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Deep Learning e
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@ The DL revolution — 2012 ImageNet

\l’ Deep learning

@ First breakthrough in computer vision (CV)
@ Then speech (SR) and language processing (NLP)
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@ DL works very well.. in practice but why?

e High-dimensional data/curse of dimensionality

@ Characterization of energy landscapes/solutions O S B Moo
@ Generalization (feature learning, inductive bias, expressivity)
‘;g%cnavmddeda.,ho.oywmigm v ﬁ% = ﬁ%%";:f-& -
RS
@ DL products O - g

@ Computer Vision : Face recognition, video surveillance, autonomous driving
@ Natural Language Processing : Machine translation, chatbot (ChatGPT)
@ Speech Recognition : Virtual assistants (Alexa/Siri/Google/Cortana)

MICROSOFT'S CORTANA

@ DL beyond CV/NLP/SR for scientific discovery. l -

AMAZON'SALEXA  GOOGLE'S ASSISTANT APPLE'S SIRI
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DL for science

@ DL has been applied to biology, physics, chemistry, material, medicine, engineering, etc

@ Scientific tools s.a. telescope/microscope have served physics (Galileo’s proof that earth is round and
revolves around the sun, study of universe) and biology (Pasteur’s discovery of microbes, study of

cells, molecules).

James Webb Space

@ Can DL be the new telescope/microscope for scientific discovery?

Telescope/ o -
Tradltlf)nal Data : Microscope ; Scientific discovery
paradigm (human-tuned Nobel Prize
hardware) T —
) D) Fovt
Human expertise & hypothesis &ﬂ; R\
‘U/ Nobel Prize 2022 Winners
GPU & NNetwork
. . L : o
DL. (Digital) (software with : Scientific dlsf:ov;ery.
paradigm parameters to Nobel Prize!
control hardware)
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DL for molecular science

@ A promising application of DL and potentially breakthrough is in molecular science.

@ Case studies

Drug discovery (halicin antibiotic)

De novo drug design (new molecules w/ optimized chemical property)
Protein Folding (3D structure)

Protein-Drug interaction (drugs with strong binding)

Generate protein with text prompt (ChatGPT for biology)

Xavier Bresson
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Graph DL for drug discovery

Chemical space

Directed message Antibiotic predictions
passing neural network (upper limit 10° +)
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Graph DL for de novo drug design
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ABSTRACT: We report a method to convert dlscrete o Continuous variable
representations of molecules to and from a multidi o representation for:
continuous representation. This model allows us to generate new Autoencoder « Interpolation
molecules for efficient exploration and optimization through |0|ntly-tva||;ed « Optimization
open-ended spaces of chemical compounds. A deep neural On properties « Exploration

network was trained on hundreds of thousands of existing

chemical structures to construct three coupled functions: an

encoder, a decoder, and a predictor. The encoder converts the # ﬁ
discrete representation of a molecule into a real-valued ) &

continuous vector, and the decoder converts these continuous

vectors back to discrete molecular representations. The predictor  SMILES |Encoder: Latent Space [Decoder|  SMILES

estimates chemical properties from the latent continuous vector

representation of the molecule. Continuous representations of molecules allow us to automatically generate novel chemical
structures by performmg simple operations in the latent space, such as decoding random vectors, perturbing known chemical
structures, or interpolating between molecul ions also allow the use of powerful gradient-based
optimization to efficiently gu.lde the search for optu'mzed functional compounds. We demonstrate our method in the domain of
drug-like molecules and also in a set of molecules with fewer that nine heavy atoms.
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Optimization of Molecules via Deep Reinforcement
Learning

Zhenpeng Zhou, Steven Kearnes, Li Li, Richard N. Zare & Patrick Riley &
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(a) Optimization of penalized logP

Figure 2. Sample molecules in the property optimization task. (a) Optimization of penalized logP from

MolDQN-bootstrap; note that the generated molecules are obviously not drug-like due to the use of a single-

objective reward. (b) Optimization of QED from MolDQN-twosteps.

logP: molecular solubility

QED: Quantitative Estimate of Druglikeness

Sundin et al. Journal of Cheminformatics (2022) 14:86
https://doi.org/10.1186/513321-022-00667-8
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Teaser This paper highlights the progress and challenges in de novo drug design using graph
neural network technology.
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Drug Discovery Today

‘The applications of graph neural networks (GNN) in all stages of automated de novo drug design.
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Graph DL for protein folding/structure

MSA embedding Sequence-residue edges

Residues —
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AlphaFold: a solution to == e — contience
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a 50-year-old grand Fm Bl Salit l:_,|: = ==
l e 14 1
Il L
. o
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Residue-residue edges 3D structure
Proteins are essential to life, supporting practically all its functions. They are large complex
S molecules, made up of chains of amino acids, and what a protein does largely depends on its Graph Transformer
unique 3D structure. Figuring out what shapes proteins fold into is known as the “protein folding
@ ThelAlohaFoldlteam problem”, and has stood as a grand challenge in biology for the past 50 years. In a major .
scientific advance, the latest version of our Al system AlphaFold has been recognised as a Science RESEARCH ARTICLES
solution to this grand challenge by the organisers of the biennial Critical Assessment of protein
Cite as: M. Back et al., Science
Structure Prediction (CASP). This breakthrough demonstrates the impact Al can have on 10.1126/science.abj8754 (2021).
scientific discovery and its potential to dramatically accelerate progress in some of the most o 40 0 . .
overy pe Y prog Accurate prediction of protein structures and interactions
fundamental fields that explain and shape our world. o
using a three-track neural network
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Graph DL for protein-drug discovery & design

Structure-based drug discovery with deep learning
Riza Ozgelik!2*, Derek van Tilborg!*, José Jiménez-Luna3, and Francesca Grisoni!*

!Eindhoven University of Technology, Institute for Complex Molecular Systems and Dept. Biomedical Engineering,
Eindhoven, Netherlands.

2Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Netherlands.

3Microsoft Research Cambridge, Cambridge, United Kingdom.

De novo design

Binding site detection

Figure 1. Structure-based drug discovery tasks discussed in this review: (a) drug-target interaction prediction, which
aims to predict the affinity between a protein and a ligand, using the structural information of both molecular entities; (b)
binding site detection, which aims to identify ‘druggable’ cavities in the protein structure, (c) de novo design, aiming to design
bioactive molecules from scratch using the information of a protein target.

Xavier Bresson
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EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction
Hannes Stérk, Octavian-Eugen Ganea, Lagnajit Pattanaik, Regina Barzilay, Tommi Jaakkola

Predicting how a drug-like molecule binds to a specific protein target is a core problem in drug discovery. An extremely fast computational binding method would enable key applications such as
fast virtual screening or drug engineering. Existing methods are computationally expensive s they rely on heavy candidate sampling coupled with scoring, ranking, and fine-tuning steps. We
challenge this paradigm with EquiBind, an SE(3)-equivariant geometric deep learning model performing direct-shot prediction of both i) the receptor binding location (blind docking) and i) the
ligand's bound pose and orientation. EquiBind achieves significant speed-ups and better quality compared to traditional and recent baselines. Further, we show extra improvements when coupling
it with existing fine-tuning techniques at the cost of increased running time. Finally, we propose a novel and fast fine-tuning model that adjusts torsion angles of a ligand's rotatable bonds based

on closed-form global minima of the von Mises angular distance to a given input atomic point cloud, avoiding previous expensive differential evolution strategies for energy minimization.

Random RDKit
conformer
Yy

YA
/

& { lad
Y N o
) oyw‘f
EquiBind
Ligand graph ~y

Receptor
structure &(

DIFFDOCK: DIFFUSION STEPS, TWISTS,
AND TURNS FOR MOLECULAR DOCKING

Gabriele Corso*, Hannes Stirk*, Bowen Jing*, Regina Barzilay & Tommi Jaakkola
CSAIL, Massachusetts Institute of Technology

i ranked poses &
ligand & ———  DIFFDock _— xecp
protein confidence score
reverse diffusion over _
™ ;\N t=T translations, rotations and torsions t=0 @
) A G A >
v o
o~ (0

Prediction of 3D binding interaction without active site
knowledge (blind docking) and ligand bound conformation.

STRUCTURE-BASED DRUG DESIGN WITH
EQUIVARIANT DIFFUSION MODELS

Arne Schneuing'*, Yuanqi Du?*, Charles Harris®, Arian Jamasb®, Ilia Igashov',
Weitao Du’, Tom Blundell®, Pietro Li6*, Carla Gomes?, Max Welling®,

Michael Bronstein® & Bruno Correia'

1Ecole Polytechnique Fédérale de Lausanne, 2Cornell University, *University of Cambridge,
4USTC, ®Microsoft Research Al4Science, SUniversity of Oxford
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(Generate protein with text prompt

Inspired by multi-modal image-language models s.a. OpenAl's DALL-E, Google Brain's Imagen and

Stability Al's Stable Diffusion :

. . . - - ’““"‘”“”"* i :‘ “:i ‘ »,'_Q ’Q{ﬁ Beta Barrel “Protein wit.h ) “Cry_stal Structure
Hllll‘nlnatlng pI‘Oteln Space ﬁ ‘g& % @5 é‘% i:%, 5{% g-% ?:n:v (2.40.155) CHAD domain of Aminotransferase”

with a programmable generative model S —— e
John Ingraham, Max Baranov, Zak Costello, Vincent Frappier, g B T2 e s a ‘
Ahmed Ismail, Shan Tie, Wujie Wang, Vincent Xue, Fritz Obermeyer, mj B E e

Andrew Beam, Gevorg Grigoryan i ) ) ) )

Figure 1: Chroma is a generative model for proteins and protein complexes th: mbines a

structured diffusion model for protein with scalable neural networks

for backbone synthesis and all-atom dcsigm a, A correlated diffusion process with chain and ra-

https://www.generatebiomedicines.com /chroma Chroma: “Generate a protein with CHAD domain”

_ _ . (with small GPT trained on protein captioning)
Programming proteins with Chroma

Making giants : ‘
Symmetry groups

Protein infilling


https://www.generatebiomedicines.com/chroma
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Neural network architectures

ooooo

@ To enable DL+X, we need three key ingredients : - 1 | /

@ Data, GPU and neural network

ooooo

. . grid
@ There are four classes of networks Computer Vision (CV)

@ CNNs/RNNs/Transformers are designed for grids,
sequences and sets.

® GPUs/DL libraries PyTorchll, TensorFlow!? are
optimized for these architectures.

sequence

@ Graph Neural Networks (GNNs) are more universal
and broadly applicable architectures. Natural Language Processing (NLP)

@ GPUs are not optimized for sparse linear algebra.

| [p]er
) @ ® 2 ® (§ [ ._._‘./ .|
@ -® <8 O e ‘ sequence
» o @ Speech Recognition (SR)
o @ °
[1] Paszke et-al, Automatic differentiation in pytorch, 2017 . . @

[2] Abadi et-al, TensorFlow: a system for Large-Scale machine learning, 2016

Graph Analysis

Xavier Bresson
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GNN architectures

E—{—l
Zj? 1,]

@ What is a graph network?
@ Compositional parametric equivariant function that maps an input

pair (graph, feature) to continuous vectorial representation for
node/edge/graph which can be used for downstream graph tasks.

@ Often defined as a message-passing processli :
hf—i_l — fnode( {h ] E N}) E Rd

Edge-update : efj_-i_l = fedge( € hé hé) < Rd

layer ¢ + 1

Node-update :
layer ¢

GCLR®2021 Submission Top 50 Keywords

deep learning
reinforcement Iearn n

rep
arap h neural neiwor

robustnesg —_—
ral network

self superwsed learnin
eneralizatiol
unsupervised learning  se———

@ Brief history of graph networks (personal view) : Powerful GNN

ower S eclenny ——
Expressivity, generalization, qenerat eadf?:tf: ISEJVEEEE
natural language processlgg

deep reinforcement learni

Standard

Linear complexit rgemeny — !
Y neuégr::égvs'ﬁ{%zgggaﬁgn — toolkit for
| ] > ontinua Ieargn —_— 3
7 comguégr%/ggn — anaIYZIHg/
learning data

reg%\anzat O e—
on graphs

l | |
I T T T
2009 2014‘17 2017‘ 2019— 2021— machine Ieamggg

Vanj.]la. GNNS Spectral GNNS WL'GNNS Graph semaseté%er%itreg[ Irelaeatrwnorg ——

dise; ta glem
adversarial examples — —

Anisotropic
GNNs Transformers
multi task learning
classification
knowledge distillation s
transformer s
convolutlonal neura\ network s

age classification s
ttention s

GO gle "graph neural networks" ;
in ON  —
vanatlona\ agtoencoders —

generative model —

S

deep learnin theo —
= News recurrent neural%etwor —
pruning s

Q All &) Images [ Videos
50 100 150 200 250

[1] Gilmer, Schoenholz, Riley, Vinyals, Dahl, Neural message passing for quantum chemistry, 2017
14

Ab&it 1,260,000 result®(0.61 seconds)

o

Xavier Bresson



Vanilla GNNsl!|

. . . . . . . The Graph Neural Network Model
o Flrst NN W].th lalyers equlvarlant / ].nva'r ].alnt Wo rot . lndeX Franco Scarselli, Marco Gori, Felllu?w, IEEE, Ah Chung Tsoi, Markus Hagenbuchner, Member, IEEE, and

Gabriele Monfardini

permutation, independent to neighborhood and graph size, local
reception field, weight sharing.

@ Linear complexity O(N+E)

@ Limitations

@ Simple model (vanilla RNN w/ aggregation of neighbors) |

@ Vanishing gradient problem
hf—i_l = fvenn (hf, {hﬁ 1] € M})
=Y o(Ux; + Vhi) e R

J—1

[1] Scarselli, Gori, Tsoi, Hagenbuchner, Monfardini, The Graph Neural Network Model, 2009

Xavier Bresson



Spectral GNNsl!:2:3]

ATt =o( s' xg B ) e RV
= o( Us*(AUTR")
= o §E(A)h‘ ), A =UAU"

@ Contributions

@ Leverage graph spectral theory to define convolution on graphs

@ Stable, robust to perturbation, exact k-hop kernel support
@ Linear complexity O(N+E) _ Z T (A RWE)
@ GOCNBI is the most popular GNN technique Cflﬁifif:

— O_( D_l/QAD_1/2h£W£ )

15t order approx

hitt = Z AWWW ) € R

@ Limitation

@ Isotropic kernels

33 " A
X N\ %,

Most data is anisotropic

[1] Bruna, Zaremba, Szlam, LeCun, Spectral networks and locally connected networks on graphs, 2013
[2] Defferrard, Bresson, Vandergheynst, Convolutional neural networks on graphs with fast localized spectral filtering, 2016
[3] Kipf, Welling, Semi-supervised classification with graph convolutional networks, 2017
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Anisotropic GNNs

@ Contributions

@ Design anisotropic equivariant mechanisms that treat neighbors differently.

@ GatedGCNslll with anisotropic diffusionl?l, GATBI with softmax attentionl4,
Mesh CNNsl®l with anisotropic gauge equivariant kernels

@ Stable, robust, interpretable, linear complexity O(N+E)

k0 cirk,t
AL = hf + ReLU(BN(W{R! + 3 ef, @ Wing) ) h = Concatf, (ELU( Y- el Wi nt))
JEN; JEN;
o (& oot sk, 0 exp(é H)
6 _ ij = Softmaxy; (é;; ) =
Z ” S yen exp(el)
ZjIENi 0-(€ij/) + e J'EN; p{e 19’
& = &1 + ReLU (BN(V1 I e N 1)) é8¢ — LeakyReLU (WQ"%@ Concat (Wht, Wnt) )
Gated GCNsll GATE =
(based on Perona—Mahk’s anisotropic PDEP generalized on graphs) (based on Transformers!*)

@ Limitations

yyyyyy

@ Low expressivity, over-squashing issue

[1] Bresson, Laurent, Residual gated graph convnets, 2017
[2] Perona, Malik, Scale-space and edge detection using anisotropic diffusion, 1987
[3] Velickovie, Cucurull, Casanova, Romero, Lio, Bengio, Graph Attention Networks, 2017
[4] Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin, Attention is all you need, 2017
[5] De Haan, Weiler, Cohen, Welling, Gauge equivariant mesh CNNs: Anisotropic convolutions on geometric graphs, 2020
Xavier Bresson 1
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Low expressivity

@ Most GNNs s.a. GCNII GATI, GatedGCNsBl have theoretically low expressivity/

representation power to

@ Distinguish (simple) non-isomorphic graphsl45l.

@ Identify/count elementary sub-structures like cycles and cliqueslél.

— o - o
—
—
-

—-—
— e

Fig 2. Graph with cycles (rings)

v

Fig 1. Vectorial graph representation

[1] Kipf, Welling, Semi-supervised classification with graph convolutional networks, 2017
[2] Velickovic, Cucurull, Casanova, Romero, Lio, Bengio, Graph Attention Networks, 2018

[3] Bresson, Laurent, Residual gated graph convnets, 2017

Fig 3. Graph with
19 x 3-vertex cliques (light and dark blue triangles)
and 2 x 4-vertex cliques (dark blue areas)

[4] Xu, Hu, Leskovec, Jegelka, How powerful are graph neural networks? 2019
[6] Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe, Weisfeiler and leman go neural: Higher-order graph networks, 2019
[6] Chen, Chen, Villar, Bruna, Can graph neural networks count substructures? 2020
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Graph isomorphism

@ Graph isomorphism : Two graphs are isomorphic if there exists an
index permutation between the nodes that preserves node neighboors.

is not known if a polynomial time algorithm exists, or the problem is

NP-hard. ° @

o Weisfeiler-Lehman testlll provides a necessary (but not sufficient) Graph 1
condition to guarantee that two graphs are isomorphic.

@ Determining whether two graphs are isomorphic is NP-intermediate. It 1 \QZX

@ Design an injective coloring function fwr, that takes a pair (node, graphs
its neighborhood) as input, and outputs a new node color :

J/ iteration

14 L _ 41
fWL (Ci ) {Cj }jENi) =G
Multiset (set of unordered
and repetitive elements)

[1] Weisfeiler, Lehman, A reduction of a graph to a canonical form and an algebra arising during this reduction, 1968

Xavier Bresson 19



Weisfeiler-Lehman test!!!

@ WL algorithm iteratively applies the coloring function fw1, until no new colors are created :

(@) I
6 B-O No new colors created,
O, algorithm stops.
H) Histogram of

colors
Graph 1 Stepl = Step2 = Step3 = Step4 .
1} Isomorphic graphs

w.r.t. WL test
g’g g ‘2::' '22:' ‘::% No new colors created, l
G B algorithm stops.

Histogram of
Graph 2 Stepl = Step2 = Step3 = Step4 colors

@ However the 1-WL test can fail to distinguish (simple) non-isomorphic graphs :

© CI © l I I Isomorphic graphs C—C
© © w.r.t. WL test O~ o © ’ I I :
Graph 1 Histogram of ~ Graph 2 Histogram of

(Decalin) colors (Bicyclopentyl) colors

[1] Weisfeiler, Lehman, A reduction of a graph to a canonical form and an algebra arising during this reduction, 1968

Xavier Bresson
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WL-GNNs

@ GINI designed to be as maximally expressive as the original 1-WL testl2l.
@ k-WL tests : Original test uses 2-tuple of nodes. To improve expressivity power of WL test,
higher-order interactions between nodes with k-tuple of nodes with k = 3 can be used.
@ k-order equivariant GNNsl®l are theoretically more expressive but

@ These networks require O(N¥) memory/speed complexities, with at least k=3 to be
more powerful than GIN, which means O(N3) and thus not practical.

e 3-WL/Ring/2-FGNN GNNsl456] have O(N?)-memory but O(N3)-speed complexities.

@ Expressivity does not necessarily imply generalization!7.

r ) r i r
J J J
i i i
k k k
G=(V,E) Edges = {i,j}, {é,r}, {i, k} Hyper-edges ={i, j, 7},
2-tuple of nodes {isk,r}, {i, 7, k}

[1] Xu, Hu, Leskovec, Jegelka, How powerful are graph neural networks?, 2019

[2] Weisfeiler, Lehman, A reduction of a graph to a canonical form and an algebra arising during this reduction, 1968

[3] Maron, Ben-Hamu, Shamir, Lipman, Invariant and equivariant graph networks, 2019

[4] Maron, Ben-Hamu, Serviansky, Lipman, Provably powerful graph networks, 2019

[6] Chen, Villar, Chen, Bruna, On the equivalence between graph isomorphism testing and function approximation with gnns, 2019
[6] Azizian, Lelarge, Expressive power of invariant and equivariant graph neural networks, 2020

[7] Dwivedi, Joshi, Laurent, Bengio, Bresson, Benchmarking graph neural networks, 2020

Xavier Bresson 21
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@ How to improve the limited expressivity of MP-GNNs ?

Xavier Bresson

Higher expressivity power

@ Consider higher-order node interactions (k-tuples with k>2) with WL-GNNil1:2:34], k
Hyper-edges ={4, j, r},

@ Theoreml (universal approximator) : Any continuous function invariant by G hor} (6.4, }

permutation can be arbitrarily approximated by WL-GNNs, with the necessary
condition the network has higher-order tensor of order k=poly(N)= N(N-1)/2.

@ These networks are computationally expensive, at least O(N3) for 3-WL expressivity.

@ Provide a unique ID for each node, i.e. positional encoding (PE).

@ Theoreml®l : MP-GNNs are provable more expressive than the 1-WL test when
considering node positional encoding,.

@ Theoreml” : MP-GNNs are Turing-complete when depth d > 8¢ layers (graph
diameter), width is unbounded, and each node is uniquely identified.

RS

[1] Maron, Ben-Hamu, Shamir, Lipman, Invariant and equivariant graph networks, 2019

[2] Maron, Ben-Hamu, Serviansky, Lipman, Provably powerful graph networks, 2019

[3] Chen, Chen, Villar, Bruna, Can graph neural networks count substructures? 2020 &‘
[4] Azizian, Lelarge, Expressive power of invariant and equivariant graph neural networks, 2020

[6] Maron Fetaya, Segol, Lipman, On the universality of invariant networks, 2019

[6] Murphy, Srinivasan, Rao, Ribeiro, Relational pooling for graph representations, 2019 .
[7] Loukas, What graph neural networks cannot learn: depth vs width, 2019 Geometric PE Structural PE

(e.g. 3D coordinates) (V.E)

[\
[\



Which structural positional encoding?

@ Theory does not provide guidance on the choice of structural PE for the class of graphs and task.

@ The simplest PE is an (arbitrary) indexing of the nodes!!l, among N! possible indexings.

@ During training, indexing are uniformly sampled from the N! possible choices in order for the
network to learn to be independent to these arbitrary choices.

@ Laplacian eigenvectors/23!

@ Spectral techniques that embed graphs into an Euclidean space,

while preserving the global graph structure.
@ Define via factorization (EVD) of the graph Laplacian matrix. fodext Tndexcd
e Computational complexity is O(E?/2) and O(N) with approximate Nystrom method!.

@ LapPE have arbitrary sign. During training, sign of eigenvectors must be uniformly sampled
at random between the 2k possibilitiesl! for the network to learn this invariance.

A=1—D12AD 12 — yTAU

7 7 +ox

Graph Degree  Adjacency Eigenvalue (Laplacian)
[1] Murphy, Srinivasan, Rao, Ribeiro, Relational pooling for graph representations, 2019 Laplacian matrix matrix matrix Eigenvector
[2] Belkin, Niyogi, Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering, 2001 matrix

[3] Dwivedi, Joshi, Laurent, Bengio, Bresson, Benchmarking graph neural networks, 2020
[4] Fowlkes, Belongie, Chung, Malik, Spectral grouping using the nystrom method, 2004

Xavier Bresson
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Synthetic datasets for expressivity

@ Circular Skip Link (CSL) dataset!!]
@ Classify isomorphic graphs that differ by the skip link value.

@ CSL contains 150 4-regular graphs (1-WL failed) divided
into 10 isomorphism classes.

Example of non-isomorphic graphs where
o EXP dataset!? 1-WL test failed to distinguish

(w/ skip-link 2 and 3).
@ EXP contains 1200 1&2-WL failed graphs that are split into
two classes.

SR25 dataset/s!

@ SR25 has 15 strongly regular 3-WL failed graphs with 25
nodes each with the goal of classifying them.

Example of non-isomorphic graphs where
3-WL test failed to distinguish

(strongly regular graphs known as 4x4-

[1] Murphy, Srinivasan, Rao, Ribeiro, Relational pooling for graph representations, 2019 .
[2] Abboud, Ceylan, Grohe, Lukasiewicz, The surprising power of graph neural networks with random node initialization, 2020 Rook and Shrikhande graphs)

[3] Balcilar, Heroux, Gauzere, Vasseur, Adam, Honeine, Breaking the limits of message passing graph neural networks, 2021
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Message-passing mechanism

@ Most neural networks are message-passing techniques s.a. CNNs, RNNs, Transformers, GNNs.

@ New representation is computed by aggregating (with fyy) the neighborhood information j > i :

layer

A
+1 12 14 d
hi+ = fan (h@a {hj}je./\fi or j—m’) €R
/ /
Learnable parametric Domain structure

function w/ inductive bias

Q @ D
J—t DD O—0—® O—0—D
D O @

CNN RNN Transformer

@ As the MP mechanism is local for CNNs/RNNs/GNNs, they require to stack multiple layers to
propagate information over long-range distances (ideally over the whole domain).

Xavier Bresson



Over-squashing

@ Stacking layers to propagate information though the domain can be a major issue.
@ The reception field grows as O(L2) for CNNs, O(L) for RNNs and O(2L+1) for GNNs (for tree
graphs), L being the number of layers.

@ The reception field size gives the number of neighbors used to update the representation.

@ For RNNs, this requires aggregating O(L) number of vectors and O(2V+!) for GNNs.
Bt = Fan (R, RY_1, Y o,y BY_ 1) € RY

_ 0 1,0 0 0 d Enhanced RNNs
— © GNN (hl ) hi—l’ hi—27 e hi—2L+1) €eR (w/ attention)
pd

@ This issue is known as over-squashing. PR
. o 90| o T TN .\...‘.‘.':-..._:......S;tandar.d.g.RN.Ns.._

@ NNs w/ local reception field cannot learn long-range dependency. § |/~ RNty
o 15[ S Vg TN A
° RNNS CannOt process Sequences more than 30 WordS[]-]. E 100H — RNNsearch—50 ................ ..... s ....... \\\\ ____________
""" RNNsearch-30 | : R ~ 'E\ < e
® MP-GNNs cannot stack many layers. sl - RNNewe50 oo T S e

- RNNenc-30 :

00 1I0 2I0 36 4I0 5IO 60

Sentence length

Figurelll. Accuracy of translated
[1] Bahdanau, Cho, Bengio, Neural machine translation by jointly learning to align and translate, 2014 sequences (hlgher 18 better) :

Xavier Bresson



[1] A

Xavier Bresson

Synthetic graph for over-squashing

TreeNeighboursMatchl!l is a synthetic dataset to
simulate the exponentially-growing receptive field in
GNNs and controls the intensity of over-squashing
with the tree depth.

The experiment consists in classifying the root node
with the letter of the green labeled node with the
same number of blue neighbors than the root node.

To succeed, the network must be able to
communicate across long distance (from the root to
the leaf) and extract the information from O(2L+1)
aggregated nodes.

Standard MP-GNNs s.a. GCN, GAT and GIN fail to
generalize for a depth >4 because of over-squashing.

lon, Yahav, On the bottleneck of graph neural networks and its practical implications, 2020

depth

A B C D E E G H
/f;,;\ toIN A PR f A 1} modes

\

Random assignment of {1,2,...,29} blue
neighbors to the root node. The goal is
to predict the class of the root node.

Root

node
N\
O—2—0)
N \_/

N
)

J

J

v
Random assignment of {1,2,...,24} blue neighbors
to the green nodes with alphabetical labels.

Leaf

3



Graph Transformers!!

=
@ Contributions e
@ Generalize Transformer to graphs to overcome over-squashing and poor
long-range dependency (same idea from NLP[23]).
@ Leverage graph as topological inductive bias. Generalize cos/sin positional =
encoding to graphs (node ordering) with Laplacian eigenvectors. Introduce —

edge features through bi-linear product (for molecular bounds).
@ Several improvements : SAN4, GraphiTlP®l, Graphormerl6!

@ Popular class of architectures in biology (top 1&2 winners at NeurIPS’22 OGB-LS€ @ Neurlps 2022
OGB Large-Scale Challenge competition)!”!

-10:50PM-11:40PM, UTC: Graph-Level Track (PCQM4Mv2)

 Intro to the task (5min) [Video]

« Live presentation by 1st place winner: WeLoveGraphs (10min) [Video]

° Limitations i v
. . ° ° + Live Q&A and dis€ussion (15min) [Video]
@ Quadratic complexity O(N2+E), limited to small molecular graphs. /

[1] Dwivedi, Bresson, A generalization of transformer networks to graphs, AAAT 2021

[2] Bahdanau, Cho, Bengio, Neural machine translation by jointly learning to align and translate, 2014

[3] Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin, Attention is all you need, 2017

[4] Kreuzer, Beaini, Hamilton, Letourneau, Tossou, Rethinking Graph Transformers with Spectral Attention, 2021
[5] Mialon, Chen, Selosse, Mairal, GraphiT: Encoding Graph Structure in Transformers, 2021

[6] Ying, Cai, Luo, Zheng, Ke, He, Shen, Liu, Do Transformers Really Perform Bad for Graph Representation? 2021
[7] https://ogb.stanford.edu/neurips2022 /workshop
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e ViT/MLP-Mixer for images
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Transformer for long sequences

]
e Key ingredients of original Transformerl! : h € RV*d C]) O O
@ Attention mechanism (self/cross attention) ‘ >
@ Layer normalization + residual connection + MLP
@ Cos/sin functions as node positional encoding
@ But attention mechanism is costly :
@ The reception field is the size of the domain O(N).
@ Memory/speed complexity is O(N2d) . Hr)
@ This limits Transformer on GPUs to short sequences, — ‘;
N < 1,000 for d=512. |t| |Egbu;Tg;;ng|
@ How to scale-up to long sequences? T
@ Linear approximations of the attention function/23] R = Softmax( \/ET )V e RV*d
Q = h'W§ € RV*
[1] Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin, Attention is all you need, 2017 K =h' Wll; e RV*¢
[2] Choromanski et-al, Rethinking attention with performers, 2020 Ovxrl Nxd
[3] Jaegle, Gimeno, Brock, Vinyals, Zisserman, Carreira, Perceiver: General perception with iterative attention, 2021 V=nh Wy eR

Xavier Bresson
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ViT /MLP-Mixer for images

@ How to scale Transformer to image grids (CV)?
E.g. N=1,000 x 1,000 pixels = 1M pixels/nodes

@ ViT architecturelll :

@ Perform attention not on image pixels but on image patches:
O(N2d) \ O(P2d) w/ PN patches

PN patches

Transformer Encoder

@ Embed patches with MLP (or CNN with stride/kernel = patch size) NENo
Head .
@ Same layer normalization + residual connection + MLP ‘ R ’
@ Raster ordering of patches as node positional encoding " J @ﬁ @[5 @ﬁ | tEE
@ MLP-Mixer architecturel? : “lmmgﬁ&ﬂ
@ Replacing the costly attention function with simple MLPs reduces Vision Transformer (ViT)

complexity from O(P?d) “ O(Pd) with comparable performance. ...

@ Token embedding + token mixer layer is enough to capture long- =
range dependency in images. s B = 6=

QI

( )
fffffffff

MMMGOG

[1] Dosovitskiy et-al, An image is worth 16x16 words: Transformers for image recognition at scale, 2020
[2] Tolstikhin et-al, MLP-mixer: An all- MLP architecture for vision, 2021 1 T "J\ Z ik

Xavier Bresson MLP-Mixer
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Why MLP-Mixer for graphs?

Outline
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Why MLP-Mixer for graphs?

e Standard MLP-Mixerl?l captures long-range interaction in images with low complexity.

@ Our goal is to transfer these advantages to GNNs and design a new network that simultaneously

@ captures long-range dependency (mitigating the over-squashing issue),

@ keeps linear speed/memory complexity (similar to standard MP-GNNs),

@ achieves isomorphism expressivity (good representation power).

@ However, generalizing MLP-Mixer is challenging due to the variable nature of graphs.

Global Average Poolin;

[ . )
N L N

[ N x (Mixer Layer) ]
.. 000000000
;"‘j: 1 |A NEJ;C/*PI“; ] ]

h Fully-cos

MLP-Mixer for images(!!

MLP-Mixer for graphs

[1] Tolstikhin et-al, MLP-mixer: An all-MLP architecture for vision, 2021

Xavier Bresson
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Generalization challenges

We identify four key challenges to generalize MLP-Mixer from grids to graphs.

(1) How to define and quickly extract graph patches(/tokens)?

@ Images are supported by a regular lattice, easily split into same-size grid-like patches via fast pixel
reordering.

@ Graphs are irregular and cannot be divided into similar patches.

(2) How to encode graph patches into a vectorial representation?
@ Same-size patches can be encoded with MLP.
@ Graph patches have different topological structures (variable #nodes and #edges)

@ Embedding process must be invariant to index permutation.

Images Graphs

Lattice grid Graph

{
Image patches k] BN :}.\.’{. ’\o‘\?:' O/fo):% Graph patches

Xavier Bresson



Generalization challenges

(3) How to preserve node and patch positional information?

@ Image patches have implicit positions since images are always ordered the same way, but graphs
are naturally not-aligned and the set of graph patches are therefore unordered.

@ Pixels in each patch are ordered the same way, but nodes in graph tokens are generally unordered.

(4) How to reduce over-fitting for graphs?

@ MLP-Mixer architectures are strong over-fitters. Images have a rich set of data augmentation and
regularization techniques, e.g. cropping, flipping, RandAugment!!l, mixupl?.

@ Graph data augmentation methodsl3l are not yet as effective.

Graphs

Lattice grid Graph

1
Image patches i ] % @] :}-\.%{’ :k‘ o@ Graph patches + :\\::\0

Image patch Graph patch
[1] Cubuk, Zoph, Shlens, V Le, Randaugment: Practical automated data augmentation with a reduced search space, 2020 domain domain
[2] Zhang, Cisse, Dauphin, Lopez-Paz, mixup: Beyond empirical risk minimization, 2017
[3] Zhao, Liu, Neves, Woodford, Jiang, Shah, Data augmentation for graph neural networks, 2020

Xavier Bresson
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@ Proposed architecture
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Proposed architecturelll

@ Generic architecture of Graph MLP-Mixer is illustrated below.
@ Implementation of each building block is arbitrary.

@ Our choices lead to a simple framework that provides speed and accuracy.

. g LT . N0 ; d
Patch Extraction ., . Patch Embedding ° : Mixer Layers ' ' Graph ! Y e R™X
(Generate P new patches at each epoch) EElmbeddigg P I
R P " . [ ' ! ' Mixer Layer !
9) \ i ' /\ | ' ' Ly '
2 / \ i ) 1 ( : S '
\3 ' /\3\ ; L;’) = Gl—_:“—'ﬁ> ;.gn = ) % ' ! e i
~ N b P 3 ;
9‘8/ 4 8 L : ‘:] b | Channel Mixer
Np ST 3 8 B i g
6\10/11 9_8/ '§_ L 8 g e ﬁ_ LayerNorm
N = g = = » = == 5 = o
7 i [ [
METIS e . 8 D Q bl g o 2
Graph Partitioning v =3 : g - & => § = g <,
v @ i I o)
-~ 3 . i ol ! [ i
@ I-Hop | o S—12, = % Q - :E; O = = 2
3/ . Overlapping " 6\10 Ao = : g R g ( LayerNorm )
9‘8/ a4 " =) N E ' B [
N S8 P b g D
7"\6 ,’, \ 5\12 :3 ) 3 1 :
‘\“,,\'\10/11 6/ < :,'_Tl__> —> Z!_T__:> —> :;::?
T S ? o ]I o E—
Pxd P PxP
Node PE Patch PE XeR Ap R

Graph MLP-Mixer

[1] He, Hooi, Laurent, Perold, LeCun, Bresson, A Generalization of ViT /MLP-Mixer to Graphs, 2022
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Patch extraction

@ Graph patch extraction algorithm must satisfy the following conditions :

@ The clustering algorithm can be applied to any arbitrary graph.

@ The nodes in the patch must be more connected than for those outside the patch
(s.a. compound of atoms).

® The extraction must be fast, i.e. complexity at most linear w.r.t. the number of edges O(E).
@ Graph partitioning algorithms have a long and rich development!:2l.
@ They are NP-hard combinatorial problems and approximations are required.

@ We select Metisl3l that
@ Partitions a graph by maximizing the number of within-cluster links.

@ Presents one of the best trade-off accuracy and speed.

i Assoc(C,C) N Assoc(C*¢, C°)
& T Vol(C) Vol(Ce)

Assoc(C, C) Z A;; (Adj. matrix)
C O i€C,jEC

[1] Von Luxburg, A tutorial on spectral clustering, 2007 VOI E d degree
[2] Buluc, Meyerhenke, Safro, Sanders, Schulz, Recent advances in graph partitioning, 2016
[3] Karypis, Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, 1998

o o Normalized Association .
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Metis limitations

@ Two major limitations

(1) Metis produces non-overlapping patches and loses the cutting
edges. We expand the graph patches with a k-hop neighborhood.

(2) Metis is a deterministic process, it always generates the same
clusters which leads to over-fitting.

@ Data augmentation

@ At each epoch, Metis is applied on a perturbed graph (by randomly
dropping a small set of edges) to get slightly different partitions.

@ Then graph patches are extracted from the original graph (not the
perturbed one) to retain the original nodes and edges.

@ This new dropout technique produces distinct graph patches at
each epoch that significantly improves the results at a small
additional computational time.

Xavier Bresson

Patch Extraction
(Generate P new patches at each epoch)

A
1\ Q@

! 2
2 h
\3 | \3\
/ N \\‘ 8/ 4
4 .
9—8\ \5 DTS g
—12
7\6/ ; 3
~ . e
10 9‘8\
METIS <6
Graph Partitioning S
e T \ ‘ 3\4
J \2 : LH [ g ‘
| ) -Hop '\ = 22
R \3 /-~ Overlappin: ‘\7\6/\ !
S NG pPing .. "Two -
4 > .. __.-
9~ . Ny
} 27 =12
7 o - \
O i o2
ST 6 \
~
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Patch encoder

@ Image patch embedding is fast and well-defined with a simple MLP.

@ Graph patch embedding must handle heterogeneous structure, variable patch size, index
permutation invariance, weight sharing and capable of distinguishing isomorphic patches.

@ As a result, the graph patch encoder is a MP-GNN (e.g. GCNI GATR, GTBl) which can

map a graph token into a fixed-size representation into 3 steps :
(1) Raw node and edge embedding :
0_ 70, 0. 0 d 0 _ y/0pn 0 d
h; —I;p@JrU aziu eRY, e —V/BZ]+U e R

Positional encoding Raw node features Raw edge features

(2) Graph convolutional layers with MP-GNN :
h£+1 - fnode( i,p? {hj ps €ij, p|j S N( )}) + gpatch—n(hf;) < Rd
f;_;_fe ge( zp?hfp7 sz)+gpatche( E) eRd

(3) Pooling and readout : z¢, = MLP(h,) € R, Z hi=k e R
Patch embedding ZEV

@ Note that the MP-GNN is applied to small patch graphs, which are not affected
by poor long-range interaction and over-squashing.

[1] Kipf, Welling, Semi-supervised classification with graph convolutional networks, 2017
o [2] Velickovic, Cucurull, Casanova, Romero, Lio, Bengio, Graph Attention Networks, 2018
Xavier Bresson [3] Dwivedi, Bresson, A generalization of transformer networks to graphs, 2021

Patch Embeddmg
R\ . .
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Positional information

@ Regular grid offers an implicit arrangement for the sequence of image patches and for
the pixels inside the image patch.

@ General graphs do not have a canonical ordering of nodes and patches. This lack of
positional information reduces the expressivity of the network.

@ We use two explicit positional encoding (PE) :

@ Absolute node PE : We use random-walk structural encodingl!l for molecular
data and Laplacian eigenvectors?3l encodings for synthetic graph datasets.

@ Relative patch PE : We use a n-step random walk diffusion processl4 on the the
adjacency matrix of the patch graphs (computed from the original graph
adjacency matrix and the cluster extracted by Metis) :

AP _ (D—lAP)” c RPXP

P _ _ —
Az’j = |ViﬂVj| = Cut(Vi,Vj> = E g A
kev; lEVj
[1] Dwivedi, Luu, Laurent, Bengio, Bresson, Graph neural networks with learnable structural and positional representations, 2021
[2] Dwivedi, Joshi, Laurent, Bengio, Bresson, Benchmarking graph neural networks, 2020

[3] Dwivedi, Bresson, A generalization of transformer networks to graphs, 2021
[4] Kondor, Vert, Diffusion kernels, 2014
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Mixer layer and graph embedding

The original mixer layerl!l is a network that alternates channel and token mixing
steps with two MLPs. These interleaved steps fuse token and channel information.

@ The simplicity of the mixer layer was important to understand the attention
mechanism is not the only key component to get good performance.

@ This has led to a significant reduction in the computational cost, from O(P2d)
to O(Pd), with almost the same performance.

Let X € RP*d be the patch embedding matrix, then the graph mixer layer is

defined as Patch PE
U=X+ <W20‘(W1 LayerNorm(AgX))) € RPXd Token mixer

Y = U + (Wyo(WsLayerNorm(U)™))T € RF*4 Channel mixer

The final graph-level representation is given by mean pooling all the (non-empty)
patches and using a small MLP :

yo = MLP(hg) € R/R™, hg=» my-zg,/» m, €R
p p

olstikhin et-al, MLP-mixer: An all-MLP architecture for vision, 2021

Mixer Layer |
S ‘
s e :
Channel Mixer
LayerNorm
—

LayerNorm

=1

Xe RPrd AE e RPxP
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Numerical experiments
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Numerical experiments

@ We evaluate Graph MLP-Mixer on a range of benchmark graph datasets :
1) Simulated datasets : CSLIH, EXPI2l, SR25B] and TreeNeighbourMatchll datasets.

2) Small molecular datasets : ZINC from Benchmarking GNNsl! (for solubility) and MolTOX21
(for toxicity) and MolHIV from Open Graph Benchmark (OGB)lf! (for HIV inhibition).

3) Large molecular datasets : Peptides-func (for antibacterial, antiviral properties etc) and
Peptides-struct (for 3D properties) from Long Range Graph Benchmark (LRGB)!"!

[1] Murphy, Srinivasan, Rao, Ribeiro, Relational pooling for graph representations, 2019

[2] Abboud, Ceylan, Grohe, Lukasiewicz, The surprising power of graph neural networks with random node initialization, 2020
[3] Balcilar, Heroux, Gauzere, Vasseur, Adam, Honeine, Breaking the limits of message passing graph neural networks, 2021
[4] Alon, Yahav, On the bottleneck of graph neural networks and its practical implications, 2020

[5] Dwivedi, Joshi, Laurent, Bengio, Bresson, Benchmarking graph neural networks, 2020

[6] Hu et-al, Open graph benchmark: Datasets for machine learning on graphs, 2020

[7] Dwivedi, Rampavek, Galkin, Parviz, Wolf, Luu, Beaini, Long range graph benchmark, 2022
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@ Statistics of molecular and synthetic datasets :

Simulated
datasets

Small molecular
datasets

Large molecular
datasets

Xavier Bresson

Benchmark datasets

Dataset #Graphs #Nodes Avg. #Nodes Avg. #Edges Task Metric
CSL 150 41 41 164 10-class classif. Accuracy
EXP 1,200 32-64 44 .4 110.2 2-class classif. Accuracy
SR25 15 25 25 300 15-class classif. Accuracy
TreeNeighbourMatch (r=2) 96 7 7 6 4-class classif. Accuracy
TreeNeighbourMatch (r=3) 32,000 15 15 14 8-class classif. Accuracy
TreeNeighbourMatch (r=4) 64,000 31 31 30 16-class classif. Accuracy
TreeNeighbourMatch (r=5) 128,000 63 63 62 32-class classif. Accuracy
TreeNeighbourMatch (r=6) 256,000 127 127 126 64-class classif. Accuracy
TreeNeighbourMatch (r=7) 512,000 255 255 254 128-class classif. Accuracy
TreeNeighbourMatch (r=8) 640,000 511 511 510 256-class classif. Accuracy
ZINC 12,000 9-37 23.2 24.9 regression MAE
MolTOX21 7,831 1-132 18.57 38.6 12-task classif. ROCAUC
MolHIV 41,127 2-222 25.5 54.9 binary classif. ROCAUC
Peptides-func 15,535 8-444 150.9 307.3 10-class classif. ~ Avg. Precision
Peptides-struct 15,535 8-444 150.9 307.3 regression MAE
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Comparison with standard MP-GNNs

@ Graph MLP-Mixer lifts the performance of all base MP-GNNs across all datasets, which include
GCNIl, GatedGCNE, GINEB! and GraphTransformerl4.

@ We augmented all base models with the same PEs as Graph MLP-Mixer to ensure fair comparison.

@ These promising results demonstrate the generic nature of our architecture which can be applied to

any MP-GNN in practice.

Model ZINC MolTOX21 MolHIV Peptide-func Peptide-struct
MAE | ROCAUC t ROCAUC t Avg. Precision 1 MAE |

GCN 0.1952 £0.0057 0.7525 +0.0031  0.7813 + 0.0081 0.6328 £ 0.0086  0.2758 +£0.0012
GCN-MLP-Mixer 0.1323 £ 0.0026  0.7829 £ 0.0058  0.7912 £ 0.0121  0.6810 = 0.0067  0.2492 = 0.0011
GatedGCN 0.1577 £0.0046 0.7641 £0.0057  0.7874 £0.0119  0.6300 + 0.0029  0.2778 + 0.0017
GatedGCN-MLP-Mixer 0.1249 + 0.0020 0.7861 = 0.0048  0.8073 £ 0.0037  0.6856 + 0.0044  0.2484 + 0.0016
GINE 0.1072 £0.0037 0.7730 £0.0064  0.7885 +0.0034  0.6405 +0.0077  0.2780 + 0.0021
GINE-MLP-Mixer 0.0745 + 0.0014  0.7866 = 0.0022  0.7951 £ 0.0077  0.6921 + 0.0054  0.2485 + 0.0004
GraphTrans 0.1230 +0.0018 0.7646 +0.0055  0.7884 +0.0104  0.6313 +£0.0039  0.2777 + 0.0025
GraphTrans-MLP-Mixer  0.0798 £ 0.0032 0.7874 £ 0.0044  0.7892 £ 0.0116  0.6795 £ 0.0063  0.2475 x 0.0015

Table: Results are averaged over 4 runs with 4 different seeds.

[1] Kipf, Welling, Semi-supervised classification with graph convolutional networks, 2017
[2] Bresson, Laurent, Residual gated graph convnets, 2017
[3] Hu, Liu, Gomes, Zitnik, Liang, Pande, Leskovec, Strategies for pre-training graph neural networks, 2019
[4] Dwivedi, Bresson, A generalization of transformer networks to graphs, 2021

Xavier Bresson
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Comparison with SOTA results

@ We compare against GNN models with SOTA results
@ Graph Transformers: GraphiT, GPS, SAN, etc
@ Expressive GNNs: GNN-AK, and SUN

@ For small molecular graphs, our model achieved competitive results on ZINC and MolHIV.
@ For larger molecular graphs, our model sets SOTA performance on Peptides-fun/struct.

@ Graph MLP-Mixer offers better space-time complexity and scalability.
@ SAN+LapPE and SUN require 7.5x and 41X training time per epoch,

and 12x and 18X memory respectively, compared to our model.

Model ZINC MolHIV Peptides-func Peptides-strcut

MAE | ROCAUC t Avg. Precision 1 Time/Epoch Memory MAE | Time/Epoch ~ Memory
GT [36] 0.226 + 0.014
GraphiT [53] 0.202 £ 0.011 -
Graphormer [56] 0.122 +0.006 - - - - - - -
GPS [57] 0.070 + 0.004 0.7880 + 0.0101 0.6562 £ 0.0115 1.3X% 6.9 % 0.2515 £ 0.0012 1.1x 6.6 X
SAN+LapPE [38] 0.139 + 0.006 0.7775 £ 0.0061 0.6384 £ 0.0121 8.8 12.4 % 0.2683 + 0.0043 7.4% 11.8 %
SAN+RWSE [38] - - 0.6439 £ 0.0075 7.5% 19.6x 0.2545 £ 0.0012 6.5X% 11.7x%
GNN-AK+ [31] 0.080 + 0.001 0.7961 £ 0.0119 0.6480 + 0.0089 2.5% 7.8% 0.2736 + 0.0007 2.1x 7.3%
SUN [32] 0.084 +0.002  0.8003 + 0.0055 > 0.6730 + 0.0078 41.3% 18.8x 0.2498 + 0.0008 35.7%x 16.6x
Graph MLP-Mixer  0.075 +0.001 0.8073 £ 0.0037 0.6921 + 0.0054 1.0% 1.0x 0.2475 £ 0.0015 1.0% 1.0x

Xavier Bresson Table: Results are averaged over 4 runs with 4 different seeds.



Graph MLP-Mixer mitigates over-squashing!!!

@ Standard MP-GNNs s.a. GCN, GGCN, GAT, GIN fail to generalize for depth > 4 because of over-
squashing that squeezes too much info from the exponential growth of the tree reception field.

@ Our model is able to mitigate over-squashing and generalize until depth = 7 since it transmits the
long-distance information directly with the mixer layer.

—~ +GGCN +GIN +GAT +~GCN -=Graph MLPMixer
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Figure. Test Accuracy w.r.t. the tree depth
in the NEIGHBORSMATCH problem.
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[1] Alon, Yahav, On the bottleneck of graph neural networks and its practical implications, 2020
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Graph MLP-Mixer achieves high expressivity

@ Graph MLP-Mixer can be proved to be strictly more powerful than 1-WL.

@ Theoreml!! : Laplacian eigenvectors or k-step Random Walk PE can distinguish non-isomorphic
graphs for which the 1-WL test fails such as the CSL dataset!2l.

o Interestingly, experiments on EXPBl and SR254 datasets show that our model is strictly more
powerful than 1&2-WL and not less powerful than 3-WL (where all standard MP-GNNs fail).

Model CSL (ACC) EXP (ACC) SR25 (ACC)
GCN 10.00 + 0.00 51.90 + 1.96 6.67 £ 0.00
GatedGCN 10.00 + 0.00 51.73 £ 1.65 6.67 £ 0.00
GINE 10.00 + 0.00 50.69 + 1.39 6.67 = 0.00
GraphTrans 10.00 £ 0.00 52.35+2.32 6.67 = 0.00
GCN-MLP-Mixer 100.00£0.00  100.00 +£0.00  100.00 £ 0.00
GatedGCN-MLP-Mixer 100.00£0.00  100.00 +£0.00  100.00 £ 0.00
GINE-MLP-Mixer 100.00£0.00  100.00 +£0.00  100.00 % 0.00
GraphTrans-MLP-Mixer  100.00 £0.00  100.00 £ 0.00  100.00 + 0.00

Table: Results are averaged over 4 runs with 4 different seeds.

[1] Dwivedi, Luu, Laurent, Bengio, Bresson, Graph neural networks with learnable structural and positional representations, 2021
[2] Murphy, Srinivasan, Rao, Ribeiro, Relational pooling for graph representations, 2019
[3] Abboud, Ceylan, Grohe, Lukasiewicz, The surprising power of graph neural networks with random node initialization, 2020
[4] Balcilar, Heroux, Gauzere, Vasseur, Adam, Honeine, Breaking the limits of message passing graph neural networks, 2021

Xavier Bresson
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Ablation studies

@ We evaluate various choices for each component of the architecture in the appendix ofll.
@ Assess the benefits of Metis against random graph partitioning.

Evaluate the effect of number of graph patches.

Study the effect of patch overlapping with k-hop neighborhood extension.

Show the effects of node PE and patch PE.

Examine the effect of data augmentation.

Estimate the trade-off between performance and efficiency.

Compare the mixer layer vs. transformer layer as in ViT.

[1] He, Hooi, Laurent, Perold, LeCun, Bresson, A Generalization of ViT /MLP-Mixer to Graphs, 2022

Xavier Bresson
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Conclusion

We introduce a novel GNN architecture that improves standard MP-GNN limitations (poor long-
range dependency and low expressivity power) and has better complexity than Graph Transformers
(linear complexity).

We demonstrate its potential on small and large molecular datasets.

RePI'OdllCIblllty A GENERALIZATION OF VIT/MLP-MIXER TO GRAPHS
@ ArXiv paper : https://arxiv.org/pdf/2212.13350.pdf
. . . . Xiaoxin He! Bryan Hooi' Thomas Laurent> Adam Perold® Yann LeCun®® Xavier Bresson'
@ GitHub repo : https://github.com /XiaoxinHe/Graph-MLPMixer (rinosin bl raviercsconp e oia o6, cloprentoim.
t ’ ’ !National University of S‘li;}if(;;k :Jlﬁzf:rlsz;tl;ldarglﬁzt:nkijnivcrsity 3Element, Inc.
Future work

@ Expand architecture to node and link prediction tasks

@ Prove network captures long-range dependency for trees and (possibly) more general graphs
@ Hierarchical architecture (next slide)

@ Speed up (next slide)
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Future work

@ Hierarchical architecture : Apply recursively the same architecture (with same/different MP-

GNNs) at different coarsening levels.

g1

Hierarchical scene graphs
Rosinol et-al, 2020

Xavier Bresson
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Figure from Cecilia Clementi (FU Berlin)



Future work

@ Speed up : For balanced graph patches, it should be possible to drop specialized GNN libraries
PyGlll or DGLI by replacing sparse linear algebra operations with dense ones (optimized for GPUs).

P V= Zk Vk -~
Vi Vs
<>
0 20 40 60 80 100
A1 0 ' ’ ‘ ’ ] A
GE 0 o
D @ L Az 407

N v
@ PyTorch § N J—

o v

T T T

Figure 1. Adjacency matrix A* of a batch of

Figure 2. Adjacency matrix A+ of a batch
graphs in PyG and DGL (sparse representation)

of small graphs (dense representation)

A* = block diag(4y, ..., Ag) € RV*Y AT = concat(Ay, ..., A ) € RVmaxXVmaxx K

with V = ZK Vi with Vi, < Vihax VEk and zero padding
=t nb_zeros(A™T) < nb_zeros(A*)

[1] Fey and Lenssen, Fast graph representation learning with pytorch geometric, 2019
[2] Wang et-al, Deep graph library: Towards efficient and scalable deep learning on graphs, 2019
Xavier Bresson
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Thank you

Xavier Bresson
xaviercs@Qnus.edu.sg

¥ https://twitter.com/xbresson

® https://scholar.google.com/citations?user=9pSK04MAAAAJ

o https://www.youtube.com/channel/UCeONAtqVKCS30Xn6zylYQ g
() https://github.com/xbresson

M@ https://www.linkedin.com/in/xavier-bresson-738585b

Il https://www.facebook.com /xavier.bresson.1
https://graphdeeplearning.github.io

@ https://www.comp.nus.edu.sg/cs/people/xaviercs
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