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The strong force: Quantum Chromodynamics

Interaction strength depends on energy
[Gross, Politzer, Wilczek, Nobel 2004]
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The strong force: Quantum Chromodynamics

Interaction strength depends on energy
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Simulating particle physics processes
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Simulating particle physics processes

| atent variables
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Simulating particle physics processes
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Simulating particle physics processes

Detector Shower Parton-level Theory

Observables . . L
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Simulating particle physics processes
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Simulating particle physics processes

Detector Shower Parton-level Theory

Observables . . L
Interactions splittings momenta parameters
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It's infeasible to calculate the
integral over this enormous space!
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Science is replete with high-fidelity simulators

Particle Neuron Foidem; Gravitational Evolution of
colliders activity HPIGCIIIES lensing the Universe

| | | | | | | | | | | | | | |
10-*® 107 107** 107° 107% 107 10" 103 109 10? 102 10*°  10'®  10%Y 10%*  10°%7
Length scale [m]

Simulators are causal, generative models of the data generating process

[Cranmer, Brehmer, Louppe PNAS (2020), arXiv:1911.01429 ]


https://arxiv.org/abs/1911.01429
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The expressiveness of programming languages facilitates the development of

complex, high-fidelity simulations, and the power of modern computing provides the

ability to generate synthetic data from them. |
[Cranmer, Brehmer, Louppe PNAS (2020), arXiv:1911.01429 ]


https://arxiv.org/abs/1911.01429

Science is replete with high-fidelity simulators
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colliders activity HPIGCIIIES lensing the Universe

| | | | | | | | | | | | | | |
10-*® 107 107** 107° 107% 107 10" 103 109 10? 102 10*°  10'®  10%Y 10%*  10°%7
Length scale [m]

Untfortunately, these simulators are poorly suited for statistical inference.

[Cranmer, Brehmer, Louppe PNAS (2020), arXiv:1911.01429 ]


https://arxiv.org/abs/1911.01429
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A toy example
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A toy example

lmagine the entire board is
slightly tilted, which biases the

probability to bounce left/right.

Say we want to infer 6,
the probability to bounce right

based on distribution of x
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The probability of ending in bin & corresponds to the total probability of all the observe X

paths z from start to .

p(z]0) = / p(w,ZIH)dzz (Z) 9% (1 — O)"* ‘




Uh oh!

The actual situation is much more complicated.

It's not a Binomial distribution!

What is it?
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Uh oh!

The actual situation is much more complicated.

It's not a Binomial distribution!

What is it?

| have no idea, but | can simulate it!




ANIMATION BY ATILIM GUNES BAYDIN
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Properties of simulators
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Integral over latent variables is typically intractable p(z|0) = [ p(x,z | 0)dz



ANIMATION BY ATILIM GUNES BAYDIN

¢

Properties of simulators

® &
. 00000000030000001
Two broad classes: cecccocees0000 00
Nooooooooooooooooc
,  © 0 0000 0°0°000000 00
CO O 0 060060 0°0 0,000 0 0 0 ¢

%oooooooioo ¢ ¢ 6 06 0 ¢

e Deterministic evolution of initial state

e (eg. ditferential equations, tluid —ReERFSRAN MRS RGFRSY
® ¢ ¢ ¢ ¢ ¢ ‘ ® & 6 ¢ ¢ & ¢ ¢ ¢
dynamics, N-body simulations, etc.) 0000000000000 0 ¢
000000 0dd00000o0
. . ® ¢ ¢ ¢ ¢ & & ¢ ¢ ‘ ® ¢ & & & & ¢
e Stochastic evolution ‘ ;
* (eg. Markov processes, molecular =
. . v o |©
dynamics, Gibbs / Boltzmann c 3
N :4 -
distribution in statistical mechanics, 3 . % ganh.
: : : : ‘ﬁ "n e :E‘ x:ﬂ:,» Ii} .
stochastic differential equations, etc.) SLL5EH BESRHRAE 2 .
TS M x 'x . x""i‘[ 1[‘*1 ¥ ’l[*‘ir"'1 t L‘il"*"["[‘* 8 i['* ' S P ® ®

Integral over latent variables is typically intractable p(z|0) = [ p(x,z | 0)dz



ANIMATION BY ATILIM GUNES BAYDIN

¢

An example

The probablllty of\andlng mablnx e © ©6 ©¢ & ¢ ¢ ..; 3 e © ¢ © ¢ ¢ ¢
. - ........‘..‘...“

Corresponds to Cumu\atlve probablllty ofaH e © 6 e e e e . e ¢ ¢ ©¢ ¢ © © ¢ ¢
. ¢ ¢ &6 ¢ ¢ ¢ ¢*¢c°e & & & & & ¢ ¢

the latent paths z that end in x CO® 6 e 60666 06 06,8¢ 0 0 606 0 ¢

%ooooooo&oo N EEX
—© 6 06 0606006000000 00 0 ¢
p(az\@): p(LE,Z|@)dZ e eeceeeeceececeeeeee
© 00000000 000000 0 ¢

000000.0“000000

e But the integral (sum) can no longer be S0 ecccccciéicceo oo
° ° ° ° *®
simplitied analytically M -
-~
* Asthe latent space grows, the number of o
possible paths grows rapidly. ki . ol i
N ¥ . ’lf l:% E :::I;*:«J b
o o o S Ay 44«~ 1
e The integral becomes intractable ,ﬁ,fﬂﬁuﬁi*;:1;1E*;§i:};:1 A 8 .
IR VTR £ ¢ 23 Sty S 0Bt L D AR AN

e But generating synthetic observations

remains easy
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A rose by any other name

This motivates a class of inference methods for a stochastic simulator where

e evaluating the likelihood is intractable, but

e itis possible to sample synthetic data x ~ p(x | 6)

This setting is often referred to as likelihood-free inference, but | prefer the term
simulation-based inference because usually one approximates the likelihooa
(or likelihood ratio) and then use established inference techniques

e applies to both Bayesian or Frequentist inference



Gold mining: augmenting the training data

Sample efficiency is a major concern for these methods as many simulators are
computationally expensive
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Sample efficiency is a major concern for these methods as many simulators are
computationally expensive

Recently, we realized we can extract more from the simulator.
We can use augmented data to improve training

parameter (9

|

approximate
v I|kellhood
ratio

arg min L[g] — 7(x|0)
—> t(x, 2|0) 9

augmented data

Simulation Machine Learning

Brehmer, Louppe, Pavez, KC, PNAS (2019), arXiv:1805.12244
See also Wenliang, Moskovitz, Kanagawa, Sahani, ICML2020

Johann Brehmer  Gilles Louppe



Gold mining: augmenting the training data

Sample efficiency is a major concern for these methods as many simulators are

computationally expensive While implicit density is intractable

Recently, we realized we can extract more from the simulator. ) — A 0
We can use augmented data to improve training p($| ) T Zp(a:, Z‘ )

We can augment the simulator to

parameter (9 . .
calculate some guantities conditioned
® on latent z, which are tractable:
approximate
v Iikelihood . . . .
ratio Joint likelihood ratio:
arg min L[g] - 7(x|0
g (16) p(z, z|00)
r(z, z|0p,601) =
augmented data p(w, z 91)
Simulation Machine Learning and jOiﬂt SCore.
Vep(% Z|9)|9
0
t(x,z|0p) = ; = Vg logp(x, 2|0)|e,
Brehmer, Louppe, Pavez, KC, PNAS (2019), arXiv:1805.12244 p(x7 Z‘ O)

See also Wenliang, Moskovitz, Kanagawa, Sahani, ICML2020

Johann Brehmer  Gilles Louppe



Gold mining: augmenting the training data

The augmented training data converts
supervised classification into supervised
regression with lower variance

* improvement in training efficiency

Brehmer, Louppe, Pavez, KC, PNAS (2019), arXiv:1805.12244
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lmpact on science: The Higgs boson

Massive gains in precision of a flagship measurement at the LHC !

Equivalent to increasing data collected by LHC by several tactors

(based on a 42-Dim observation X)
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"Better Higgs Measurements Through Information Geometry” [arXiv:1612.05261] & CARL [arxiv:1506.02169]



http://arxiv.org/abs/1506.02169
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/ J Brehmer, J Pavez, G Louppe, K.C. PRL & PRD 2018 [arXiv:1805.00013 & arXiv:1805.00020]
9 "Better Higgs Measurements Through Information Geometry” [arXiv:1612.05261] & CARL [arxiv:1506.02169]



http://arxiv.org/abs/1506.02169

Normalizing flows in the ambient data space

Uy
Uo
U ~ Py (1) f T
; vertible NN tractable density over

ambient data space

pu () = pu(f " (2)) [det Jp(f~ (2))|

[G. Papamakarios et al 1912.02762]



Why the data lives on a manifold

Dynamical systems like

e the Lorenz attractor ——

e Attractor networks in theoretical /
Neuroscience

dt

Tank and Hopfield 1987; Lu and Danielle S. Bassett arXiv:1807.05214 ; E. Lorenz 1963

o(z1—%0), — =Zo(p—x2)— 21,

_t = ToX1 —,8:132 .

Animation by Johann Brehmer
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Flows on a prescribed manifold

"t " i

I
I

“lll ..
i‘
Tl
&
||||\‘

gl
=~

U~ pg () —> u —> T
h g
n-dim. latents  invertible NN n-dim. latents prescribed chart tractable density over M~

pat () = pa(@) |det Jy (@)™

| det[Jg. (u) Jg- (w)]| 3

[M. Gemici et al 1611.02304;
D. Rezende, ..., M. Albergo, ..., K. Cranmer 2002.02428



M-flows See Spotlight talk by Johann Brehmer “NOTAGAN"

=

p,&( Pu (U)

=g
I~

n-dim. latents inv. NN n-dim. latents

[Johann Brehmer, Kyle Cranmer 2003.13913]



M-flows See Spotlight talk by Johann Brehmer “NOTAGAN"

Puv (U, V)
pa(u) Pu(u)
2 8
% %
< 0 =
u Uu u
U
Zero-pad
ur~pg(u) ——— u — (u,v)
h Project
n inv.NN n embed

[Johann Brehmer, Kyle Cranmer 2003.13913]



M -1l
-TIOWS
See Spotlight talk by Joh
ohann Brehmer “NOTAGAN

J— - (\ N
2
% ?
5| )
=] I
Iy
i~ pa (@) i)
u -— [Lpme i
h U Zero-pad ”
. —
inv. NN rolect (t,0) — XO
‘ n
embed f L
inv. NN
traCtabIe d
ensity over M

pm(@) = pa(d) | det Jp (@)™

det [(]1 0)J¢(u)" Jr(u) <g>]

1
2

[Johann B
reh
mer, Kyle Cranmer 2003.1
.13913]
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Evaluating data on or off the manifold
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Evaluating data on or off the manifold

~

Input ~» Representation «

~» Projection to manifold z’
~» Reconstruction error ||z — 2'|] (training,

~» Likelihood after projection paq(z’) (training, inference)



Generative models vs. the data manifold

Model Manifold Chart Generative Tractable density Restr. to manifold
Ambient flow (AF) v v

Flow on prescr. manifold prescribed prescribed v v v

GAN learned v v

VAE learned v

M -flow learned learned v v (potentially slow) v



The likelihood is not what it seems

Likelihood defined after projection to M, which is defined through NN weights @y

Family of likelihoods pe , (z|¢p)
rather than one likelihood p($|¢fa o)

= Learning ¢ by maximizing

Naive likelihood

Pe; (x|Pn) is unstable

Pe, (x|®n) is not really a likelihood
function in the parameter ¢ ¢

We call it the “naive likelihood”
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M/D training

Solution: separate training in two phases!

e Manifold phase:
update ¢ (and thus M) by minimizing ||z — 2|

/2

Reconstruc

On =0




M/D training

Solution: separate training in two phases!

e Manifold phase: e Density phase:
update ¢ (and thus M) by minimizing ||z — 2’|| update ¢ (and thus pam(z)) by maximum likelihood
(keeping M fixed)

/2 /2

Likelihood relative to

Reconstru MLE for e

On =0
On =0




Quantum Field Theory



Al tor Lattice Field Theory
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The strong force: Quantum Chromodynamics

Interaction strength depends on energy
[Gross, Politzer, Wilczek, Nobel 2004]

September 2015
v T decays (N3LO)

a DIS jets (NLO)

0 Heavy Quarkonia (NLO)

o ¢'e¢ jets & shapes (res. NNLO)

® c.w. precision fits (NNLO)

v pp —> jets NLO)

v pp —=> tt (NNLO)

o (Q%)|
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— QCD 0(M,) = 0.1177 £ 0.0013
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v T decays (N3LO)

a DIS jets (NLO)

2 Heavy Quarkonia (NLO)
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The strong force: Quantum Chromodynamics

Interaction strength depends on energy

QC D iS St ron g at at ‘ OW- [Gross, Politzer, Wilczek, Nobel 2004]

v T decays (N3LO)

a DIS jets NLO)

0 Heavy Quarkonia (NLO)

o ¢'e jets & shapes (res. NNLO)
® c.w. precision fits (NNLO)

v pp —> jets (NLO)

v pp —= tt (NNLO)

September 2015

. 2
energies, no small %(Q)

coupling, perturbation 03 fyg

theory fails.

QCD is weak at at high-
Emergent phenomena: NG | ! ‘9
. energles, small coupling
\ 01} & E: . / /
protons, pions, etc. #  OCD M) = 01177 < 0.0013 iy .
QD (M) =0 . perturbation theory works
1000 )

P 1 100

P QGev]

e ) q
N O
¢ (
@
& q

»




Lattice Field Theory

Lattice field theory is a computational approach to studying interacting tield theory
on a discretized space-time lattice.

Fach link on the lattice has data corresponding to the symmetry group of the
theory. For the strong torce (QCD) each link has a 3x3 unitary matrix.

This animation is a single configuration of the lattice.

Think of a 4-d image playing like a movie.

QCD Lagrangian 643x128 x4 x9x 2
l n (1L A - S 9
L = _.I 2l I‘l“‘ + | L 10 numbers

qliv" (9, — igA,) —m,)q
J u.dschit

o——0
A A
4 = 1

O quark A gluon
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Distribution over Configurations

We don't want just a single "image" (lattice configuration), we want to sample the high-dimensional
distribution of configurations predicted by the theory.

* Path integral: each "path” is a sample from distribution of lattice configurations path ~ exp(-Action[path]).
e Predictions are expectations of quantum operators w.r.t. this distribution.

 Thatintegral is intractable. Typically people use Hamiltonian Monte Carlo for this, but it has limitations.

KE EN € 2o,
s NI O 3 - ,,,,_.,,,‘ e DEATH
90 N g /\

ez ol T ’
BIBTH CRop ouT OF PUBLlC SCHO YOUP\ L“-,-E ___.fDq({)elfthL(g,')

The Path Integral Formulation of Your Life
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M, — M, [MeV]

| attice QCD works

® Ground state hadron spectrum ® Predictions for new states with
reproduced controlled uncertainties
® p-n mass splitting reproduced :
9500 - bbb |
— Experiment g SOap
. L. ¢ Lattice QCD (Brown et al., 2014) g %
5000 |- s ¢ _
QcchZb
I ] Qe
3 QCD ] 4500 0 |
i ] = b :Ibb 3 [
: = )
2 Total S 4000 TEE s @ |
: >| s =, Sy Sy o Uy
1 3 o
§ 3500 |- ; =p, Hee il
0; L 2
* 00| T =, ;b _{_ * Determined post-facto -
~1science 347:1452-1455,2015) Ay —E—‘L—;— by LHCD experiment
| | | _I_ —I— _E__E__E_Qz
2500 | 3 - + = = Q. _
=
" A. [/ Brown et al. PRD 2014]
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Predictions are taken seriously

The Standard Model 1s successful

Magnetic moment of the electron:
(torque an electron feels in a magnetic

field) ae = (g — 2)/2

Most accurately verified prediction in
the history of physics

Theory a. = 0.001159652181643(764) R A B\ ) A
Exp.  a. = 0.00115965218073(28) RS
RRE89am
4 Phiala Shanahan, MIT

Brookhaven __
result ' -
Fermilab °
result
@ = @
Standard Model Experiment
Prediction Average
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So what's the problem?

QCD gauge field contfigurations sampled via

Hamiltonian dynamics + Markov Chain Monte Carlo

Updates diffusive

=l 0

Lattice spacing

Number of updates

to change fixe

- o

ohysical length sca\e

“Ceritical slowing-down”
of generation of uncorrelated samples

Phiala Shanahan,

MIT



Albergo, Kanwar, Shanahan, PRD (2019) arXiv:1904.12072

Flows for LQCD

Flow-based generative models for Markov chain Monte Carlo in lattice field theory

M. S. Albergo.,»?3 G. Kanwar,* and P. E. Shanahan* !

I Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
“Cavendish Laboratories, University of Cambridge, Cambridge CB3 0HE, U.K.
S University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
4 Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

A Markov chain update scheme using a machine-learned flow-based generative model is proposed
for Monte Carlo sampling in lattice field theories. The generative model may be optimized (trained)
to produce samples from a distribution approximating the desired Boltzmann distribution deter-
mined by the lattice action of the theory being studied. Training the model systematically improves
autocorrelation times in the Markov chain, even in regions of parameter space where standard
Markov chain Monte Carlo algorithms exhibit critical slowing down in producing decorrelated up-
dates. Moreover, the model may be trained without existing samples from the desired distribution.
The algorithm is compared with HMC and local Metropolis sampling for ¢* theory in two dimen-
sions.

. d

#. Enrico Rinaldi @enricesena - Nov 1 v
@ Yesterday Gurtej Kanwar told us about machine learning for lattice field

theories and exciting progress in Generative Models for gauge theories
(collaboration with @DeepMindAl ') at #DLAP2019 Today is the last day of
this great conference!

}I

® M 5 ¥ 15 M



FLOWS FOR MOLECULAR DYNAMICS | semioussmastmser

A

RESEARCH  No et al, Seience 565, 1001 (2019) 6 September 2019 :
RESEARCH ARTICLE SUMMARY *fl * * = *
IR R R
Boltzmann generators: Sampling t o
equilibrium states of many-body I

systems with deep learning

Frank Noé*{, Simon Olsson”, Jonas Kohler*, Hao Wu

2 Generate distribution

/\/\AM

The main approach is thus to start with one 3 Re -weight @

configuration, e.g., the folded protein state, and

make tiny changes to it over time, e.g., by using e A

Markov-chain Monte Carlo or molecular dy- l Boltzman l
. . . distribution

namics (MD). However, these simulations get

trapped in metastable (long-lived) states: For
example, sampling a single folding or unfold-
ing event with atomistic MD may take a year
on a supercomputer.

Boltzmann generators overcome sampling
problems between long-lived states.




Space-time & Local Gauge Symmetry
The action is invariant to local gauge transtormations, so the distribution is
constant in those directions. It's a huge product group!
Many more pure gauge degrees of freedom than physical ones

We would like to entorce this symmetry in the network, and not have to learn it.




. Xiv:2002.02428, ICML2020
Step 1: Flows on Spheres and Tori o |

We designed flows on compact manitolds like Spheres and Tori that correspond
to Lie groups:

T r' = g(r) 0" =f(0;r') oo
eﬂﬁlﬂ% oo

SL AN

¢ ( adS)

Figure 3. Learned densities on T using NCP, Mobius and CS
flows. Densities shown on the torus are from NCP.

Figure 5. Learned multi-modal density on SU(2) = S* using the
recursive flow. Each column shows an S” slice of the S° density



Step 2:

larXiv:2003.06413]

We came up with a way to build flows that are equivariant to space-time

translations and local gauge transtformations

I

I

I

I

I

A

I

I

|4
)
R [T

[ ]

}:)/.Ll/ (I‘)_)]D;u/ (T)
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active update
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Profit

Essentially, MCMC can get stuck for a while in a certain mode.
e Qur new “flow-based” proposal does much better!
e |t learns to propose configurations that look like our target distribution.

e 1000x reduction in autocorrelation time

2D U(1) model

Q 10000 § -4+ HMC
o 1.4

; - HMC ¢ = .

0 — 1R .= 1000 { % Flow i
—2 HM“M'*“H“|H — Flow CC) T
—4 g 100 . “,4'.

(O art
0 20000 40000 60000 80000 100000 O o >
Markov chain step S it - e N e R g
) ) Q ITIL AL EEEREEE T
The topological charge Q will be constant for o 14°
-IS | | | I |
thousands of MCMC steps. I ] 0 3 4 .



Space-time & Local, Non-Abelian Gauge Symmetry

Input Configuration
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Flow models for QCD

First gauge theory application:

Flows on
compact, /~ 2D U(l) field theory
connected
manifolds Cost per independent sample
D 3 10000 4 4 B 3 Conventional
4 ... HM
i 1 .4 B . } approaches
1000 _; * FIOW e
. i v
7_mt 1
Q o4 . e
: o T
1 e *’ |
09 o Xeosseeenes X } ML algorithm
] o7 L ¢ T TPTTIIELL > S
- szgzaEaddd gerrieeee S
1 = ¢
- I I I I I I I
1 2 3 4 5 6 7
b

Parameter of theory

[Phys.Rev.Lett. 125, 121601 (2020)]
57 Phiala Shanahan, MIT



Flow models for QCD

Flows on Systems with complex topologies
compact, /Zms

ted : :
connecte Need: Unbiased sampling from
manifolds

multi-modal distributions

m ‘s

N—,

—1.0 —-0.5 0.0 0.5 1.0

12107.00734 (2021)]

58 Phiala Shanahan, MIT



Flow models for QCD

First gauge + fermion theory application:
2D Schwinger model

Flows on

compact, Zm
connected

manifolds Measured value of observable
390 -
Truthline% [ ,HTTH,H ... %-. N
S84 %f’ I {% I
S T
S ,,*
v
380 -
--4-- Flow
I HMC
375 -
T T | |
104 105 10°

Number of samples

[Phys.Rev.D 104 (2021), 114507, arXiv:2202:11712]
59 Phiala Shanahan, MIT



Flow models for QCD

First gauge + fermion theory application:
2D Schwinger model

Flows on
compact, Zm
Cor\hnnl-f\fl

me SChWingeI' mOdel A 3 languages v ible

Article Talk Read Edit View history

From Wikipedia, the free encyclopedia

In physics, the Schwinger model, named after Julian Schwinger, is the modell'! describing 1+1D (1 spatial dimension + time) Lorentzian quantum
electrodynamics which includes electrons, coupled to photons.

The model defines the usual QED Lagrangian
1 L —r—f—-1
L = —EF#VFH + ¢(27“Du — m)v,b

over a spacetime with one spatial dimension and one temporal dimension. Where F),, = 0,4, — 0, A,, is the U(1) photon field strength,

D, = 8,, — z’A,, is the gauge covariant derivative, 1) is the fermion spinor, m is the fermion mass and 'yO , 'yl form the two-dimensional representation of
the Clifford algebra.

Fe This model exhibits confinement of the fermions and as such, is a toy model for QCD. A handwaving argument why this is so is because in two - FIOW
+ dimensions, classically, the potential between two charged particles goes linearly as r, instead of 1 / 7 in 4 dimensions, 3 spatial, 1 time. This model also HM C

exhibits a spontaneous symmetry breaking of the U(1) symmetry due to a chiral condensate due to a pool of instantons. The photon in this model becomes
th a massive particle at low temperatures. This model can be solved exactly and is used as a toy model for other more complex theories.?!l!

llllll

-
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Flow models for QCD in 4D

Initial QCD demOnSt ratiOn [this talk +upcoming manuscripts on scaling and 4D]

® Direct combination

of published results on gauge-equivariant flows and

pseudofermions [Boyda et al., 2008.05456, Abbott et al., 2207.08945]

® |[|lustration at straig

® (Observables from t
(65k samples)

ntforward parameters V=44, Ni=2, 3=1, k=0.1

ow ensemble in precise agreement with HMC at high statistics

® Development and scaling of QCD-specific architectures in full swing — stay tuned!

“marginal”
Marginal: Conditional:
& g [: fm(Z) | U | ® Haar-uniform base ® (Gaussian base
distribution distribution
® 48 gauge- ® 36 pseudofermion
X ‘U) equivariant spline coupling layers built
coupling layers from parallel
condltlonal” ® Spatially transport
separated convolutional
U convolutions in networks
{ ¢} 1\ spectral flow to ® Alternating spin and
proposed define spline spatial masking
parameters pattern
configuration

37 Phiala Shanahan,

MIT



Flow models for QCD in 4D

Initial QCD demOnStl‘ation [this talk +upcoming manuscripts on scaling and 4D]

® Direct combination of published results on gauge-equivariant flows and
pseudofermions [Boyda et al., 2008.05456, Abbott et al., 2207.08945]

® ||lustration at straightforward parameters V=44, Ni=2, B=1, k=0.1

® (Observables from flow ensemble in precise agreement with HMC at high statistics
(65k samples)

® Development and scaling of QCD-specific architectures in full swing — stay tuned!

Plaquette Topological Charge (W”SO” ﬂOWGd) Pion Correlation function (t='])

3.5 60

B% HMC (Chroma) B% HMC (Chroma)
3.01 0¢ Flow (512 PF)

B% HMC (Chroma)
0¢ Flow (512 PF)

0¢ Flow (512 PF)

| | :
. 1.51 + =
= —
m ~—
1.00- > & ©)
= 1.01 ~
0.75 + + & + a ¢
0.275 0.300 0.325 0.350 0.375 0.400 0.425 0.450 —1.5 —1.0 —0.5 0.0 0.5 1.0 1.5 0.295 0.300 0.305 0.310 0.315 0.320 0.325 0.330 0.335

P Q Cx(1)
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Flow models for QCD

Machine learning for QCD

Flows on

compact, /s

connected ® Provably-exact machine-learning-
manifolds accelerated sampling algorithm

® Orders of magnitude more efficient than
conventional algorithms overcoming
critical slowing-down

® Unbiased results where traditional

For ¥ approaches fail

ermions

+ gauge

theory ing Deployment for state-of—the-arF QCD AURORA | &5
N Sca scheduled for Aurora 2023 first science time

12107.00734; 2101.081/6: s.Rev.D 104, 114507; Phys.Rev.D 103, 074504 (2021); Phys.Rev.Lett. 125, 121601;
PMLR 8083-8092 (2020); Phys.Rev.D 100, 034515 (2019); Phys.Rev.D 97, 094506 (2018)]
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e had the right

ab if we
causal s&mdum?

Under the hypothesis of
dent mechanisms and small

 across different distributions:

er sample complexity to recover

a distribution chang g

for transfer learning, ag

RO
changes across different distribution

_smaller sample complexity 1O re€

from a distribution change

cover

 E.g. for transfer learning, agent learning,

domain adaptation, etc.

Max Welling Isn’t this what Bernhard
Schoelkopf has been saying for a while?

Like

Reply - 6w

Yann LeCun ...and Leon Bottou ?

Like - Reply - 6w

Leon Bottou Yoshua's paper says:
If you observe a distribution change
that comes from a causal effect,
then you'll adapt faster if your
generative model matches the
causal model.

Another way of seeing it is : the
right causal graph suggests a
particular factorization of the joint
distribution (a directed bayesian
network). A causal intervention
means that you only change one of
these factors (or a few factors)
while leaving the other ones
unchanged. Therefore if your
generative model is the right causal
model, meaning that it factorizes
the joint in the same way, it will be
easy to adapt it to the change
because only a few parameters
need changing (those associated
with the factors that actually
changed).

Max Welling Dan Roy | am, and |
think most of us, are keenly aware
that Josh has been the big
proponent of this view. And | think
most people agree with him on this
view. Integrating this view with
deep learning for more narrowly
defined tasks seems to me an
interesting intellectual pursuit
though. | think that's what'’s
happening here but | was not at the
talk ==
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Emergence: Philosophical Musings



Scale separation & emergence

Scale separation can lead to difterent eftective descriptions & ontologies that
describe the phenomena that emerge at difterent scales

e |dentitying and naming the relevant objects / concepts already significant

e Understanding how they interact and developing an effective law or theory at
that scale is even more significant

e Understanding how these objects and interactions emerge from a more
fundamental scale is profouna

This has generally been done by humans, and there is an opportunity for Al to
assist / accelerate / automate this process.
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Scale separation & emergence

Questions:
 How arbitrary or unambiguous are:
* the scales where the “right” effective description applies?
* the right objects / degrees of freedom in the eftective description?

* the laws that describe the interactions among those objects?

e |sthere a principle that can help guide us or allow us to judge or rank ditterent
approaches?
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Observation:

e Dynamics of lower-dimensional coarse-grained model sweep out a manifold in
the state space of the fine-grained model

e Coarse graining and emergence can be seen as geometrical structure of the
"data manifold”

* Usetul insight for generative models, up-sampling, denoising etc.
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Evaluating data on or off the manifold
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Vanilla autoencoder acting general-purpose like compression.

e \When trained on L2 loss, not specialized for any particular down-stream task
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Supervised learning and sufficiency

In contrast, say we have some down-stream task, then some of the information in x will be usetul, but other
information can be thrown away without any significant loss in performance.

e This happens automatically in learned representations for supervised learning tasks

For example, say 6 represents some property that is usetul for my downstream task, and abstractly | can think
about the joint p(x, @) or conditional p(x|6) — example: think of @ as a reaction coordinate

e A function (encoder) T(x) is called a sufficient statistic tfor @ if it can be factorized as
* p(x|0) = g(T'|0) h(x)
e Equivalently
e 1(6;T(X)) = 1(6; X)
* p(@| X =x)=p| T(X) = tx))
Closely related to collective variables, order parameters, etc.
e Exact sufficient statistics don't usually exist, but approximate sufficient globally

* 1(x|0) = Vylogp(x|0)|, is “locally sufficient”
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* Force matching also helps to shape the learning of CG and obtain V;(z = E(x)) for CG simulations
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We designed tlows on compact manifolds like Spheres and Tori
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Figure 3. Learned densities on T using NCP, Mobius and CS
flows. Densities shown on the torus are from NCP.

Figure 5. Learned multi-modal density on SU(2) = S* using the
recursive flow. Each column shows an S” slice of the S° density
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r Sparse ldentification of Nonlinear Dynamics (SIN

Full System

Innovation 1: Enforcing
known constraints

P Skew-symmetric quadratic
nonlinearities to enforce energy
conservation

P Improved stability

min |©(X)E — XI; +2"(CE - d)

.~

DY) e
| —_—

Innovation 22 Higher-order
Nonlinearities

P Cubic, Quintic, Septic terms
approximate truncated terms in
Galerkin expansion

r = pur-—wy+ Arz
wz + py + Ayz
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Various strategies

Take advantage of already known multi-scale, emergent phenomena
 Enhanced sampling, coarse graining, ...
 Engineered features, inductive bias of models, ...
Add the coarse graining by hand and learn the dynamics
e |earned force fields, force matching, etc.
* |earn Markov transitions between fixed clustering of states
Add the coarse graining by hand, and learn the effective “dynamics” & how to map back to fine-grained representation
e Steve Brunton'’s talk: Reduced models, SINDy

e AlphaFold/ OpenFold etc. Sequence = structure (not really dynamics)
Simultaneously learn a (latent) coarse-grained representation and “dynamics” & how to map back to fine-grained representation
e VAEs, Diffusion Models, Z-tlows
Simultaneously learn a coarse-grained representation and dynamics (discovery emergence)
* Learned Koopman operators, learned dynamics of latent space
e SSL technigues like VicREG, Barlow Twins, etc. where encoder, but no decoder.
e Much of ML does this, but interpretability of latent state is a challenge. When would we call this “emergence”?

* Need a way to "“operationalize” the latent space representation for some down-stream task
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Physical reasoning

Humans are remarkable at being able to have a library of mental models at
ditfferent levels of abstraction and finding which is most appropriate to use for a
given task.

* In my work as a particle physicist | switch between ~5 mental models

Finding the right level of abstraction / coarse graining is key and depends on task

Eventually Al / ML systems may develop causal representations needed to
efficiently design experiments, generate hypotheses, etc.

* |t may be a foreign ontology, but | suspect that it will need to be causal to be
effective
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