

Incorporating Symmetry for Learning Spatiotemporal Dynamics

Rose Yu

Assistant Professor University of California, San Diego

Learning Spatiotemporal Dynamics

Success of Symmetry

Ravanbakhsh et al. (2017); Kondor & Trivedi (2018); Cohen & Welling (2016b); Thomas et al. (2018); Maron et al. (2020); Walters et al. (2021).....

How about Spatiotemporal Dynamics?

Incorporating Symmetry for Generalization

Rui Wang

Robin Walters

Incorporating Symmetry into Deep Dynamics Models for Improved Generalization Rui Wang*, Robin Walters*, and <u>Rose Yu</u> International Conference on Learning Representations (ICLR), 2021.

Generalization Challenge

- Generalization: fundamental challenge in dynamics forecasting
 - Performance degrades with test distributional shift
 - Punchline: distributions change, laws of physics do not!

Bridging Physics-based and Data-driven modeling for Learning Dynamical Systems Rui Wang, Danielle Maddix, Christos Faloutsos, Yuyang Wang, <u>Rose Yu.</u> International Conference in Learning for Dynamics and Control (L4DC), 2021

Conservation Laws and Symmetry

• Noether's theorem: For every symmetry, there is a corresponding conservation law

- Invariance, Equivariance:
 - G-invariant: f(g(x)) = f(x)
 - G-equivariant: f(gx) = gf(x)

Symmetry in Dynamical Systems

- A system of differential operators $D = \{P_1, \dots, P_r\}$
- if ϕ is a solution of D, then for all $g \in G$, $g(\phi)$ is also a solution
- 2D Navier-Stokes Equations

$$\frac{\partial \mathbf{w}}{\partial t} + (\mathbf{w} \cdot \nabla) \mathbf{w} = -\frac{1}{\rho_0} \nabla p + \nu \nabla^2 \mathbf{w} + f$$

 $\nabla \cdot \mathbf{W} = 0$

$$\frac{\partial T}{\partial t} + (\mathbf{W} \cdot \nabla)T = \kappa \nabla^2 T$$

Weight Symmetry

Theorem (Weiler & Cesa 2019): a convolutional layer is G-equivariant if and only if the kernel satisfies $K(gv) = \rho_{out}^{-1}(g)K(v)\rho_{in}(g)$ for all $g \in G$, with action maps ρ_{in} and ρ_{out} .

Symmetry: Scaling

- Standard convolution shares weights across the input by translating a kernel across the input.
- For scale-equivariant convolution, we must translate and scale a kernel across the input.

Symmetry: Scaling

• Scale equivariant

$$oldsymbol{v}(p) = \sum_{\lambda \in \mathbb{Z}_{>0}, q \in \mathbb{Z}^2} (T_{\lambda} oldsymbol{w})(p+q)(T_{\lambda} K)(q),$$
 $T_{\lambda} w(x,t) = \lambda w(\lambda x, \lambda^2 t)$

Ocean Currents Forecast

Physically Consistent Predictions!

Approximately Equivariant Networks

Rui Wang

Robin Walters

Approximately Equivariant Networks for Imperfectly Symmetric Dynamics

Rui Wang, Robin Walters, and <u>Rose Yu</u>. International Conference on Machine Learning (ICML) 2022.

Symmetry as Inductive Bias

Approximate Symmetry

Definition: Let $f: X \to Y$ be a function and G be a group. Assume that G acts on X and Y via representations ρ_X and ρ_Y . We say f is ϵ -approximately G-equivariant if for any $g \in G$,

$$\|f(\rho_X(g)(x)) - \rho_Y(g)f(x)\| \le \epsilon.$$

Equivariant Convolution

• Group Convolution (G-conv)

$$f *_G K(g) = \sum_{h \in G} f(h) K(g^{-1}h)$$

- G-conv does not need to precompute an equivariant kernel basis
- But limited to discrete (compact) group, not efficient when the group order is large
- G-Steerable Convolution (Steer)

$$K(hx) = \rho_{out}(h)K(x)\rho_{in}(h^{-1})$$

Relaxed Equivariance

• Relaxed G-conv (**RGroup**):

$$\tilde{f*}_{G}K(g) = \sum_{h \in G} f(h) \sum_{l=1}^{L} w_{l}(h)K_{l}(g^{-1}h)$$

• Relaxed Steerable (**RSteer**): $\tilde{K}(hx) = \rho_{out}(h) \sum_{l=1}^{L} w_l(h) K_l(x) \rho_{in}(h^{-1})$

Smoke Plume

Smoke Plume Results

Supersonic Jet Flow

- Real experimental data of 2D turbulent velocity in multistream jets from NASA
- Measured using time-solved partial image velocimetry

Prediction Performance

Model	Co	nv	Lif	t	RGroup	
		Translation				
Future Domai		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	E20	CNN	Lift	-	RSteer	
	Rotation					
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
	SE	SN	Rpp		RSteer	
20% better		Scaling				
	$\begin{array}{c} 0.15{\scriptstyle\pm0.00} \ 0.16{\scriptstyle\pm0.06} \ 0.14{\scriptstyle\pm} \\ 0.16{\scriptstyle\pm0.01} \ 0.16{\scriptstyle\pm0.07} \ 0.15{\scriptstyle\pm} \end{array}$					
	F	Stee	erTR	RSt	cerTS	
	_	Combination				
).14±0).15±0			4 ± 0.02 5 ± 0.00	
).13±0	.01	0.1.	5±0.00	

Symmetry Teleportation for Accelerated Optimization

Symmetry Teleportation for Accelerated Optimization

Bo Zhao, Nima Dehmamy, Robin Walters, and <u>Rose Yu</u>. Advances in Neural Information Processing Systems (NeurIPS), 2022.

Optimization in DL is Hard!

Li, Hao, et al. "Visualizing the loss landscape of neural nets." *Advances in neural information processing systems* 31 (2018).

Symmetry Can Help

Gradient Descent

Second-order

GD + Teleportation

Symmetry Teleportation

Algorithm 1: Symmetry Teleportation

Input: Loss function $\mathcal{L}(w)$, learning rate η , number of epochs t_{max} , initialized parameters w_0 , symmetry group G, teleportation schedule K. Output: $w_{t_{max}}$.

Finding teleportation destination

$$g \leftarrow \operatorname{argmax}_{g \in G} \| (\nabla \mathcal{L}) |_{g \cdot \boldsymbol{w}_t} \|^2$$

Parametrize and gradient ascent on g.

- Example 1: SO(2), gradient ascent on rotation angle θ
- Example 2: $GL_d(\mathbb{R})$, $g \approx I + \varepsilon T$ where $\varepsilon << 1$ and $T \in \mathbb{R}^{d\times d}$, gradient ascent on T

Test function: Booth

 $\mathcal{L}_b(x_1, x_2) = (x_1 + 2x_2 - 7)^2 + (2x_1 + x_2 - 5)^2$ Symmetry group: SO(2)

Test function: Rosenbrock

 $\mathcal{L}_r(x_1, x_2) = 100(x_1^2 - x_2)^2 + (x_1 - 1)^2$

Multi-layer neural network regression

 $\mathcal{L}(W_1, W_2, W_3) = \|Y - W_3 \sigma(W_2 \sigma(W_1 X))\|_2$

Conclusion

- Incorporating symmetry in deep learning for learning spatiotemporal dynamics
 - EquNet: symmetry in differential equations
 - **Relaxed-EquNet**: approximate symmetry
 - **Teleportation**: symmetry in learning dynamics
- Probabilistic modeling, symmetry discovery, etc...

On Molecules...

Acknowledgment

Open Source Code and Data: roseyu.com

