

- Complements lower bound.

Testing Dependency of Random Graphs [Oren,Paslev,H'24]

- Consider the following detection problem:

$$
\begin{aligned}
& \mathcal{H}_{0}:\left(\mathrm{A}_{i j}, \mathrm{~B}_{i j}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{Q}_{\mathrm{AB}}=\mathcal{P}_{\mathrm{A}} \times \mathcal{P}_{\mathrm{B}} \\
& \mathcal{H}_{1}:\left(\mathrm{A}_{i j}, \mathrm{~B}_{\pi_{i} \pi_{j}}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{P}_{\mathrm{AB}} \mid \pi \sim \operatorname{Unif}\left(\mathbb{S}_{n}\right),
\end{aligned}
$$

where $\mathcal{P}_{\mathrm{A}}=\mathcal{P}_{\mathrm{B}}$.

- For pairs of distributions $(\mathcal{P}, \mathcal{Q})$ with sub-exponential likelihood function, strong detection is possible if

$$
d_{\mathrm{KL}}(\mathcal{P} \| \mathcal{Q}) \geq \frac{2 \log n}{n-1}
$$

- Complements lower bound.
- GLRT is exhibits exponential computational complexity. What about poly-time algorithms?

Testing Dependency of Random Graphs [Oren,Paslev,H'24]

- Consider the following detection problem:

$$
\begin{aligned}
& \mathcal{H}_{0}:\left(\mathrm{A}_{i j}, \mathrm{~B}_{i j}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{Q}_{\mathrm{AB}}=\mathcal{P}_{\mathrm{A}} \times \mathcal{P}_{\mathrm{B}} \\
& \mathcal{H}_{1}:\left(\mathrm{A}_{i j}, \mathrm{~B}_{\pi_{i} \pi_{j}}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{P}_{\mathrm{AB}} \mid \pi \sim \operatorname{Unif}\left(\mathbb{S}_{n}\right),
\end{aligned}
$$

where $\mathcal{P}_{\mathrm{A}}=\mathcal{P}_{\mathrm{B}}$.
Theorem (Weak detection upper bound)
If $|\operatorname{corr}(\mathcal{Q}, \mathcal{P})| \triangleq \frac{\left|\operatorname{cov}_{\mathcal{P}}(A, B)\right|}{\operatorname{Var}_{\mathcal{Q}}(A)}=\Omega(1)$, and

$$
\frac{\mathbb{E}_{\mathcal{Q}}|A-B|^{3}}{\operatorname{Var}_{\mathcal{Q}}^{3 / 2}(A)}, \frac{\mathbb{E}_{\mathcal{P}}|A-B|^{3}}{\operatorname{Var}_{\mathcal{Q}}^{3 / 2}(A)(1-|\operatorname{corr}(\mathcal{Q}, \mathcal{P})|)^{3 / 2}}=o(n),
$$

then $\lim _{n \rightarrow \infty} \mathrm{R}_{n}\left(\phi_{\text {sum }}\right)<1$.

Testing Dependency of Random Graphs [Oren,Paslev,H'24]

- Consider the following detection problem:

$$
\begin{aligned}
& \mathcal{H}_{0}:\left(\mathrm{A}_{i j}, \mathrm{~B}_{i j}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{Q}_{\mathrm{AB}}=\mathcal{P}_{\mathrm{A}} \times \mathcal{P}_{\mathrm{B}} \\
& \mathcal{H}_{1}:\left(\mathrm{A}_{i j}, \mathrm{~B}_{\pi_{i} \pi_{j}}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{P}_{\mathrm{AB}} \mid \pi \sim \operatorname{Unif}\left(\mathbb{S}_{n}\right),
\end{aligned}
$$

where $\mathcal{P}_{\mathrm{A}}=\mathcal{P}_{\mathrm{B}}$.

- In the Gaussian and Bernoulli cases this boils down to $\rho^{2}=\Omega(1)$, while GLRT allows for a vanishing correlation.

Testing Dependency of Random Graphs [Oren,Paslev,H'24]

- Consider the following detection problem:

$$
\begin{aligned}
& \mathcal{H}_{0}:\left(\mathrm{A}_{i j}, \mathrm{~B}_{i j}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{Q}_{\mathrm{AB}}=\mathcal{P}_{\mathrm{A}} \times \mathcal{P}_{\mathrm{B}} \\
& \mathcal{H}_{1}:\left(\mathrm{A}_{i j}, \mathrm{~B}_{\pi_{i} \pi_{j}}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{P}_{\mathrm{AB}} \mid \pi \sim \operatorname{Unif}\left(\mathbb{S}_{n}\right),
\end{aligned}
$$

where $\mathcal{P}_{\mathrm{A}}=\mathcal{P}_{\mathrm{B}}$.

- In the Gaussian and Bernoulli cases this boils down to $\rho^{2}=\Omega(1)$, while GLRT allows for a vanishing correlation.
- Conjecture: this is fundamental in the sense that this is a barrier for what can be achieved using polynomial-time algorithms.

Testing Dependency of Random Graphs [Oren,Paslev,H'24]

- Consider the following detection problem:

$$
\begin{aligned}
& \mathcal{H}_{0}:\left(\mathrm{A}_{i j}, \mathrm{~B}_{i j}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{Q}_{\mathrm{AB}}=\mathcal{P}_{\mathrm{A}} \times \mathcal{P}_{\mathrm{B}} \\
& \mathcal{H}_{1}:\left(\mathrm{A}_{i j}, \mathrm{~B}_{\pi_{i} \pi_{j}}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{P}_{\mathrm{AB}} \mid \pi \sim \operatorname{Unif}\left(\mathbb{S}_{n}\right),
\end{aligned}
$$

where $\mathcal{P}_{\mathrm{A}}=\mathcal{P}_{\mathrm{B}}$.

- In the Gaussian and Bernoulli cases this boils down to $\rho^{2}=\Omega(1)$, while GLRT allows for a vanishing correlation.
- Conjecture: this is fundamental in the sense that this is a barrier for what can be achieved using polynomial-time algorithms.
- In the Bernoulli case [Ding,Du,Li'23] prove computational lower bound based on the low-degree polynomial conjecture.

Testing Dependency of Random Graphs [Oren,Paslev,H'24]

- Consider the following detection problem:

$$
\begin{aligned}
& \mathcal{H}_{0}:\left(\mathrm{A}_{i j}, \mathrm{~B}_{i j}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{Q}_{\mathrm{AB}}=\mathcal{P}_{\mathrm{A}} \times \mathcal{P}_{\mathrm{B}} \\
& \mathcal{H}_{1}:\left(\mathrm{A}_{i j}, \mathrm{~B}_{\pi_{i} \pi_{j}}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{P}_{\mathrm{AB}} \mid \pi \sim \operatorname{Unif}\left(\mathbb{S}_{n}\right),
\end{aligned}
$$

where $\mathcal{P}_{\mathrm{A}}=\mathcal{P}_{\mathrm{B}}$.

Theorem (LDP computational lower bound)

For a certain class of pairs of distributions $(\mathcal{P}, \mathcal{Q})$, if $|\operatorname{corr}(\mathcal{Q}, \mathcal{P})|=o(1)$, then $\left\|\mathrm{L}_{n, \leq \mathrm{D}}\right\|_{\mathcal{H}_{0}} \leq O(1)$, for any $\mathrm{D}=O\left(|\operatorname{corr}(\mathcal{Q}, \mathcal{P})|^{-1}\right)$.

Here, $\mathrm{L}_{n, \leq \mathrm{D}}$ is the projection of L_{n} to the linear subspace of polynomials of degree at most $\mathrm{D} \in \mathbb{N}$.

Concluding Remarks

- We considered the problem of testing correlated/dependent databases and characterize the statistical limits (in some asymptotic regimes).

Concluding Remarks

- We considered the problem of testing correlated/dependent databases and characterize the statistical limits (in some asymptotic regimes).
- The impossibility proofs are based on delicate analysis of the second moment using properties of random permutation cycles and integer partition function via polynomial decomposition.

Concluding Remarks

- We considered the problem of testing correlated/dependent databases and characterize the statistical limits (in some asymptotic regimes).
- The impossibility proofs are based on delicate analysis of the second moment using properties of random permutation cycles and integer partition function via polynomial decomposition.
- There is a gap between lower and upper bound when d is fixed.

Concluding Remarks

- We considered the problem of testing correlated/dependent databases and characterize the statistical limits (in some asymptotic regimes).
- The impossibility proofs are based on delicate analysis of the second moment using properties of random permutation cycles and integer partition function via polynomial decomposition.
- There is a gap between lower and upper bound when d is fixed.

Open Problems:

- Close the gap, and obtain sharp bounds.
- Prove existence of/close the computational gaps.

Thank You!

