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Foundation models are...

9

Learn generalizable & adaptable data representations
which can be effectively used in multiple downstream tasks (e.g.,
text generation, machine translation, classification for languages)

Note: while transformer architecture is most prevalent in foundation models, definition
not restricted by model architecture



In recent years, Large Language Models (LLMs) have taken
the field of Al by the storm

Stanford University
Human-Centered
Artificial Intelligence
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Language Processing, Machine Learning

How Large Language Models Will
Transform Science, Society, and Al

Scholars in computer science, linguistics, and philosophy explore the
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GPT-3 can translate language, write essays, generate code, and
more — all with limited to no supervision.




The same Al breakthroughs happening in language are impacting
other scientific and enterprise applications
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Can molecular foundation models be useful?

2014 - Ebola

2013 - MERS

N

2022 — Monkey Pox

2020 - COVID-19

2003 - SARS

Question

Study

Hypothesize

Assess

CQVID-19 Pandemic Response

COVID-19 Drug Candidate Molecule Explorer

00000

Science is the engine
that will develop
proven therapies



Foundation models for molecules — property prediction and
generation



Foundation Models learn the language of chemistry/biology from
data and can power up a multitude of discovery tasks — We call

them MolLFormer

Large chemistry
data sets:

E.g., GDB-17 (166B),
ZINC-15 (200M),
ChEMBL, PubChem,
USPTO

molecules

GC1CCCCClEAAAAAAA
Goc(clccceccl)=0EA
GOCLCCCCC1EAAAAAA

GCN1ceN(c(o)o)ccl

Language
representation
(E.g., SMILES)

MolFormer learns
latent space for
molecules

E.g., model learns basic
chemistry from data
including valency, ring
structures, positioning of
bonds, etc.

Product prediction

Retrosynthesis

Generation >

Molecule generation:

0=Cc(0)c(co)=0

Property prediction

Inverse design

Virtual screening

WE
. Nclcccecl
molecules in [EpYSl
chemical FEONE(S ccc(e]e!

space

P SMILES
molecules

molecule Properties:

» water solubility?
* metabolic stability?
* toxicity?




MolFormer:; Foundational transformer for
chemistry/biology applications

MoLFormer-XL — a specific example from MoLFormer family

Trained on up to over a billion molecular text strings (SMILES), with

relatively limited hardware resources (16 V100 GPUs).
Encoder

Scalable and fast to train linear time attention transformers as
encoders and decoders

Relative position embeddings facilitate learning on SMILES

State-of-the-art, universal chemical language model for wide ranges
of 70+ molecular property prediction

Shows emergent behavior, such as geometry, taste, etc.

Muiti-Head
Attention
}

Masked
Multi-Head
Attention

Decoder




Moltormer pertorms comparabilly than existing GNNs and language models on
guantum chemical property regression of QM9 benchmark

Graph-Based |
123-gnn = GC |

Geometry-Based | SMILES-Based

A-FP CM DTNN MPNN | MoLFORMER-XL ~ChemBERTa

Measure

Avg MAE
Avg std MAE

0.492
0.252
0.893
0.00528
0.893
0.00358
0.00415
0.451
26.839
0.898
0.893
0.00207

2.6355
0.0854

0.27
0.0944
0.0469
0.0048
0.0419

0.00337
0.00351
0.476
22.90
0.0427
0.111
0.00019

1.9995
0.0658

1.37
0.65
3.41
0.01126
3.41
0.00716
0.00921
0.583
35.97
3.41
3.41
0.00299

4.3536
0.1683

0.85
0.39
2.27
0.0086
2.27
0.00506
0.00645
0.519
46.00
2.27
2.27
0.00207

4.7384
0.1281

0.95
0.27
2.43
0.0112
2.43
0.0038
0.0051
0.244
17.00
2.43
2.43
0.0017

2.3504
0.1008

0.89
0.42
2.02
0.0066
2.02
0.00541
0.00623
0.358
28.5
2.05
2.00
0.00216

3.1898
0.1108

0.3327
0.1447
0.3362
0.0038
0.2522
0.0029
0.0027
0.3616
17.0620
0.3211
0.2522
0.0003

1.5894
0.0567

0.8510
0.4234
4.1295
0.0052
4.0853
0.0044
0.0041
0.4659
86.150
3.9811
4.3768
0.0023

8.7067
0.1413




Comparison of MoLFormer with existing baselines on classitication and

regression benchmarks

Dataset

Tasks

RF

SVM

MGCN [56]
D-MPNN [57]
Hu, et al. [58]
N-Gram [44]
MOolICLR [24]
MoLFoORMER-XL

ClinTox HIV
2 1

71.3 78.1
66.9 79.2
63.4 73.8
90.5 75.0
78.9 80.2
85.5 83.0
03.2 80.6
94.8 82.2

Dataset

GC

A-FP

MPNN
MOLFORMER-XL

QM9

4.3536
2.6355
3.1898
1.5894

QM8

0.0148
0.0282
0.0143
0.0102

ESOL

0.970
0.5030
0.58
0.2787

FreeSolv

1.40
0.736
1.150

0.2308

Lipophilicity
0.655
0.578

0.7190
0.5289




DEMONSTRATIONS

Real time inference from MolLFormer-XL

IBM Research

IBM Research Molecular Explorer

Cloud Based Real Time Molecular Screening Platform with MolFormer

To help researchers virtually navigate the chemical space and screen molecules of interest, here we present a cloud-based real-time
platform enabled by our large-scale chemical language model, MolFormer.

The platform leverages molecular embedding inferred from MolFormer and retrieves nearest neighbors from PubChem for a list of input , .
chemicals. To assist with automating chemistry, drug discovery and material design tasks, we also show in the platform the molecular ¢. ‘
attributes of the retrieved nearest neighbors as metadata, such as physicochemical properties (estimated using RDKIT), bioactivities %‘. . ‘
(Enamine BioActivity), odor (Olfactionbase), and ease of synthesis (Enamine Real). . ’6' | . ‘ a

» - ~

w*_ & B3\ 4
Results are for research use only. "I b j = ‘
¢ &




MolGPT: Foundational transformer for molecule
generation

0.1%

Possible classes:

X 10%
All Chemical fragments
0%

A large-scale and efficient molecular language generator

Efficient training on over a billion molecular text strings
(SMILES) DECODER

. ; ; DECODER
Scalable and fast to train linear time attention

transformers DECODER

Distributed training using Pytorch Lightning

Enjoys fast inference due to operating on text

Validity Uniqueness Novelty

MoIGPT (ours)

MegaMolBert (Nvidia)




Large-scale unsupervised pretraining, novel sampling, and optimization methods
enable controllable generation of novel artifacts with desired properties

Large
chemistry data
sets:

E.g., GDB-17 (166B),
ZINC-15 (200M),
ChEMBL, PubChem,
USPTO

results in valid generations,
provides access to novel

structural information and learns space chemical scaffolds as per
expert adjudication

similarity between datapoints

Highly-controlled

Molformer models learn latent space of
sampling of the latent

molecules that preserves important



Conditional Latent (attribute) Space Sampling -CLaSS

A — Training of Peptide Autoencoder
Reconstruction loss

AAHPQRSTEKK AAHPQRSTEKK
KKAFILEEVFEDKE KKAFILEEVFEDKE

LQSKQMSRKRAV LOSKQMSRKRAV
VADAENAGAAKKRA 2|z » latent Space » 7l VADAENAGAAKKRA
QIAAWWAFGLKAK

q¢(3') e QIAAWWAFGLKAK

LQHVKEERKGGAKR LQHVKEERKGGAKR

Training data S.mt_Jot.hness . Reconstructions
Limits information content

Makes z-space meaningful
p(z) = N(2;0,1)—| Regularization loss
B — Mapping Attributes to Latent Space
(B.ii) Fit explicit density

model Q¢(2) =~ gy(2)
AAHPQRSTEKK (0,0)

QIAAWWAFGLKAK
LQHVKEERKGGAKR

KKAFILEEVFEDKE ‘
LOSKQMSRKRAV (x) EnCOder
VADAENAGAAKKRA q¢(Z|I)

(B.iii) Fit classifier
Training-data (B.i) Encode training for each attribute a;:
Few attribute labels data with g(z|x) qe(ail2)

Sample zjx-q(2)

C — Sampling from Latent Space using CLaSS

(C.i)Sample z ~ Q¢(z) (C.ii) Compute g¢(a;|z) (C.iii) Accept/reject (C.iv) Decoding samples x from z
.
:l < YLRLIRYMAKMI
.. ; Decoder  OLRLIMKYAT
P ————— FPLTWLKWWKWK

Peo (.L\Z) EYLIEVRESAKMTQ
LRPAFKVSK

Acceptance TT,.(,. New samples
probability qu((uIZ) i

Adding Property Controls On A
Generative Foundation Model

P(aIZ)q¢(Z)

_ ap(2) [ 1, p(ailz)
p(a)




DEMONSTRATIONS

Generative Al for Molecular Generation (COVID-19)

Explore novel drug o

. Start by selecting a biological
candidates for target focus on.
COVID-19

B Qoo

To help researchers generate potential new drug candidates COVID-19 main protease Nsp? replicase protein of Receptor-binging domain of
. . COovID-19 COVID-19 of spike protein

for COVID-19, we have applied our novel Al generative iz : 7 ) : :

frameworks to three COVID-19 targets and have generated J

3000 novel molecules. We are sharing these molecules under

an Creative Commons here.

Qv B Qoo

Launch exploration

Contact us

How it works

1/4

Select a biological target
and filter generated
molecules by important
characteristics

Out of 1,000 Al-generated potential candidates
for a specific COVID-19 target, the top 10
candidates are selected and ranked using a
specific filtering criterion on an attribute of
interest. The molecules are displayed along with a
list of attributes. These top candidates can be
further filtered and sorted with additional criteria
to select the most promising molecules.




Evaluation of our foundation models tfor chemistry and biology
have resulted in groundbreaking molecular discovery

(A) Two novel Al-designed antimicrobials with high
broad-spectrum potency, low toxicity, and low resistance
onset, validated in wet lab.
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YLRLIRYMAKMI-CONH2
(YI12, 12 amino acids)

FPLTWLKWWKWKK-CONH2
(FK13, 13 amino acids)

(B) Four novel drug-like inhibitor molecules against two
distinct SARS-CoV-2 targets, the main protease (Mpro) and
the receptor binding domain (RBD) of the spike protein.

Spike RBD

4-6 weeks and 10-50% success rate with generative Al, compared to 2-4 years and <1% success rate with existing

methods.




Emergent behavior of FMs due to data and neural scaling



Emergent Behavior in Foundation Models :
Case study — MoLFormer-XL

Dataset Clintox Tox21
10% ZINC + 10% PubChem 94.6 84.5
10% ZINC + 100% PubChem 04.7 84.5
100% ZINC 82.2 83.2
MOLFORMER-Base 61.3 43.2
MOLFORMER-XL 94.8 84.7

Dataset FreeSolv  Lipophilicity

10% Zinc + 10% Pub 0.2221 0.5472
10% Zinc + 100% Pub 0.2050 0.5331
100% Zinc 0.2981 0.5440
MOLFORMER-Base 0.2596 0.6492
MOLFORMER-XL 0.2308 0.5298




MoLFormer appears compatible to geometric GNNs or better

“QM9 Task _SchNet™  DimeNet” MOLFORMER-XL

Up_atom 0.0140 0.0080 0.0827
U_atom 0.0190 0.0079 0.0974
H_atom 0.0140 0.0081 0.0947
G_atom 0.0140 0.0089 0.0888

Task DimeNet?”  GeomGCL?*® GEM?® MOLFORMER-XL

ESOL (RMSE) 0.633 0.575 0.798 0.2787
FreeSolv (RMSE) 0.978 0.866 1.877 0.2308
Lipophilicity (RMSE)  0.614 0.541 0.660 0.5289




Through lens of MoLFormer attention visualization — correlation with spatial

distances

Distance-Category Attention

Short Full (v

Linear (v

Medium Full (v
Linear (v
Long Full (v
Linear (v

Rotary)
Rotary)
Rotary)
Rotary)
Rotary)
Rotary)




Moltormer indeed captures sufficient structural information

(a)

Bond Connectivity Matrix 3D Distance Matrix
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MolLFormer Learns molecular taste without labels




Emergent Behavior in Foundation Models :
Case study: Peptide Generative AE
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Emergent behavior leads to domain-specific model reprogramming
From natural language to biology

1) Domain Data Construction
& Embedding Extraction

SOURCE DOMAIN:
English Vocabulary

m "going" ot "the"

output: {positive, negative, neutral}

TARGET DOMAIN:
Biochemical Characters

AR/ IN/|D

output: biological sequence
properties (toxic, non-toxic}

v

source model:
pretrained classifier

extract
embeddings Vs l

Target Vocabulary
Embedding Matrix ( Vr)

Vi

VT=GVs

Token Mapping and Dictionary Learning

reprogrammed
amino acid
tokens

Vi1
Vi2
Vi3

Approximate V; = 6V

Nrxm

Source Vocabulary
Embedding Matrix (Vs)

Ver "Tm"
Vg2 "going"

Vs3 "to"

"the"

bxm

3 ) Task Specific Training

source

e label positive — toxic

mapping | nhegative — non-toxic

- M

biological
property
_-~ prediction

cross entropy loss minimization to
update © until convergence

Task Specific Testing

Use optimized parameters ©* from ( 3




Reprogrammed FMs are accurate, data-efficient, and robust

Protein R2DL Pretraining Supervised Antimicrobial
Downstream

Task Training

Samples

Training

Training .
Samples Accuracy Efficiency

Accuracy Efficiency Samples Toxicity

Accuracy Efficiency

Secondary

8678 0.841 9.70E-05 | 3.10E+07 2.58E-08 7.18E-05
Structure

Secondary
Stability 21446 0.849  3.96E-05 | 3.10E+07 2.38E-08 3.08E-05 Structure

Homology 12312 0241  1.96E-05 | 3.10E+07 8.56E-09 1.99E-05 Stability

Solubility 16253 0.943  5.80E-05 | 1.70E+06 5.13E-07 5.27E-05
Antibody Affinity | 4000 0.9456  2.36E-04 - - 2.32E-04 Homology

Antimicrobial 6489 0.900  1.39E-04 | 1.70E+06 5.19E-07 1.35E-04

Toxicity 8153 0.961  1.18E-04 | 1.70E+06 5.51E-07 8.45E-05

-6 -5 -4
10 10 10
Accuracy
#TrainingSamples

(Log Scale) Efficiency =




Efficient CDR design via sequence infilling with FM reprogramming

Antibody sequence

CDR-L1 CDR-L2 CDR-L3
CDR-H1 CDR-H2 CDR-H3

VQLVESGGGLVQPGGSLRLSCAAS****¥**%*MSWVRQAPGKGLEWV
SA****A¥*YYADSVKGRFTISRHNSKNTLYLQMKSLRPEDTAIYYC
A A A Aok A A KA AR X FWGQGTMVTVSSASTKGPSVFPLAPGGTA
ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVT
VPSSSLGTQTYICNVNHKPSNTKVDKKVEP

Antibody structure

Light chain
Heavy chain

Reprogrammed Language BERT (ReprogBert)

Linear
projection

Embeddings

Encoder

Words
Embeddings

Linear
projection

~

Predicted CDR

VQLVESGGGLVQPGGSLRLSCAA
SGVTVSSNYMSWVRQAPGKGLEW
VSAVYSGGSTYYADSVKGRFTIS
RHNSKNTLYLQMKSLRPEDTATY
YCARLINHYYDSSGDGGAFDIWG
QGTMVTVSSASTKGPSVFPLAPG
GTAALGCLVKDYFPEPVTVSWNS
GALTSGVHTFPAVLQSSGLYSLS
SVVTVPSSSLGTQTYICNVNHKP
SNTKVDKKVEP

We introduce additional amino acid embeddings (target domain), together with the linear matrices 8 and y to project

from one domain to another.

During CDR infilling training, only the 8 and y and protein embeddings are fine-tuned, the source English language model

remains unmodified.



Performance on antibody heavy-chain CDR design

SabDab CDR-H3
PPL PPL-ProGen RMSD RMSD-AF RMSD-IF TM-AF TM-IF AAR AAR>30%
LSTM 9.20 -

AR-GNN 9.44 - 3.63 - - - - -
Refine-GNN  8.38 2.50 3.43 85.0 94.0 282 no
ProtBert - 6.8 3.39 85.2 94.0 415
EnglishBert - 59 3.26 84.9 94.0 35.6
ReprogBert - 54 3.44 85.1 94.0 32.6

ReprogBert model upholds structural integrity, sequence recovery, and

naturalness. —
Neutralization Score

High novelty and diversity of the generated sequences are achieved. Model CoV-AbDab CoV-AbDab + SabDab
Can handle multiple CDR infilling at once. Original 69.3

: : : e : : LSTM 72.0
Generated antibodies also show antigen specificity and improved virus AR-GNN 70.4

neutralization in silico Refine-GNN 75.2

: : .. : S . ProtBert 74.7
Lightweight training, while leveraging information from large out-of- EnglishBert 71.0

domain language pretraining. ReprogBert 76.7




How can we explicitly include geometry in molecular FMs?



Capturing molecular geometry with topological information

Background: Topological Data Analysis (TDA)




Augmenting molecular generative models with geometric (TDA) information

Background: Persistence images

Original Diagram: Homology Dim 1 Birth-Persistence _
Coordinates Persistence Image
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= .
wn v
— —
[ (7}
Q Q




Augmenting molecular generative models with geometric (TDA) information

Prior
distribution

p(z)

SMILES [ SMILES
SMILES Encoder | embedding l
lr e KL loss
] U
i } ecto
Concat —s _ Joint | 'fv' rZ

. embedding | =

T .vector
Persistence Persistence Persistence sampler
image encoder embedding

Gaussian 0=CC1=CC2CC(C2)N1 0=CC1=CC=NC(=0)c1 N=C1CN(C=0)CC1=0 CC1=NOC(C)C1=NOD
Gap = 4.226 eV Gap = 3.791 eV Gap = 4.585 eV Gap = 4.974 eV

vector |

| QM9 || SMILES 3D 3D+gq || GVAE® CGVAE' MPGVAE® MOoIGAN® G-SchNet!

persistent homology information ey ;o o -rere_ e ;e T O e
Validity | 1.000 | 0819 0. 0.852 || 0.810  1.000 0.91 0.98 0.771

for robust modeling the global

. . Ring size
geometry -- Invariant to R3 0470 || 0479 0. 0.470 || 0560  0.430 0.552 0.385 0.623
trans[a’[ion, rota’[ion’ and node R4 0.586 0.490 . 0.582 0.333 0.692 0.647 0.247 0.657
) RS 0495 || 0409 0. 0483 || 0218 0902 0.526 0.325 0.430
label permutation. R6 0158 || 0169 0. 0157 || 0110  0.649 0.104 0.115 0.133

Sum 1.709 1.600 . 1.734 2 2.673 1.828 1.072 1.843
x> - 0.003 1 0.000 . 0.056 0.005 0.017 0.008




Inverse Folding

Y

“How can we find "good" amino acid sequences (i) that fold to a desired "target" structure as a native conformation of
lowest accessible free energy and (ii) that will not simultaneously fold to many other conformations of the same free
energy?” Yue & Dill, PNAS 1992.

Physics-based models are expensive.
ML/DL models focus on high recovery with respect to input and does not handle conformational flexibility.

The goal is to sample diverse sequences --- overlooked in most ML studies.



3D Geometry-Aware Diverse and Novel Protein Sequence Design

Rescale

(a) Consider a one hot-encoding t; € {0,1}* of four types of secondary structures : 1. helix, 2. beta strands, 3. loop, 4. turn

(b) Scale in/out the structure into a fixed size box with ratior.
(c) Discretize the cubic space into 2Ax2Ax2A voxels.

(d) For each voxel i, we sum up the contributions from all residues as:
N

llcjr — il |5
Yi = Z exp(— ) "

] 02
j=1

Where ¢; is the coordinate of residue |, and v; is the coordinate of the center of voxel I.




3D Geometry-Aware Diverse and Novel Protein Sequence Design
Goal: Learn a joint sequence-fold embedding

Inference Scheme

Training Scheme

Fold Class.

Transformer

Sequence
Encoder

Sequence — g bedding

xr |
\_Sequence Encoder

Residual Conv Transformer
— Pos. >
Encoder

Ll Encoder

Cos. Sim. Loss '

Loss
. D .
Residual Conv Transformer
— Pos.
Encoder

bl 6 Encoder

FoldClass | \_Fold Encoder
Loss

Generated

Transformer
Sequence

. Sequence
Decoder

._Fold Encoder
Embedding

Transformer I
Output ---
Autoregressive

Sequence
Decoder
p(=|h())

Embedding

\_Sequence Decoder

Sequence

T
\ Sequence Decoder

Two reconstruction losses: fold2seq and seg2seq: REf and REg

Two Intra-modal losses: fold classification: FC¢ and FCg
One cyclic sequence loss CY

One Inter-modal loss: cosine similarity: CS
Full loss objective: L = A;REf + A,REg + A3FC¢ + A,FCg + A5(CY — CS)



Fold2Seq Performance on Geometry-Aware Protein Sequence Design

Fold2Seq works in real-world settings — with inputs such as
ﬂ | incomplete structure, low-resolution structure, or NMR
Fold2Seq Designed Structures | v A L structural ensemble.

Maintains fold consistency, while providing broad sequence
diversity

o) ]
10ufA00-1-130 1nh0A00-1-99 1wd5A02-53-113 2ct2A00-1-88
(In-domain Test Set) (In-domain Test Set) (Out-of-domain Test Set)(Out-of-domain Test Set)

IEm RosettaDesign

BN Fold2Seq Subset |S;|<3 S>3 ]S <3 |Si| >3

#eovp 4 (1) > covt (1)
Total #folds
Ratio

»
o
E
[
o
£
c
c
3
o

25 50 75 100 125 150 175 200
Protein Length (AA)




Take Home

Large pre-trained models are emerging as a promising tool to be integrated in molecular prediction & design
workflows.

While designing those models and methods, integration of domain knowledge and physics at each stage can
help boost performance and efficiency.

Benchmarks and metrics are good for consistency and reproducibility, but we need to go beyond what currently
exist and work with the community to create and validate new ones that are more realistic and relevant.

Emergent behavior with data and neural scaling — new paradigm of learning

Geometry can be implicitly and/or explicitly included in FMs efficiently with proper coarse-graining.
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Realizing the Value ot Foundation Models
End to End Cloud Native and Customizable Stack

NLP Digital Chemistry
LM Utilization Interactions & Materials

Front-end, orchestration, multi-cloud support
pre-built workflows, evaluation metrics, testing & validation, etc.

Foundation Model UX and Toolchain Training Finetuning  Inference .

Scale-out Middleware

for Training and Inference -3 RAY O PyTorch
Workflows/pipelines, Ray and PyTorch

Hybrid Cloud Platform for Training and Inferencing ‘ Red Hat

Distributed resource management, scheduling .
OpenShift scale, high performance networking, CNI/GPU enablement OpenShlft

Scale-out @ @ @

Infrastructure GPU Environment Other IBM AL
in IBM Cloud public clouds accelerators
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