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Force field reconstruction with ML
A unique set of challenges

•  Learning on sets 
 (of indistinguishable atoms)

•  Invariant / equivariant outputs

•  Stringent speed / accuracy requirements

Ab initio approximations to
Schrödinger’s equationClassical force fields ML



Atomistic modeling with ML
Historical perspective

2010

Graph neural networks

• representation learning

SchNet

Gilmer et al.

Cormorant

Feature engineering

• descriptor + linear models

2016 2018

Architecture engineering

• sophisticated filter parameterizations (e.g. YLM)

• “geometric deep learning”

Tensor Field Networks

PaiNN

Behler 2011, Bartók et al. 2013, Hirn et al. 2013, Cohen-Welling 2016, Gilmer et al. 2017, Duvenaud et al. 2015, Schütt et al. 2017, Thomas-Smidt et al. 2018, 
Weiler et al. 2018, Anderson et al. 2019, Unke et al. 2021, Frank et al. 2021


SpookyNet

3D Steerable CNNsGAP

SOAP
Rupp et al.

ACSF
Numerical analysis


Hirn et al.

• exploit model structure in 
training (e.g. correlations, PDE 
constraints)


• remove uncontrolled 
approximations

DTNN



All atoms interact in

quantum many-body systems.

Atomistic modeling with ML
Efficient modeling of global force fields 



Global atomic interactions
An emerging field without universal solution

TensorMol
Hybrid nearsighted NN potential with screened long-range electrostatic and van der Waals physics
Yao, K., Herr, J. E., Toth, D. W., Mckintyre, R. & Parkhill, J. The TensorMol-0.1 model chemistry: a neural network augmented with 
long-range physics. Chem. Sci. 9, 2261 (2018).

IPML
Physics-based mechanistic descriptions combined with environment-dependent ML corrections
Bereau, T., DiStasio Jr, R. A., Tkatchenko, A. & Von Lilienfeld, O. A. Non-covalent interactions across organic and biological 
subsets of chemical space: physics-based potentials parametrized from machine learning. J. Chem. Phys. 148, 241706 (2018).

Long-distance equivariant (LODE) representation + SOAP
Atom-density potential folds global structural and compositional information information into a local representation
Grisafi, A. & Ceriotti, M. Incorporating long-range physics in atomic-scale machine learning. J. Chem. Phys. 151, 204105 (2019).

SpookyNet
ML force field augmented with physically motivated corrections for long-ranged electrostatic and dispersion interactions
Unke, O. T., Chmiela, S., Gastegger, M., Schütt, K. T., Sauceda, H. E., & Müller, K. R. (2021). SpookyNet: Learning force fields with 
electronic degrees of freedom and nonlocal effects. Nat. Commun., 12(1), 1-14.

Fourth-generation Behler-Parinello neural network (4G-BPNN)
ML-FF with non-local charge transfer correction using independent ML model
Ko, T. W., Finkler, J. A., Goedecker, S., & Behler, J. (2021). A fourth-generation high-dimensional neural network potential with 
accurate electrostatics including non-local charge transfer. Nat. Commun., 12(1), 1-11.



Structure and properties in MLFFs
Physical symmetries, data correlations, modeling choices

Physical

Symmetries /
conservation laws

Acetamide angle

H - C distance

Δ
DFT

CCSD

 Frank et al. 2021, Schmitz et al. 2022, Chmiela et al. 2023, Blücher et al. 2023



Physical

e.g. Noether’s theorem, 
geometric priors etc.

Geometry Space

Physically feasible subspace is much smaller.

 Frank et al. 2021, Schmitz et al. 2022, Chmiela et al. 2023, Blücher et al. 2023
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Structure and properties in MLFFs
Physical symmetries, data correlations, modeling choices

Physical

Symmetries /
conservation laws

Acetamide angle

H - C distance

Δ
DFT

CCSD

Correlation patterns
in the reference data

Data driven 
interactions

αij = ⟨vi, kj⟩

Efficient training of 
constrained models

Architectural (ML)Statistical (ML)
 Frank et al. 2021, Schmitz et al. 2022, Chmiela et al. 2023, Blücher et al. 2023



Physical Statistical (ML) Architectural (ML)

A C B

Correlation patterns
in the reference data

Data driven 
interactions

αij = ⟨vi, kj⟩

Efficient training of 
constrained models

 Frank et al. 2021, Schmitz et al. 2022, Chmiela et al. 2023, Blücher et al. 2023

Structure and properties in MLFFs
Physical symmetries, data correlations, modeling choices

Symmetries /
conservation laws

Acetamide angle

H - C distance

Δ
DFT

CCSD



Correlation patterns in
the reference dataA



Representing global interactions
Force field reconstruction with ML
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Descriptor

Kernel function

Kernel Force field kernel

All atoms interact:
quadratic complexity (minimum)

Reference data, 
but no models

Linear model
Pairwise atom-correlations: ̂f(x) = Kα =

M

∑
i

k(x, xi)αi

Chmiela et al. 2023, Blücher et al. 2023
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“Donor-Bridge-Acceptor”

All atoms need to interact to make accurate predictions.
Atomic energy contribution [a.u.]

positivenegative
none

(E)-N,N-dimethyl-4-(4-nitrostyryl)aniline

Chmiela et al. 2023

Atoms interact non-locally
Force field reconstruction with ML



Limit interaction length
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“Donor-Bridge-Acceptor”

All atoms need to interact to make accurate predictions.
(E)-N,N-dimethyl-4-(4-nitrostyryl)aniline

Chmiela et al. 2023

Atoms interact non-locally
Force field reconstruction with ML

Atomic energy contribution [a.u.]

positivenegative
none

Localization can remove important interaction-scales!

MPNNs: mean-field interactions



The most immediate application of ML in QM
Force field reconstruction with ML

...

Geometry Space

D
IFFEREN

TIATIO
N

...

Descriptor

Kernel function

Kernel Force field kernel

All atoms interact:
quadratic memory complexity (minimum)

Linear model
Pairwise atom-correlations: ̂f(x) = Kα =

M

∑
i

k(x, xi)αi

Chmiela et al. 2023, Blücher et al. 2023



Numerical challenges in training
Correlation matrices

Involves matrix diagonalization: α = (XX⊤ + λ𝕀)−1y = (LL⊤)−1 y
: data points


: symmetric, PSD
X
K = XX⊤

Cholesky decomposition

Complexity:

Memory: 

Time: 

𝒪(N2)
𝒪(N3)

αt = αt−1 − γ [(XX⊤ + λ𝕀)αt−1 − y] : learning rateγ
• Gradient descent: ∇wL( ̂f(x), y) = (XX⊤ + λ𝕀)αt−1 − y

• Krylov subspace solver (conjugate gradients):

Dynamic learning rate: γt =
p⊤

t y
p⊤

t Kλpt

Conjugate optimization steps: pt = rt − ∑
i<t

p⊤
i Kλrt

p⊤
i Kλpi

pi

: search directionpt

Search direction

Rank-1 decomposition of K =
N

∑
t

ptp⊤
t

Only one of these is

kept in memory at a

time.N steps with perfect arithmetic!

Alternative approach: iterative optimization using matrix-vector products

pt = rt +
r⊤

t rt

r⊤
t−1rt−1

pt−1



Strongly correlated reference geometries

Prototypic sub-structures.

Correlation matrices

Chmiela et al. 2023, Blücher et al. 2023

Spectrum

Dominant eigenvectors

Condition number ~ convergence rate!



Strongly correlated reference geometries
Correlation matrices

Chmiela et al. 2023, Blücher et al. 2023

Spectrum

Dominant eigenvectors

Preconditioning captures dominant spectral components
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Strongly correlated reference geometries
Effective preconditioners for correlation matrices

Chmiela et al. 2023, Blücher et al. 2023

General idea: K =
k

∑
t=1

utu⊤
t +

n

∑
t=k+1

ptp⊤
t

CG  decomp.

of K̄

Precond.

K̄ = P−1K

k
Computational cost / effectiveness trade-off: 
• Nyström approximation 



• Incomplete Cholesky decomposition  



• Eigen-decomposition 

K ≈ K̂ + 𝕀λ

K̂ = KmkK−1
kk K⊤

mk

K̂ = LmkL⊤
mk

K̂ = QmkΛkkQ⊤
mk



Preconditioning methods (MD17 Aspirin)
Effective preconditioners for correlation matrices

Chmiela et al. 2023, Blücher et al. 2023

Eigenvalues
Nyström approximation 

Random sampling
Leverage score sampling

SVD
Incomplete Cholesky 

Preconditioner dim.:

Construction of :K̂
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Strongly correlated reference geometries
Effective preconditioners for correlation matrices

Chmiela et al. 2023, Blücher et al. 2023
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CG  decomp.

of K̄
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K̄ = P−1K
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• Incomplete Cholesky decomposition  



• Eigen-decomposition 

K ≈ K̂ + 𝕀λ

K̂ = KmkK−1
kk K⊤

mk

K̂ = LmkL⊤
mk

K̂ = QmkΛkkQ⊤
mk

P−1 = λ−1 [𝕀 − Kmk (λKkk + K⊤
mkKmk)−1 K⊤

mk]
Woodbury identity:

Stable decomposition into Cholesky factors,

indirectly using K⊤

mkKmk = R⊤Q⊤QR = QQ⊤



A new frontier for machine learning
Global force fields with hundreds of atoms

www.sgdml.orgChmiela, S., Vassilev-Galindo, V., Unke, O. T., Kabylda, A., Sauceda, H. E., Tkatchenko, A., & Müller, K. R. (2023). Accurate 
global machine learning force fields for molecules with hundreds of atoms. Science Advances, 9(2), eadf0873.

Examples: Conjugated system with 
delocalized electrons.

Long timescale (PI)MD of 
supramolecular complexes



Efficient contraction of 
constrained modelsB



Stronger inductive biases
Differential constraints in ML models with AD

Schmitz, N. F., Müller, K. R., & Chmiela, S. (2022). Algorithmic Differentiation for Automated Modeling of Machine Learned Force Fields. The 
Journal of Physical Chemistry Letters, 13(43), 10183-10189.

Differential equations: ,

where  is a finite linear combination of differential operators  or order .

ℒu(x) = f(x)
ℒ = ∑

|j|≤n

aj𝒟j 𝒟j n

• PDE’s describe causal systems with interactions

• Learn from few examples and generalize

Challenges:
• Tedious manual implementation: “one new constraint per paper”

• Constraints often increase model complexity: e.g. ℒ = ∇x

Algorithmic differentiation: Express operators in terms of JVPs  and VJPs  at )!Ju(x)v J⊤
u (x)w 𝒪(Cu)

Example: Hessian-vector products in only !𝒪(Cu)

: time complexity of function Cu u



Gaussian process example
Differential constraints in ML models with AD

Schmitz et al. 2022

f(x) ∼ 𝒢𝒫 (μ(x), k (x, x′￼))

Example: ℒ = (1,∇, ∇2)

Constrained GP: f(x) ∼ 𝒢𝒫 (ℒμ(x), ℒx ⊗ ℒ⊤
x′￼

k (x, x′￼))
mean prior covariance prior

tensor-product

structure

Constraints: function values, gradients & Hessians

large kernel matrix

(but with structure)

Full instantiation of kernel can be avoided with AD: 
f(x) = ∑

i

ℒx [ℒ⊤
xi
αik (x, xi)]



Gaussian process example
Differential constraints in ML models with AD

Cost of evaluating the (scalar) base kernel.

Factor N reducing in complexity after contraction!

Schmitz, N. F., Müller, K. R., & Chmiela, S. (2022). Algorithmic Differentiation for Automated Modeling of Machine Learned Force Fields. The 
Journal of Physical Chemistry Letters, 13(43), 10183-10189.

Constrained GP: f(x) ∼ 𝒢𝒫 (ℒμ(x), ℒx ⊗ ℒ⊤
x′￼

k (x, x′￼))



Gaussian process example
Differential constraints in ML models with AD

Schmitz, N. F., Müller, K. R., & Chmiela, S. (2022). Algorithmic Differentiation for Automated Modeling of Machine Learned Force Fields. The 
Journal of Physical Chemistry Letters, 13(43), 10183-10189.

Constrained GP: f(x) ∼ 𝒢𝒫 (ℒμ(x), ℒx ⊗ ℒ⊤
x′￼

k (x, x′￼))
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Gradient constraints in GPs:

Same complexity class as the unconstrained model!



Gaussian process example
Differential constraints in ML models with AD

Schmitz, N. F., Müller, K. R., & Chmiela, S. (2022). Algorithmic Differentiation for Automated Modeling of Machine Learned Force Fields. The 
Journal of Physical Chemistry Letters, 13(43), 10183-10189.

f(x) ∼ 𝒢𝒫 (ℒμ(x), ℒx ⊗ ℒ⊤
x′￼

k (x, x′￼))

2D Rosenbrock function:  u(x1, x2) = (1 − x1)2 + 100(x2 − x2
1)2



Combining differential equation constraints in GP’s
Differential constraints in ML models with AD

Schmitz, N. F., Müller, K. R., & Chmiela, S. (2022). Algorithmic Differentiation for Automated Modeling of Machine Learned Force Fields. The 
Journal of Physical Chemistry Letters, 13(43), 10183-10189.

Solving Laplace's equation 
 on the unit disk

• Neumann boundary condition 

• : radial angle of 
• : boundary normal vector

Δu(x) = 0

∇u(x) ⋅ n(x) = cos(5ϕ)
ϕ x
n(x)



Combining differential equation constraints in GP’s
Differential constraints in ML models with AD

Schmitz, N. F., Müller, K. R., & Chmiela, S. (2022). Algorithmic Differentiation for Automated Modeling of Machine Learned Force Fields. The 
Journal of Physical Chemistry Letters, 13(43), 10183-10189.

1D wave equation , 

Dirichlet boundary conditions:
, 

Initial Neumann boundary condition:

□ u(x, t) = 0 □ = ∂2

∂t2 − ∂2

∂x2

u(0,t) = u(1,t) = 0 u(x,0) = x(1 − x)

∂tu(x,0) = 0



Interactions from self-attentionC
αij = ⟨vi, kj⟩



Basic definition
Self-attention mechanism

qi = Wqxi ki = Wkxi vi = Wvxi

“queries”          “keys”             “values” 

: atom embeddings
: learnable weights

x
W

: query, key and value embeddings for each atom
: embedding dimension

A = Attention(Q, K, V) = softmax ( QKT

d ) V

Q, K, V
d

xi

xj

αij = ⟨vi, kj⟩

Frank, Thorben et al. "GeoPaTra: An Equivariant Transformer for Atomic Interactions on Arbitrary Length-Scales”, 2021



Neural network architecture
Interactions from self-attention

Frank, Thorben et al. "GeoPaTra: An Equivariant Transformer for Atomic Interactions on Arbitrary Length-Scales”, 2021



Attention coefficients vs. bond distances
Emerging non-linear couplings between atoms0 1.5 3
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Frank, Thorben et al. "GeoPaTra: An Equivariant Transformer for Atomic Interactions on Arbitrary Length-Scales”, 2021



Articles, datasets & code
Want to know more?

MD22 benchmark dataset

• four major classes of biomolecules and supramolecules

• up to 370 atoms



Parametrize your own datasets 
and use them as a force field. 

www.sgdml.org

Upload your dataset and 
let us do the training.

OR

Articles, datasets & code
Want to know more?


