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First: Symmetry is useful
e Motivations for symmetry-equivariant ML
e Recent applications and findings

Second: Symmetry gives natural bases for expressing features
e Test out some content I’'m developing for the course I’m teaching
this Spring on symmetry + ML.
o Irreducible representations and how to find them.

Third: Emergent behavior of equivariant nns

e Consequences of being symmetry-preserving

e Properties of E(3)NNs that have yet to be fully utilized.
o Symmetry can tell you when you’re missing data.
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To describe physical systems we use
coordinate systems

(1) and (2) use different coordinate systems
to describe the

same physical system.

We can transform between coordinate systems
using the symmetries of Euclidean space (1 )
(3D rotations, translations, and inversion)
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Machine learning models not built to handle symmetry require data augmentation.
For 3D data, this is expensive, requiring ~500 fold augmentation.
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To describe physical systems we use
coordinate systems

(1) and (2) use different coordinate systems
to describe the

same physical system.

We can transform between coordinate systems
using the symmetries of Euclidean space (1 )
(3D rotations, translations, and inversion)

Traditional machine learning see
(1) and (2) as completely different!

We want methods that see

(1) and (2) as the same system
described differently...

...S0 want machine learning
with symmetry! 8



Invariant models pre-compute invariant features and throw away the coordinate system.
Equivariant models keep the coordinate system
AND if the coordinate system changes, the outputs change accordingly.
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Interactions in equivariant models are more complex than invariant models
but also more expressive...

How do we interact invariant objects? Scalar multiplication.

B x [ = B

X l=/

How do we interact equivariant objects? Geometric tensor products!

/ R \=lll [

il - % O LI Ol

dot product cross-product symmetric
. . trace antisymmetric traceless
Generalizes to h{gher orders. . invariant equivariant equivariant
Same mathematics that describes L=0 L=1 L=2
atomic interactions, e.g. addition of 1 degree of 3 degrees of 5 degrees

angular momentum. freedom freedom of freedom



Why limit yourself to functions with (Euclidean) symmetry?
You can substantially shrink the space of functions you need to optimize over.

All learnable functions

All learnable All learnable

E(3) functions functions
constrained
by your data.

Functions you
actually wanted
to learn.



Euclidean symmetry equivariant methods have Euclidean symmetry “built-in”.
These methods understand that a physical system described by e.g. two different
coordinate systems still “means” the same thing even without training.
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Given a molecule and a rotated copy,

predicted forces are the same up to rotation.
(Predicted forces are equivariant to rotation.)

Additionally, networks generalize to molecules with similar motifs.
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We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.



We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
To do this... we first needed to build a general package for prototyping and scaling E(3)NNs.

e3nn Welcome to e3nn!
e3nn: a modular PyTorch framework for This is the website for the e3nn repository
Euclidean neural networks https://github.com/e3nn/e3nn/

Documentation
View My GitHub Profile
E(3) is the Euclidean group in dimension 3. That is the group of rotations,

Welcome! translations and mirror. e3nn is a pytorch library that aims to create E(3)
Getting Started equivariant neural networks.

How to use the Resources

Installation
Help

Contributing ’ * *
Resources ‘ .

Math that's good to know Also

e3nn_tutorial -iax!
e3nn_book e’ o x * * * e3nn-jax!

Papers
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Poster
Slack * * ‘ * * *
Recurring Meetings / Events

Calendar
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We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
Properties... >
e Forces ‘/ \ A
e Energy A X

Electronic Structure... ’

1 X 3 e Charge Density s
e Hamiltonian NAg
e DOS

Encoder / decoder _ ] _
partial generation. Coarse-grain Fine-grain
For example... Coords. Coords

>



We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
E(3)NNs are state-of-the-art in accuracy for ab initio machine learned molecular dvhamics.

Dec. 2020 - DeePMD

Gordon Bell Prize (the Nobel Prize of Supercomputing)
goes to DeePMD for machine learned MD on

100 million atoms with ab initio accuracy (27,000 GPUs).

With collaborators, Kozinsky Group @ Harvard

Jan. 2021 - NequIP (Batzner et al.) Cu
E(3)NN methods 71000x more data efficient 50 nm
(more accurate with less data).

Apr. 2022 - Allegro (Musaelian et al.)
E(3)NN methods are more accurate than and as

scalable as DeePMD on 100 million atom systems.
(~100 GPUs).

Open source codes
Allegro: https://github.com/mir-group/allegro Boris Kozinsky
NequlP: https:/qithub.com/mir-group/nequip Simon Batzner
ednn: https://github.com/e3nn/e3nn/ Alby Musaelian




We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
...and estimate the “nearsightedness” of water.

Predict electron density (DFT and CCSD) of larger water cluster when trained on smaller water clusters.
See at what “size” of training data accuracy converges.
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We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
..and generate fine-grain molecular conformations from coarse-grained molecules

Learn to coarsen and “re-fine” molecules
(arXiv:2201.12176)

p(z|X)

generative coarse-graining

Rafael Gomez-Bombarelli
Wupe Wang

Minkai Xu

Chen Cal




We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.

...and E(3)NNs are approaching state-of-art for OC20 and with shorter training times.

Atomic Architects Equiformer (IS2RE training data only with IS2RS
MIT Nodes. Direct.)

FACEBOOK Al  Carnegie Mellon University

and Nolsy 'Public Leaderboard

See the latest results and submit your own on the

evaluation server!

Equiformer = Equivariant graph
attention transformer

ICLR 2023
(arXiv:2206.11990)

Submitted model is on substantially le
data than leading models and is traine
for ~10x less epochs.

Task IS2RE

Task S2EF Task IS2RS

Test Split
Average D 00D Ads 00D Cat 00D Both
9
~ s TEAM METHOD EWT (%) E"ET::)MAE SUBMITTED
1 FAIR + NERSC GemNet-XL 13 0.3712 2021/09/27 I
2 TUM + FAIR GemNet-T-EFwT-Relaxation-All 9.86 0.3997 2021/08/23
3 FAIR + CMU spinconv-force-centric-relaxation-all 79 0.4343 2021/06/03
Atomic Architects Equiform.er (IS2RE training data only with IS2RS and Noisy 5.66 0.466 2022/05/20
9 MIT Nodes. Direct.)
1 0 Machine Learning 3d-Graphormer (Direct, IS2RE data only) 6.1 0.4722 2021/10/06
Deep Mind GNS + Noisy Nodes (IS2RE Only) 6.5 0.4728 2022/02/15

11.



We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
...and E(3)NNs are approaching state-of-art for OC20 and with shorter training times.

Schedule

Equiformer + Spherical Channel Network takes

2nd place in OC20 2022 Challenge! T e

C' L' ZitniCk’ A DaS’ e B' WOOd (Meta) 15:05 - 15:20 Challenge overview, results Abhishek Das (Open Catalyst Project team)

SCN: https://arxiv.org/abs/2206.14331 esT amd anelysa '

EquiFold by Prescient Design and friends o ot oo e

. - - . - :20 - 15:! nvited talk + abor Csanyi

Applies a Equiformer inspired architecture to csT 2

protein folding. '

Comparable accuracy to AlphaFold without "multi-sequence

alignment" and much faster ISh0-trld  AmEpIK -ASK Yy o Lo Tess Smidt

(e.g. some task EF 1 sec vs. AF 1 hour). . & “

biorXiv:10.1101/2022.10.07.511322 , Equiformer + SCN S ¥

Equ|fo|d Code 16:10 - 16:30 Winner talk + Q&A Jiagi Han, Tian Bian, Geyan Ye, Kaili Ma, Yuduo Zhi, Kangfei
CST Zhao, Tingyang Xu, Wenbing Huang, Yu Rong

(Tencent Al Lab, Tsinghua University, Renmin University of
China, The Chinese University of Hong Kong)

rot
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Yi-Lun 16:30 - 17:00 Invited talk + Q&A Yoshua Bengio
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Equivariant models are more data efficient than invariant models (even when predicting invariants).
Error reduces more quickly with equivariant than invariant models.

A : Power law
Im'a'ian, scaling exponent
B = slope
>
(log) Beq I3|nv
Error

‘K\\\\\\ Architecture

and task
dependent
offset.

>
(log) Number of training examples



This phenomena is observed across different Force fields

architectures and training tasks. S. Batzner et al.

Fig. 5: Learning curves.

. ———— .\7
&
— 1071 , ' i
Predicting electron densities T |
-2 |
J. Rackers et al. w6 x 10
Hidden Layer Features E 2 .
e TS Eons o) e Y4x1072
—®— /man=2 (167x0e + 167x00 + S6xle + 56x1o + 33x2e + 33x20) = L=0, slope=-0.106
—®— /,.=3 (125x0e + 125x00 + 42x1le + 42x10 + 25x2e + 25x20 + 18x3e + 18x30) (o]
) /pnax=4 (100x0e + 100x00 + 33xle + 33xlo + 20x2e + 20x20 + lax3e + 14x30 + llxde + 11x40) W 3 x 1021 — L=1,slope=-0.24
N s — L=2, slope=-0.244
; \'\ L —y —— L=3, slope=-0.258
. Mmayx = 0

\\"\
T L 10! 102 103
AN \\\\\Q"a)( < 1 Number of training frames
\\ii\\\\; \\;\V ;\i\‘\ T

Log-log plot of the predictive error on the water data set from32 using NequIP with [ {0,1,2, 3} as a
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Density Difference (%)

N. Frey et al.

***** PaiNN ----- Allegro
————— SchNet
= 0

/

/|

/

HH—&— F{l

' L_J
P

Loss
X ;
I’ o o
;
'
/
:
]
!
;
;
! 1
o' @
J
! 1
;
g
1 ,’
;
! 1
;
;
! 1
l/ !
; /
;
4 1
[ ] L ]

100 % T

® “1000

"
)
x

Number of Trainin. g Samples

Table A.1 Power laws for neural force field scaling.

Model R? Scaling exponent 3 .

10 1l 2 U 3 1 1 1 I T | 4 1 1 1 | 5
SchNet  0.95 0.17 + 0.03 A o Sabemetisize - £
PaiNN  0.94 0.26 + 0.05
Allegro  0.97 0.23 + 0.03

Fig. A.5 Calculating neural scaling power laws for neural force fields. Test loss
versus dataset size for PaiNN, Allegro, and SchNet models with fixed capacity, 64.
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Euclidean neural networks: neural networks + representation theory

tsmidt@mit.edu | T. E. Smidt. Trends in Chemistry (2021) | e3nn.org
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Euclidean neural networks: neural networks + representation theory

neural networks = deep learning C machine learning C artificial intelligence

Any machine learnable predicted Neural networks must be differentiable so
learned parameters  output we can update the weights with...
model +

flr,w) =1y TMoss

w,; = Ww;

Evaluate performance using a loss / error function

loss = mean ((y — ytrue)Q)

neural networks
with emoijis?

tsmidt@mit.edu | T. E. Smidt. Trends in Chemistry (2021) | e3nn.org
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Euclidean neural networks: neural networks + representation theory

(group) representation theory: how do things transform under group action
point groups, space groups, selection rules, symmetry allowed / forbidden properties

tsmidt@mit.edu | T. E. Smidt. Trends in Chemistry (2021) | e3nn.org
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Euclidean neural networks: neural networks + representation theory

(group) representation theory: how do things transform under group action
point groups, space groups, selection rules, symmetry allowed / forbidden properties

g is an element of Euclidean symmetry

All neural network operations are

cioni@. e (D (g)x,w) = D(g) f(x, w)

Rotations, translations, inversion

i.e. we can "rotate"” the inputs or the

outputs and we get the same thing. ] ]
D(g) is how we "represent” g acting on x

(or f(x)).

The form of D(g) depends on what it’s
acting on! (e.g. x vs. f(x))

tsmidt@mit.edu | T. E. Smidt. Trends in Chemistry (2021) | e3nn.org 30




Groups can act on many types of mathematical objects.
For 3D rotations, the most familiar ones are scalars (no change) and the 3D vector.

Can create more complex objects by tensor producting known vector spaces.
By knowing how rotations act on the smaller spaces, we can figure out how it acts on the larger one.
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Groups can act on many types of mathematical objects.
For 3D rotations, the most familiar ones are scalars (no change) and the 3D vector.

Can create more complex objects by tensor producting known vector spaces.
By knowing how rotations act on the smaller spaces, we can figure out how it acts on the larger one.
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Groups can act on many types of mathematical objects.
For 3D rotations, the most familiar ones are scalars (no change) and the 3D vector.

Can create more complex objects by tensor producting known vector spaces.
By knowing how rotations act on the smaller spaces, we can figure out how it acts on the larger one.
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Groups can act on many types of mathematical objects.
For 3D rotations, the most familiar ones are scalars (no change) and the 3D vector.

Can create more complex objects by tensor producting known vector spaces.
By knowing how rotations act on the smaller spaces, we can figure out how it acts on the larger one.
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Wash. Rinse. Repeat.



Groups can act on many types of mathematical objects.
For 3D rotations, the most familiar ones are scalars (no change) and the 3D vector.

Can create more complex objects by tensor producting known vector spaces.
By knowing how rotations act on the smaller spaces, we can figure out how it acts on the larger one.
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Groups can act on many types of mathematical objects.
For 3D rotations, the most familiar ones are scalars (no change) and the 3D vector.

Can create more complex objects by tensor producting known vector spaces.
By knowing how rotations act on the smaller spaces, we can figure out how it acts on the larger one.
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The (angular) basis of many descriptors and convolutions in E(3) equivariant networks
Spherical harmonic projections
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The (angular) basis of many descriptors and convolutions in E(3) equivariant networks
Spherical harmonic projections
“Coefficients”

. V\| /V. lm Why useful?

Variable peaks but a fixed length signal!
Can describe a distribution of vectors.

> Y Vi (fij)Yim (2)

7 Im
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The (angular) basis of many descriptors and convolutions in E(3) equivariant networks
Spherical harmonic projections

Coefficients attached to each spherical harmonic
Single points 1

Octahedra 1! ‘ ' '
=0 L=1 = ~3




The (angular) basis of many descriptors and convolutions in E(3) equivariant networks
Spherical harmonic projections

Coefficients attached to each spherical harmonic
Single points -

Octahedra {._ . ' , L]
= =1 L=2 =3

Typical signature of high
symmetry objects:
cancelation of terms.




From spherical harmonic projections we can create invariants using tensor products.

Power spectra, bispectra, ...

Single points -
Octahedra {. ‘ ' ’ [ | £l . ‘
L=0 L=1 L=2 L=3 L=4 L=5 L=6
Scalars Scalars
r X r> TR T RQT> >
Power spectra Bispectra
Single points 1 Single points -
Octahedra . . - Octahedra - . . - .
0.0 25 5.0 75 100 125 150 175 20.0

0 2 - 6



From spherical harmonic projections we can create invariants using tensor products.
Power spectra, bispectra, ... but in equivariant nns we can use the equivariant data.

T ® T > Scalars T ® T ® €T » Scalars

Power spectra Bispectra

Single points 1 Single points -

Octahedra w Octahedra w -_-_,_

0 3 4 6 0.0 25 5.0 75 10.0 12.5 15.0 17.5 200




The input to our network is geometry and features on that geometry.

geometry = [[x0, yO, z0],[x1, y1, zl1]]

O features = |
[mO, vOy, vO0z, vOx, alOy, a0z, aOx]
[ml, vliy, vlz, vlix, aly, alz, alx]

tsmidt@mit.edu | T. E. Smidt. Trends in Chemistry (2021) | e3nn.org 50




We categorize our features by how they transform under rotation and parity

geometry = [[x0, yO, z0],[x1, y1, zl1]]

C) features = |
[mO, vOy, vO0z, vOx, alOy, a0z, aOx]
[ml, vliy, vlz, vlix, aly, alz, alx]

]

scalar = e3nn.o3.Irrep(“0e”)
vector e3nn.o3.Irrep(“1l0”)
irreps = 1 * scalar + 1 * vector + 1 * vector

tsmidt@mit.edu | T. E. Smidt. Trends in Chemistry (2021) | e3nn.org o1




All data (input, intermediates, output) in E(3)NNs are geometric tensors.
Geometric tensors are the “data types” of 3D space and have many forms.
But they all transform predictably under rotation, translation, and inversion.

from e3nn import o3

Spherical harmonics

Ym L=0 @ Rs s orbital o3.Irrep(“0e”)
[
L=1 -, w— Rs p orbital o03.Irrep(“1l0”)
-
L=2 @ : A A Rs d orbital = o3.Irrep(“2e”)
-
.~ - . Rs f orbital o03.Irrep(“30")
L=3 PP ' 'J — - = :

n @

m=-3 m=-2 m=-1 m=0

tsmidt@mit.edu | T. E. Smidt. Trends in Chemistry (2021) | e3nn.org




First: Symmetry is useful
e Motivations for symmetry-equivariant ML
e Recent applications and findings

Second: Symmetry gives natural bases for expressing features
e Test out some content I’'m developing for the course I’m teaching
this Spring on symmetry + ML.
o Irreducible representations and how to find them.

Third: Emergent behavior of equivariant nns

e Consequences of being symmetry-preserving

e Properties of E(3)NNs that have yet to be fully utilized.
o Symmetry can tell you when you’re missing data.
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ENNs have the symmetry of the representation built-in.

However, the symmetry of the inputs also matter! ENNs preserve symmetry.

Many different types of geometric objects have the same symmetry.

ENN transforms geometric objects into different objects with same or higher symmetry.

55



Just like the properties of physical systems,
the outputs of E(3)NNs have equal or higher symmetry than the inputs.
Curie’s principle (1834): in the causes that gave rise to them.”

. random random random
input

model 1 model 2 model 3

Tetrahedron

Octahedron

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org

“When effects show certain asymmetry, this asymmetry must be found

56



Cases where we need to predict lower symmetry outputs?
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Cases where we need to predict lower symmetry outputs?

Structural phase transitions of crystals (and other symm breaking properties, e.g. magnetic order)

Predict
distortion
displacements

—

Octahedral tilting
in perovskites a

Pm3m (221)

6 different vectors
in reciprocal space
(+%, +%, 0)
(+1/2, -V, 0)
(0, +%, +%)
( 0, +1/2, -1/2)
(+1/2, 0, +1/2)
(+1/2, 0, -1/2)

Target
distorted
structure

Imma (74)

Want to predict all c
possible order
parameters and b

sample equally! >
a

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org
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Cases where we need to predict lower symmetry outputs?
Dataset may be missing the needed information for inputs and outputs to be compatible by symmetry.

Approximately Equivariant Networks for Imperfectly Symmetric Dynamics

R. Wang, R. Walters, R. Yu, ICML 2022
t =i0 t=5 t=10 ti= 20 ti= 30

Figure 2: Simulated diffusion of heat in a metal plate with
(top) uniform diffusion coefficient resulting in perfect sym-
metry and (bottom) slightly varying diffusion coefficient
resulting in approximate symmetry.
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Cases where we need to predict lower symmetry outputs?
Dataset may be missing the needed information for inputs and outputs to be compatible by symmetry.

Approximately Equivariant Networks for Imperfectly Symmetric Dynamics
R. Wang, R. Walters, R. Yu, ICML 2022

CLCNN RPP Lift

Target ConvNet RPP E2CNN Lift RSteer

Target ConvNet RGroup

Figure 3: Target (ground truth) and model predictions comparison at time step 1, 5, 10, 20 for smoke simulation with
approximate translation (left) and rotation (right) symmetries.



When can symmetry tell you something you don't know...
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When can symmetry tell you something you don't know...

inputs x and
outputs y

\

Sym(y) 2 Sym(x) \

single multiple
correct correct
output outputs

v v

Direct Scalar
prediction sampling



When can symmetry tell you something you don't know...

inputs x and

outputs z \ Sym(y) < Sym(x)

Sym(y) 2 Sym(x) \

single multiple
correct correct
output outputs

v v

Direct Scalar
prediction sampling
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When can symmetry tell you something you don't know...

inputs x and

Outputs y \ Sym(y) < Sym(X)

Sym(y) 2 Sym(x) l
* \ single
correct

single multiple output
correct correct
output outputs

y }
29 (1)

Direct Scalar !Vlissing _
prediction sampling information



When can symmetry tell you something you don't know...

inputs x and

Outputs y \ Sym(y) < Sym(X)

\

Sym(y) 2 Sym(x) \

single multiple
correct correct
output outputs

v v

Direct Scalar
prediction sampling

l

single
correct
output

a0 (1)

Missing
information

\ multiple

correct
outputs
Not related Related
by symmetry by symmetry
L(2) ?3)
Missing Nonscalar
information sampling
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When can symmetry tell you something you don't know...

inputs x and
outputs y

\

Sym(y) 2 Sym(x) \

single multiple
correct correct
output outputs

v v

Direct Scalar
prediction sampling

> sym(y) < Sym(x)

l

single
correct
output

a0 (1)

Missing
information

This becomes particularly
important when using
experimental data, e.g. partial
inputs or observations!

\ multiple
correct

outputs

L

Not related Related
by symmetry by symmetry

' '

22(2) °(3)

Missing Nonscalar
information sampling
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When can symmetry tell you something you don't know...

inputs x and

Outputs y \ Sym(y) < Sym(X)

\

Sym(y) 2 Sym(x) \

single multiple
correct correct
output outputs

v v

Direct Scalar
prediction sampling

l

single
correct
output

a0 (1)

Missing
information

\ multiple

correct
outputs
Not related Related
by symmetry by symmetry
L(2) ?3)
Missing Nonscalar
information sampling
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(1) Sym(y) < Sym(x) = Single output ® Missing Information
Sym(y) 2 Sym(x) Sym(y) < Sym(x)

Task 1: Rectangle to Square Task 2: Square to Rectangle

AN AN

DV Z e
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(1) Sym(y) < Sym(x) = Single output ® Missing Information
Sym(y) 2 Sym(x) Sym(y) < Sym(x)

S e -
7 N 2\
\ S
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(1) Sym(y) < Sym(x) = Single output ® Missing Information

Sym(y) 2 Sym(x) Sym(y) < Sym(x)
X
/ , \ ® ® X
| | S A

AR I T R | Network
: I predicts

y ! | degenerate
: | outcomes!
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Order parameters describe symmetry breaking and
distinguish between degenerate states.

mirror .
symmetry

higher-symmetry :

state \

Energy

degenerate
lower-symmetry states
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Order parameters describe symmetry breaking and
distinguish between degenerate states.

mirror |
A symmetry
higher-symmetry , order
l parameter

state \

+ D

Energy

degenerate
lower-symmetry states
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Using the training procedure itself, we can find data that is implied by symmetry
(symmetry-breaking “order parameters”).

What information does the network
need to “pick” a rectangle? ® @

learnable predicted

e * p:iameters ;utput / . \
flr,w) =y

-
|
I
|
inputs ¥
|
I
|

Update Wﬁfs using...
L L Oloss

%Z%‘”W N 7

@ @®
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Using the training procedure itself, we can find data that is implied by symmetry
(symmetry-breaking “order parameters”).

Use gradients to “find” what’s missing.

Input

X

Output

Y

— Learns anisotropic inputs. — Model can fit.

L=0

Irreps with
even parity
L22 break
degeneracy
between x and
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When can symmetry tell you something you don't know...

inputs x and

Outputs y \ Sym(y) < Sym(X)

\

Sym(y) 2 Sym(x) \

single multiple
correct correct
output outputs

v v

Direct Scalar
prediction sampling

l

single
correct
output

a0 (1)

Missing
information

\ multiple

correct
outputs
Not related Related
by symmetry by symmetry
L(2) ?3)
Missing Nonscalar
information sampling
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When can symmetry tell you something you don't know...

inputs x and

Outputs y \ Sym(y) < Sym(X)

\

Sym(y) 2 Sym(x) \

single multiple
correct correct
output outputs

v v

Direct Scalar
prediction sampling

l

single
correct
output

a0 (1)

Missing
information

\ multiple

correct
outputs
Not related Related
by symmetry by symmetry
L(2) ?3)
Missing Nonscalar
information sampling
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(2) Multiple outputs = Not related by symmetry = Missing Information

input

output 1 output 2

O---0
O O

O O
O ---0O

By symmetry these outputs must be generated
by different inputs.
e.g. unobserved system features. 77



(2) Multiple outputs = Not related by symmetry = Missing Information

input output 1 output 2

i 1 /N
Pt == ey

f YN N\
By symmetry these outputs must be generated

by different inputs.
e.g. unobserved system features.

e e




When can symmetry tell you something you don't know...

inputs x and

Outputs y \ Sym(y) < Sym(X)

\

Sym(y) 2 Sym(x) \

single multiple
correct correct
output outputs

v v

Direct Scalar
prediction sampling

l

single
correct
output

a0 (1)

Missing
information

\ multiple

correct
outputs
Not related Related
by symmetry by symmetry
L(2) ?3)
Missing Nonscalar
information sampling
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When can symmetry tell you something you don't know...

inputs x and

Outputs y \ Sym(y) < Sym(X)

\

Sym(y) 2 Sym(x) \

single multiple
correct correct
output outputs

v v

Direct Scalar
prediction sampling

l

single
correct
output

a0 (1)

Missing
information

\ multiple

correct
outputs
Not related Related
by symmetry by symmetry
L(2) ?3)
Missing Nonscalar
information sampling
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(3) Multiple outputs » Related by symmetry = Nonscalar sampling
An analogous problem to the square = rectangle for the permutation group.

Goal: Partition this graph subgraph 1 ' [1, O]
into two subgraphs
O_O subgraph 2 O [0, 1]
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(3) Multiple outputs » Related by symmetry = Nonscalar sampling
An analogous problem to the square = rectangle for the permutation group.

Goal: Partition this graph subgraph 1 ' [1, O]
into two subgraphs
O_O subgraph 2 O [0, 1]

Y

Trained

Learned [V2, 2, V2, V2]
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(3) Multiple outputs » Related by symmetry = Nonscalar sampling
An analogous problem to the square = rectangle for the permutation group.

Goal: Partition this graph subgraph 1 ' [1, O]
into two subgraphs
O_O subgraph 2 O [0, 1]

Y

Trained ‘—O (1,0, 0, 1]
Learned O—O [V2, V2, V2, V2]
Implied O_‘ [0, 1,1, 0]
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(3) Multiple outputs » Related by symmetry = Nonscalar sampling
An analogous problem to the square = rectangle for the permutation group.

Goal: Partition this graph subgraph 1 ' [1, O]
into two subgraphs
O_O subgraph 2 O [0, 1]
Trained ‘—O [1,0,0, 1]
Not particular helpful.
Learned O_O [1/2’ %2, 72, 1/2] R — Canf;recover diszf/?nct

partitions.
Implied O_‘ [0, 1,1, 0]
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(3) Multiple outputs » Related by symmetry = Nonscalar sampling
An analogous problem to the square = rectangle for the permutation group.

Goal: Partition this graph subgraph 1 ‘ [1, O]
into two subgraphs
O_O subgraph 2 O [0, 1]

1 0 01
maned  ({@)——()  no.o0 00 00
1 0 01
1 0 01
1
Learned O—O [V2, V2, V2, /2] 2 8 } 1 8
1 0 01
0 0 0O
Implied O—‘ [0, 1,1, 0] 0110
0 0 0O
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(3) Multiple outputs » Related by symmetry = Nonscalar sampling
An analogous problem to the square = rectangle for the permutation group.

Goal: Partition this graph subgraph 1 ‘ [1, O]
into two subgraphs
O_O subgraph 2 O [0, 1]

1 0 0 1
maned  ({@)——()  no.o0 00 0 ¢
1 0 0 1 .
Does not have unique
100 1 decomposition!
1o 1 1 o ... but this (often) does!
Learned O—O [V2, V2, V2, V2] 510 11 0
1 0 0 1 *
o YOYY
0O 0 0 O
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(3) Multiple outputs » Related by symmetry = Nonscalar sampling

A physical example: Structural phase transitions of crystals

—

Predict
distortion
displacements

Octahedral tilting
in perovskites a

Pm3m (221)

6 different vectors
in reciprocal space
(+%, +%, 0)
(+1/2, -V, 0)
(0, +%, +%)
( 0, +1/2, -1/2)
(+1/2, 0, +1/2)
(+1/2, 0, -1/2)

Target
distorted
structure

Imma (74)

Want to predict all c
possible order
parameters and b

sample equally! >
a
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When can symmetry tell you something you don't know...

inputs x and

Outputs y \ Sym(y) < Sym(X)

\

Sym(y) 2 Sym(x) \

single multiple
correct correct
output outputs

v v

Direct Scalar
prediction sampling

l

single
correct
output

a0 (1)

Missing
information

\ multiple

correct
outputs
Not related Related
by symmetry by symmetry
L(2) ?3)
Missing Nonscalar
information sampling
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TAKEAWAYS

Euclidean neural networks are built This makes these models data-efficient,
with the powerful assumption that robust, scalable, and generalizable.

atomic systems exist in 3D Euclidean

AN
<3

space.

1]

QM accurate MD
: on 100s of millions
of atoms.

E(3)NNs have demonstrated accuracy @ ENN properties can uncover missing

on a wide range of a

=1

tomistic systems. information and efficiently learn statistics

of physical systems.
77—\
N 7
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Calling in backup (slides)!
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Task « Ae EHOMO ELUMO 1% Cu G H R2 U U() ZPVE
Methods Units bohr? meV  meV meV D cal/molK meV meV bohr? meV meV meV
NMP [29] .092 69 43 38 .030 .040 19 17 .180 20 20 1.50
SchNet [64]T 235 63 41 34 .033 .033 14 14 .073 19 14 1.70
Cormorant [1] .085 61 34 38 .038 .026 20 21 961 21 22 2.03
LieConv [21] .084 49 30 25 .032 .038 22 24 .800 19 19 2.28
DimeNet++ [25]T .044 33 25 20 .030 .023 8 7 331 6 6 1.21
TFN [72]* 223 58 40 38 .064 .101 - - - - - -
SE(3)-Transformer [23] 142 53 35 33 .051 .054 - - - - - -
EGNN [63] .071 48 29 25 .029 .031 12 12 .106 12 11 1.55
SphereNet (48] .046 32 23 18 .026 .021 8 6 292 7 6 1.12
SEGNN [5] .060 42 24 21 .023 .031 15 16 .660 13 15 1.62
EQGAT [46] .063 44 26 22 .014 .027 12 13 257 13 13 1.50
Equiformer .056 33 17 16 .014 .025 10 10 227 11 10 1.32

Table 1: MAE results on QM9 testing set. | denotes using different training, validation, testing
data partitions as mentioned in SEGNN [5]. I denotes results from SE(3)-Transformer [23].
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Energy MAE (eV) | | EwT (%) 1

Methods ID OOD Ads OOD Cat OOD Both Average | ID OOD Ads OOD Cat OOD Both Average
SchNet [64]f 0.6465 0.7074 0.6475 0.6626 0.6660 | 2.96 2.22 3.03 2.38 2.65
DimeNet++ [25]7  0.5636 0.7127 0.5612 0.6492 0.6217 | 4.25 2.48 4.40 2.56 3.42
GemNet-T [42]f  0.5561 0.7342 0.5659 0.6964 0.6382 | 4.51 2.24 4.37 2.38 3.38
SphereNet [48] 0.5632 0.6682 0.5590 0.6190 0.6024 | 4.56 2.70 4.59 2.70 3.64
(S)EGNN [5] 0.5497 0.6851 0.5519 0.6102 0.5992 | 4.99 2.50 4.71 2.88 3.77
SEGNN [5] 0.5310 0.6432 0.5341 0.5777 05715 | 532 2.80 4.89 3.09 4.03
Equiformer 0.5088 0.6271 0.5051 0.5545 0.5489 | 4.88 2.93 4.92 2.98 3.93

Table 2: Results on OC20 IS2RE validation set. T denotes results reported by SphereNet [48].

Energy MAE (eV) | | EwT (%) 1
Methods ID OOD Ads OOD Cat OOD Both Average | ID OOD Ads OOD Cat OOD Both  Average
CGCNN [83] 0.6149 09155 0.6219 0.8511 0.7509 | 3.40 1.93 3.10 2.00 2.61
SchNet [64] 0.6387  0.7342 0.6616 0.7037 0.6846 | 2.96 233 2.94 2.21 2.61
DimeNet++ [25]  0.5621 0.7252 0.5756 0.6613 0.6311 | 4.25 2.07 4.10 241 3.21
SpinConv [68] 0.5583  0.7230 0.5687 0.6738 0.6310 | 4.08 2.26 3.82 2:33 3.12
SphereNet [48]  0.5625  0.7033 0.5708 0.6378 0.6186 | 4.47 2.29 4.09 241 3.32
SEGNN [5] 0.5327  0.6921 0.5369 0.6790 0.6101 | 5.37 2.46 491 2,63 3.84
Equiformer 0.5037  0.6881 0.5213 0.6301 0.5858 | 5.14 2.41 4.67 2.69 3.73

Table 3: Results on OC20 IS2RE testing set.



Energy MAE (eV) | |

EwT (%) 1

Methods OOD Ads OOD Cat OOD Both Average | ID OOD Ads OOD Cat OOD Both Average
GNS [30] 0.54 0.65 0.55 0.59 0.5825 - - - - -
Noisy Nodes [30]  0.47 0.51 0.48 0.46 0.4800 - - - - -
Graphormer [66] 0.4329  0.5850 0.4441 0.5299 0.4980 - - - - -
Equiformer 0.4222  0.5420 0.4231 0.4754 0.4657 | 7.23 3.77 7:13 4.10 5.56

+ Noisy Nodes 0.4156  0.4976 0.4165 0.4344 0.4410 | 7.47 4.64 7.19 4.84 6.04

Table 4: Results on OC20 IS2RE validation set when IS2RS node-level auxiliary task is adopted
during training. “GNS” denotes the 50-layer GNS trained without Noisy Nodes data augmentation,
and “Noisy Nodes” denotes the 100-layer GNS trained with Noisy Nodes. “Equiformer + Noisy
Nodes” uses data augmentation of interpolating between initial structure and relaxed structure and
adding Gaussian noise as described by Noisy Nodes [30].

Energy MAE (eV) | | EwT (%) 1
Methods ID OOD Ads OOD Cat OOD Both Average | ID OOD Ads OOD Cat OOD Both  Average
GNS + Noisy Nodes [30] 0.4219 0.5678 0.4366 0.4651 0.4728 | 9.12 4.25 8.01 4.64 6.5
Graphormer [66]" 0.3976 0.5719 0.4166 0.5029 0.4722 | 8.97 3.45 8.18 3:79 6.1
Equiformer + Noisy Nodes  0.4171 0.5479 0.4248 0.4741 0.4660 | 7.71 3.70 715 4.07 5.66

Table 5: Results on OC20 IS2RE testing set when IS2RS node-level auxiliary task is adopted
during training. | denotes using ensemble of models trained with both IS2RE training and validation
sets. In contrast, we use the same single Equiformer model in Table 4, which is trained with only the
training set, for evaluation on the testing set.
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The input to our network is geometry and features on that geometry.

geometry = [[x0, yO, z0],[x1, y1, zl1]]

O features = |
[mO, vOy, vO0z, vOx, alOy, a0z, aOx]
[ml, vliy, vlz, vlix, aly, alz, alx]
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We categorize our features by how they transform under rotation and parity

geometry = [[x0, yO, z0],[x1, y1, zl1]]

C) features = |
[mO, vOy, vO0z, vOx, alOy, a0z, aOx]
[ml, vliy, vlz, vlix, aly, alz, alx]

]

scalar = e3nn.o3.Irrep(“0e”)
vector e3nn.o3.Irrep(“1l0”)
irreps = 1 * scalar + 1 * vector + 1 * vector
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We categorize our features by how they transform under rotation and parity

geometry = [[x0, yO, z0],[x1, y1, zl1]]

O features = |
[mO, vOy, vO0z, vOx, alOy, a0z, aOx]
[ml, vliy, vlz, vlix, aly, alz, alx]

]

scalar = e3nn.o3.Irrep(“0e”)
vector e3nn.o3.Irrep(“1l0”)
irreps = 1 * scalar + 1 * vector + 1 * vector

In order for the network to preserve
symmetry, we need to tell it what
symmetry there is to begin with
(e.g. scalars, vectors, ...)
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All data (input, intermediates, output) in E(3)NNs are geometric tensors.
Geometric tensors are the “data types” of 3D space and have many forms.
But they all transform predictably under rotation, translation, and inversion.

from e3nn import o3

Spherical harmonics

Ym L=0 @ Rs s orbital o3.Irrep(“0e”)
[
L=1 -, w— Rs p orbital o03.Irrep(“1l0”)
-
L=2 @ : A A Rs d orbital = o3.Irrep(“2e”)
-
.~ - . Rs f orbital o03.Irrep(“30")
L=3 PP ' 'J — - = :

n @

m=-3 m=-2 m=-1 m=0
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We learn complex descriptions by interacting given features and functions of geometry.

>> e.g. convolutions with Euclidean symmetry



In standard image convolutions, filter depends on coordinate system.

convolutional neural networks:
Used for images. In each layer, scan over image with learned filters.




For atoms and other point set data, rather than image convolutions, we perform
continuous convolutions...

We can operate any geometric data:

voxels, meshes, splines, points, etc. For atoms...

We use points. Images of atomic systems are sparse and imprecise. = We use continuous convolutions
with atoms as convolution
centers.

|| Neighbor
atoms —_—
H H
VS.
. . Convolution
|| center
filter filter function

T~ W(7)




... and we require the convolutional filter to be symmetry-preserving.

E(3) symmetry preserving convolutional filters are based ...and in order to interact our filters with our
on learned radial functions and spherical harmonics... inputs we need geometric tensor algebra.

77= T lm'f’

Neighbor
atoms

34. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS,
AND d FUNCTIONS
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These networks can recognize equivalent recurring geometric patterns that
appear in different locations and orientations (from seeing only one example).

Rb Mn Cl3

Octahedral
coordination
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Why not limit yourself to invariant functions?
You have to guarantee that your input features already
contain any necessary equivariant interactions

All learnable
equivariant
functions

All invariant
functions
constrained by
our data.

Functions you actually
wanted to learn.

OR

All learnable
invariant
functions.
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Just like the properties of physical systems,

the outputs of E(3)NNs have equal or higher symmetry than the inputs.

Task 1: Rectangle to Square

.

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org

Task 2: Square to Rectangle

<

N

.
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Just like the properties of physical systems,
the outputs of E(3)NNs have equal or higher symmetry than the inputs.

X

7N 7\
N w7
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(1) Single output » Missing Information

106



(3) Multiple outputs » Related by symmetry = Nonscalar sampling

Trained

Learned

O—0O

{41

Implied
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Using the training procedure itself, we can find data that is implied by symmetry
(symmetry-breaking “order parameters”).

000 > A
Predict ABX; L&t Target
distortion k distorted
displacements structure
Octahedral tilting
in perovskites a

Pm3m (221)

108
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Using the training procedure itself, we can find data that is implied by symmetry

(symmetry-breaking “order parameters”).

—

Predict
distortion
displacements

Octahedral tilting
in perovskites a

Pm3m (221)

6 different vectors
in reciprocal space
(+%, +%, 0)
(+1/2, -V, 0)
(0, +%, +%)
( 0, +1/2, -1/2)
(+1/2, 0, +1/2)
(+1/2, 0, -1/2)

Target
distorted
structure

Imma (74)

Using gradients we
can recover the
0.p. that matches
the data.

—
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We can additionally put constraints on the “learned” order parameters to recover
structures of intermediate symmetry.

input target output recovered output (with o.p. constraint)

e.g. constrain

pseudovector order
parameters to have
zero z-component

Pm3m (221)  Pnma (62)  Imma (74)
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We can additionally put constraints on the “learned” order parameters to recover
structures of intermediate symmetry.

input target output recovered output (with o.p. constraint)

e.g. constrain

pseudovector order
parameters to have
zero z-component

Pm3m (221)  Pnma (62)  Imma (74)
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One open question: <
Dealing with correlated outputs

Instead of order parameters, what if we just

make our outputs more useful, e.g. / \
sampleable?

This requires higher order correlations.

For per atom predictions,
we trace over these correlations.

N 4
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One open question: <
Dealing with correlated outputs

Instead of order parameters, what if we just
make our outputs more useful, e.g.
sampleable?

This requires higher order correlations.

For per atom predictions,
we trace over these correlations.

Application: Generative models / design
tools for physical systems \ /
e Lay down patterns, not just single
points at a time
e Learn hierarchical representations of
physical systems
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When given primitive unit cells, conventional unit cells, and supercells of the

same crystal the network makes the predictions that mean the same thing.
(assuming periodic boundary conditions)
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Neural networks are specially designed for different data types
in order to make use of special features (symmetries) of the data.

Data type

Type of
neural
network

Images

Convolutional
Pixels closer
together are more
important to each
other.

Spatial translation
symmetry

Text

Lorem ipsum dolor sit
amet, consectetur
adipiscing elit. Morbi
ultricies, justo ac viverra
euismod, justo odio
eleifend dolor, a imperdiet
quam nibh finibus mauris.
Morbi lobortis a lorem id
dapibus. Interdum et
malesuada fames...

Recurrent

The meaning of a
current word
depends on what
came before.

Time translation
symmetry

Graph

Graph
Data on nodes
interacts via edges

Permutation
symmetry

Science data in 3D

Euclidean

Physical data “means”
the same thing even
when we use different
coordinate systems

Euclidean
symmetry 116



If the network can identify an instance of a local or global pattern, it is guaranteed to
identify the pattern in any location / orientation / mirror (change of coordinate system).

if / .
|/translat|ons
then...
mirrors |/rotations
(rotation +
inversion)
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When can symmetry tell you something you don't know...

/ given inputs Xx... \
/ single output y \

Sym(y) 2 Sym(x)

v

direct
prediction

Sym(y) < Sym(x)

v

(1)

Missing
information

/ multiple outputs y. € {y} \

Sym(y,) 2 Sym(x) / Sym(y,) < Sym(x) J
/ Not related Eelated ,
by symmetry y symmetry
D(m)y € {y},
J vm €G/H
Scalar
sampling 0‘9 (2) /
Missing o (3)
information
Nonscalar

sampling '8
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] An introduction to machine learning with emojis
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B

An introduction to machine learning with emojis

@::

neural networks (deep learning) C machine learning C artificial intelligence

Example Task:

Goal is a model, _ _ ,
Predict the an/mal’g favorite _treat.

a program that learns
to give predictions
based on examples...

COOR

rameters J

mo

L
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(%%) An introduction to machine learning with emojis

(‘\\Eaf"h

Goal is a model,

a program that learns

to give predictions
based on examples and
feedback it gets during
training.

Error function evaluates
how well model is doing.

Example Task:

Predict the animal’s favorite treat.

neural networks (deep learning) C machine learning C artificial intelligence

error function

[ ) o
[ ) ' ( o ' ‘
. J
S L
mo arameters
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(%) An introduction to machine learning with emojis

(‘\\Eaf"h

Goal is a model,

a program that learns
to give predictions
based on examples and
feedback it gets during
training.

Error function evaluates
how well model is doing.

Neural networks use
derivatives (calculus) to
update model
parameters.

Example Task:

Predict the animal’s favorite treat.

neural networks (deep learning) C machine learning C artificial intelligence

error function

|
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I(%ﬁ An introduction to machine learning with emojis

~N

!\:[;’\4”'

Goal is a model,

a program that learns
to give predictions
based on examples and
feedback it gets during
training.

Error function evaluates
how well model is doing.

Neural networks use
derivatives (calculus) to
update model
parameters.

Example Task:

neural networks (deep learning) C machine learning C artificial intelligence

error function

modﬁérameters

|
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I(%ﬁ An introduction to machine learning with emojis

~N

!\:[;’\4”'

Goal is a model,

a program that learns
to give predictions
based on examples and
feedback it gets during
training.

Error function evaluates
how well model is doing.

Neural networks use
derivatives (calculus) to
update model
parameters.

Example Task:

Predict the animal’s favorite treat.

i

\

modﬁérameters

|

neural networks (deep learning) C machine learning C artificial intelligence
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(%) An introduction to machine learning with emojis

(‘\\Eaf"h

Goal is a model,

a program that learns
to give predictions
based on examples and
feedback it gets during
training.

Error function evaluates
how well model is doing.

Neural networks use
derivatives (calculus) to
update model
parameters.

Example Task:
Predict the animal’s favorite treat.

G

neural networks (deep learning) C machine learning C artificial intelligence

error function

|
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) An introduction to machine learning with emojis

{Q[;ftlh

Goal is a model,

a program that learns
to give predictions
based on examples and
feedback it gets during
training.

Error function evaluates
how well model is doing.

Neural networks use
derivatives (calculus) to
update model
parameters.

Example Task:

neural networks (deep learning) C machine learning C artificial intelligence

Predict the animal’s favorite treat. s error function

|
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I(%ﬁ An introduction to machine learning with emojis

~N

RATN

Goal is a model,

a program that learns
to give predictions
based on examples and
feedback it gets during
training.

Error function evaluates
how well model is doing.

Neural networks use
derivatives (calculus) to
update model
parameters.

Example Task:

Predict the animal’s favorite treat.

%,

neural networks (deep learning) C machine learning C artificial intelligence

\‘(\“«\a\\

R\

a\° ot©
c 0" 2 error function
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rameters J

128



(%) An introduction to machine learning with emojis

L,

Goal is a model,

a program that learns
to give predictions
based on examples and
feedback it gets during
training.

Error function evaluates
how well model is doing.

Neural networks use
derivatives (calculus) to
update model
parameters.

Example Task:
Predict the animal’s favorite treat.

neural networks (deep learning) C machine learning C artificial intelligence

error function
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l o l An introduction to machine learning with emojis

("'Iaf"h

Goal is a model,

a program that learns
to give predictions
based on examples and
feedback it gets during
training.

Error function evaluates
how well model is doing.

Neural networks use
derivatives (calculus) to
update model
parameters.

Example Task:

Predict the animal’s favorite treat

neural networks (deep learning) C machine learning C artificial intelligence

el
{«\9 \

c,a
error function

e
o o a
m - Dom”
\
g \ () :
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b l An introduction to machine learning with emojis

‘Lf"h

& neural networks (deep learning) C machine learning C artificial intelligence

Goal is a model,

a program that learns
to give predictions
based on examples and
feedback it gets during
training.

Error function evaluates
how well model is doing.

Neural networks use
derivatives (calculus) to
update model
parameters.

Back to main

Example Task:
Predict the animal’s favor/te treat

\

L A
mod&Fparameters
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