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First: Symmetry is useful
● Motivations for symmetry-equivariant ML
● Recent applications and findings

Second: Symmetry gives natural bases for expressing features
● Test out some content I’m developing for the course I’m teaching 

this Spring on symmetry + ML.
○ Irreducible representations and how to find them.

Third: Emergent behavior of equivariant nns
● Consequences of being symmetry-preserving
● Properties of E(3)NNs that have yet to be fully utilized.

○ Symmetry can tell you when you’re missing data.
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Machine learning models not built to handle symmetry require data augmentation. 
For 3D data, this is expensive, requiring ~500 fold augmentation.

training without rotational symmetry

training with symmetry
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(1)

(2)

To describe physical systems we use 
coordinate systems

(1) and (2) use different coordinate systems 
to describe the 
same physical system.

We can transform between coordinate systems 
using the symmetries of Euclidean space 
(3D rotations, translations, and inversion)

Traditional machine learning see
(1) and (2) as completely different!

We want methods that see
(1) and (2) as the same system 
described differently...

...so want machine learning
with symmetry!
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Invariant models pre-compute invariant features and throw away the coordinate system.
Equivariant models keep the coordinate system 
AND if the coordinate system changes, the outputs change accordingly.

θ

r



Interactions in equivariant models are more complex than invariant models 
but also more expressive…
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How do we interact invariant objects? Scalar multiplication.

= =
dot product
trace
invariant
L=0
1 degree of 
freedom

cross-product
antisymmetric
equivariant
L=1
3 degrees of 
freedom

symmetric
traceless
equivariant
L=2
5 degrees 
of freedom

Generalizes to higher orders. 
Same mathematics that describes 
atomic interactions, e.g. addition of 
angular momentum.

× =

How do we interact equivariant objects? Geometric tensor products!

× =
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Why limit yourself to functions with (Euclidean) symmetry? 
You can substantially shrink the space of functions you need to optimize over.
This means you need less data to constrain your function.

All learnable functions

All learnable 
functions 
constrained 
by your data.

Functions you 
actually wanted 
to learn.

All learnable 
E(3) functions
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Euclidean symmetry equivariant methods have Euclidean symmetry “built-in”. 
These methods understand that a physical system described by e.g. two different 
coordinate systems still “means” the same thing even without training.

An Euclidean neural network trained on one example 
of water, can predict properties in any rotation.
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Given a molecule and a rotated copy, 
predicted forces are the same up to rotation.
(Predicted forces are equivariant to rotation.)
Additionally, networks generalize to molecules with similar motifs.



We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.



We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
To do this… we first needed to build a general package for prototyping and scaling E(3)NNs.

Mario 
Geiger

Also
e3nn-jax!



We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
Properties…
● Forces
● Energy
● …

Electronic Structure…
● Charge Density
● Hamiltonian
● DOS
…

Coarse-grain
Coords.

Fine-grain
Coords

Encoder / decoder
partial generation.
For example…



With collaborators, Kozinsky Group @ Harvard

Jan. 2021 – NequIP (Batzner et al.)
E(3)NN methods 1000x more data efficient 
(more accurate with less data).

Apr. 2022 – Allegro (Musaelian et al.)
E(3)NN methods are more accurate than and as 
scalable as DeePMD on 100 million atom systems.
(~100 GPUs).

We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
E(3)NNs are state-of-the-art in accuracy for ab initio machine learned molecular dynamics.

50 nm

Cu

Open source codes
Allegro: https://github.com/mir-group/allegro
NequIP: https://github.com/mir-group/nequip
e3nn: https://github.com/e3nn/e3nn/ 

Dec. 2020 – DeePMD 
Gordon Bell Prize (the Nobel Prize of Supercomputing) 
goes to DeePMD for machine learned MD on 
100 million atoms with ab initio accuracy (27,000 GPUs).

Boris Kozinsky
Simon Batzner
Alby Musaelian



We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
…and estimate the “nearsightedness” of water.

Predict electron density (DFT and CCSD) of larger water cluster when trained on smaller water clusters. 
See at what “size” of training data accuracy converges.
(arXiv:2201.03726)

Josh 
Rackers

Lucas
Tecot



We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
…and generate fine-grain molecular conformations from coarse-grained molecules

Learn to coarsen and “re-fine” molecules
(arXiv:2201.12176)

Rafael Gomez-Bombarelli
Wujie Wang
Minkai Xu
Chen Cai
…



Equiformer  = Equivariant graph 
attention transformer
ICLR 2023
(arXiv:2206.11990)

Submitted model is on substantially less 
data than leading models and is trained 
for ~10x less epochs.

We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
…and E(3)NNs are approaching state-of-art for OC20 and with shorter training times.

Yi-Lun 
Liao

1. 

2.

3.

9.

10.

11.



We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
…and E(3)NNs are approaching state-of-art for OC20 and with shorter training times.

Yi-Lun 
Liao

Equiformer + SCN

Equiformer + Spherical Channel Network takes 
2nd place in OC20 2022 Challenge!
C. L. Zitnick, A Das, … B. Wood (Meta)
SCN: https://arxiv.org/abs/2206.14331

EquiFold by Prescient Design and friends
Applies a Equiformer inspired architecture to 
protein folding. 
Comparable accuracy to AlphaFold without "multi-sequence 
alignment" and much faster 
(e.g. some task EF 1 sec vs. AF 1 hour). 
biorXiv:10.1101/2022.10.07.511322
Equifold code



We’ve used E(3)NNs to build data-efficient and scalable models of physical processes.
Properties…
● Forces
● Energy
● …

Electronic Structure…
● Charge Density
● Hamiltonian
● DOS
…

Coarse-grain
Coords.

Fine-grain
Coords

Encoder / decoder
partial generation.
For example…



Power law
scaling exponent

β = slope
βeq > βinv

invariant

equivariant

(log)
Error

(log) Number of training examples

Equivariant models are more data efficient than invariant models (even when predicting invariants). 
Error reduces more quickly with equivariant than invariant models.

Architecture 
and task 
dependent 
offset.



This phenomena is observed across different 
architectures and training tasks. 

L
max = 0

L
max = 1

Force fields
S. Batzner et al.

L
max = 0L

max  = 1

L
max  > 1

Predicting electron densities
J. Rackers et al.

N. Frey et al.
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○ Irreducible representations and how to find them.

Third: Emergent behavior of equivariant nns
● Consequences of being symmetry-preserving
● Properties of E(3)NNs that have yet to be fully utilized.

○ Symmetry can tell you when you’re missing data.
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Euclidean neural networks: neural networks + representation theory
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neural networks = deep learning ⊂ machine learning ⊂ artificial intelligence

Any machine 
learned 
model

input learnable 
parameters

predicted 
output

Evaluate performance using a loss / error function

Neural networks must be differentiable so 
we can update the weights with...

tsmidt@mit.edu | T. E. Smidt. Trends in Chemistry (2021) | e3nn.org

neural networks 
with emojis?

Euclidean neural networks: neural networks + representation theory



29

Euclidean neural networks: neural networks + representation theory

(group) representation theory: how do things transform under group action
point groups, space groups, selection rules, symmetry allowed / forbidden properties

tsmidt@mit.edu | T. E. Smidt. Trends in Chemistry (2021) | e3nn.org
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Euclidean neural networks: neural networks + representation theory

All neural network operations are 
constructed to commute with group 
action D(g).
Rotations, translations, inversion

i.e. we can "rotate" the inputs or the 
outputs and we get the same thing.

g is an element of Euclidean symmetry

tsmidt@mit.edu | T. E. Smidt. Trends in Chemistry (2021) | e3nn.org

D(g) is how we "represent" g acting on x 
(or f(x)).

The form of D(g) depends on what it’s 
acting on! (e.g. x vs. f(x)) 

(group) representation theory: how do things transform under group action
point groups, space groups, selection rules, symmetry allowed / forbidden properties



Groups can act on many types of mathematical objects.
For 3D rotations, the most familiar ones are scalars (no change) and the 3D vector.
Can create more complex objects by tensor producting known vector spaces.
By knowing how rotations act on the smaller spaces, we can figure out how it acts on the larger one. 
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R is scalar or vector 
representation.

Solve to find whether Q exists to map 
parts of new vector space to known 
representations (scalar and vector).
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Wash. Rinse. Repeat.

irreduciblereducible

Groups can act on many types of mathematical objects.
For 3D rotations, the most familiar ones are scalars (no change) and the 3D vector.
Can create more complex objects by tensor producting known vector spaces.
By knowing how rotations act on the smaller spaces, we can figure out how it acts on the larger one. 



L=2 spherical harmonics
Use to derive spherical harmonics!

Groups can act on many types of mathematical objects.
For 3D rotations, the most familiar ones are scalars (no change) and the 3D vector.
Can create more complex objects by tensor producting known vector spaces.
By knowing how rotations act on the smaller spaces, we can figure out how it acts on the larger one. 



Change of basis
2 vector spaces of irreps 
⇨ 1 vector space of irreps 
“Clebsch-Gordan Coefficients”

Groups can act on many types of mathematical objects.
For 3D rotations, the most familiar ones are scalars (no change) and the 3D vector.
Can create more complex objects by tensor producting known vector spaces.
By knowing how rotations act on the smaller spaces, we can figure out how it acts on the larger one. 
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“Coefficients”

The (angular) basis of many descriptors and convolutions in E(3) equivariant networks
Spherical harmonic projections

Why useful?
Variable peaks but a fixed length signal!
Can describe a distribution of vectors.



Coefficients attached to each spherical harmonic

The (angular) basis of many descriptors and convolutions in E(3) equivariant networks
Spherical harmonic projections



Typical signature of high 
symmetry objects: 
cancelation of terms.

Coefficients attached to each spherical harmonic

The (angular) basis of many descriptors and convolutions in E(3) equivariant networks
Spherical harmonic projections



From spherical harmonic projections we can create invariants using tensor products.
Power spectra, bispectra, …

Scalars
Power spectra

Scalars
Bispectra



From spherical harmonic projections we can create invariants using tensor products.
Power spectra, bispectra, … but in equivariant nns we can use the equivariant data.

Scalars
Power spectra

Scalars
Bispectra



The input to our network is geometry and (geometric tensor) features on that geometry.

50

geometry = [[x0, y0, z0],[x1, y1, z1]]
features = [

[m0, v0y, v0z, v0x, a0y, a0z, a0x]
[m1, v1y, v1z, v1x, a1y, a1z, a1x]

] 
...

tsmidt@mit.edu | T. E. Smidt. Trends in Chemistry (2021) | e3nn.org
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geometry = [[x0, y0, z0],[x1, y1, z1]]
features = [

[m0, v0y, v0z, v0x, a0y, a0z, a0x]
[m1, v1y, v1z, v1x, a1y, a1z, a1x]

] 
scalar = e3nn.o3.Irrep(“0e”)  # L=0, even
vector = e3nn.o3.Irrep(“1o”)  # L=1, odd
irreps = 1 * scalar + 1 * vector + 1 * vector

The input to our network is geometry and (geometric tensor) features on that geometry.
We categorize our features by how they transform under rotation and parity
as irreducible representations of O(3).

tsmidt@mit.edu | T. E. Smidt. Trends in Chemistry (2021) | e3nn.org



from e3nn import o3

Rs_s_orbital = o3.Irrep(“0e”)

Rs_p_orbital = o3.Irrep(“1o”)

Rs_d_orbital = o3.Irrep(“2e”)

Rs_f_orbital = o3.Irrep(“3o”)

tsmidt@mit.edu | T. E. Smidt. Trends in Chemistry (2021) | e3nn.org

All data (input, intermediates, output) in E(3)NNs are geometric tensors.
Geometric tensors are the “data types” of 3D space and have many forms.
But they all transform predictably under rotation, translation, and inversion.

(angular portion of hydrogen atomic orbitals)
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● Motivations for symmetry-equivariant ML
● Recent applications and findings

Second: Symmetry gives natural bases for expressing features
● Test out some content I’m developing for the course I’m teaching 

this Spring on symmetry + ML.
○ Irreducible representations and how to find them.

Third: Emergent behavior of equivariant nns
● Consequences of being symmetry-preserving
● Properties of E(3)NNs that have yet to be fully utilized.

○ Symmetry can tell you when you’re missing data.
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ENNs have the symmetry of the representation built-in.
However, the symmetry of the inputs also matter! ENNs preserve symmetry.
Many different types of geometric objects have the same symmetry.
ENN transforms geometric objects into different objects with same or higher symmetry.
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Just like the properties of physical systems,
the outputs of E(3)NNs have equal or higher symmetry than the inputs.

input random 
model 1

random 
model 2

random 
model 3

Tetrahedron

Octahedron

“When effects show certain asymmetry, this asymmetry must be found 
  in the causes that gave rise to them.”Curie’s principle (1894):

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org
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Cases where we need to predict lower symmetry outputs?
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6 different vectors
in reciprocal space
(+½,  +½,     0)
(+½,   -½,     0)
(  0,   +½,  +½)
(  0,   +½,   -½)
(+½,     0,  +½)
(+½,     0,   -½)

b+c c+a

a-b b-c c-a

a+b
a

b

cWant to predict all 
possible order 
parameters and 
sample equally!

Predict 
distortion 
displacements

Target 
distorted 
structure

Cases where we need to predict lower symmetry outputs?
Structural phase transitions of crystals (and other symm breaking properties, e.g. magnetic order)

Octahedral tilting 
in perovskites

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org
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Cases where we need to predict lower symmetry outputs?
Dataset may be missing the needed information for inputs and outputs to be compatible by symmetry.

Approximately Equivariant Networks for Imperfectly Symmetric Dynamics
R. Wang, R. Walters, R. Yu, ICML 2022
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Cases where we need to predict lower symmetry outputs?
Dataset may be missing the needed information for inputs and outputs to be compatible by symmetry.

Approximately Equivariant Networks for Imperfectly Symmetric Dynamics
R. Wang, R. Walters, R. Yu, ICML 2022
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When can symmetry tell you something you don't know...
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When can symmetry tell you something you don't know...

inputs x and 
outputs y

single 
correct
output

Sym(y) ≥ Sym(x)

🍦
Scalar 
sampling

🍦
Direct
prediction

multiple 
correct
outputs
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When can symmetry tell you something you don't know...

inputs x and 
outputs y

single 
correct
output

Sym(y) ≥ Sym(x)

Sym(y) < Sym(x)

🍦
Scalar 
sampling

🥸
Missing 
information

🍦
Direct
prediction

(1)

multiple 
correct
outputs

single 
correct
output
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When can symmetry tell you something you don't know...

inputs x and 
outputs y

single 
correct
output

Sym(y) ≥ Sym(x)

Sym(y) < Sym(x)

Related 
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🍦
Scalar 
sampling

🌼
Nonscalar 
sampling

🥸
Missing 
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🥸
Missing 
information

🍦
Direct
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(1) (2) (3)

multiple 
correct
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single 
correct
output
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When can symmetry tell you something you don't know...

inputs x and 
outputs y

single 
correct
output

Sym(y) ≥ Sym(x)

Sym(y) < Sym(x)

Related 
by symmetry

Not related 
by symmetry

🍦
Scalar 
sampling

🌼
Nonscalar 
sampling

🥸
Missing 
information

🥸
Missing 
information

🍦
Direct
prediction

(1) (2) (3)

multiple 
correct
outputs

single 
correct
output

multiple 
correct
outputs

This becomes particularly 
important when using 
experimental data, e.g. partial 
inputs or observations!
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When can symmetry tell you something you don't know...

inputs x and 
outputs y

single 
correct
output

Sym(y) ≥ Sym(x)

Sym(y) < Sym(x)

Related 
by symmetry

Not related 
by symmetry

🍦
Scalar 
sampling

🌼
Nonscalar 
sampling

🥸
Missing 
information

🥸
Missing 
information

🍦
Direct
prediction

(1) (2) (3)

multiple 
correct
outputs

single 
correct
output

multiple 
correct
outputs
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(1) Sym(y) < Sym(x) ⇨ Single output ⇨ Missing Information   

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org

Sym(y) ≥ Sym(x) Sym(y) < Sym(x)



✓ ✗
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(1) Sym(y) < Sym(x) ⇨ Single output ⇨ Missing Information   

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org

Sym(y) ≥ Sym(x) Sym(y) < Sym(x)
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Network 
predicts 
degenerate 
outcomes!

✓ ✗

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org

(1) Sym(y) < Sym(x) ⇨ Single output ⇨ Missing Information   

Sym(y) ≥ Sym(x) Sym(y) < Sym(x)
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degenerate 
lower-symmetry states

Energy

higher-symmetry 
state

mirror 
symmetry

Order parameters describe symmetry breaking and 
distinguish between degenerate states.

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org
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higher-symmetry 
state

degenerate 
lower-symmetry states

Energy

mirror 
symmetry

order
parameter

⇨+

Order parameters describe symmetry breaking and 
distinguish between degenerate states.

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org
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Using the training procedure itself, we can find data that is implied by symmetry
(symmetry-breaking “order parameters”).

What information does the network 
need to “pick” a rectangle?

Update weights using...
inputs

input learnable 
parameters

predicted 
output

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org
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→ Learns anisotropic inputs. → Model can fit.
Input

L = 0 + 2 + 4L = 0

Use gradients to “find” what’s missing.

Irreps with
even parity 
L ≥ 2  break 
degeneracy 
between x and 
y directions.

Using the training procedure itself, we can find data that is implied by symmetry
(symmetry-breaking “order parameters”).

Output

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org
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When can symmetry tell you something you don't know...

inputs x and 
outputs y

single 
correct
output

Sym(y) ≥ Sym(x)

Sym(y) < Sym(x)

Related 
by symmetry

Not related 
by symmetry

🍦
Scalar 
sampling

🌼
Nonscalar 
sampling

🥸
Missing 
information

🥸
Missing 
information

🍦
Direct
prediction

(1) (2) (3)

multiple 
correct
outputs

single 
correct
output

multiple 
correct
outputs
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When can symmetry tell you something you don't know...

inputs x and 
outputs y

single 
correct
output

Sym(y) ≥ Sym(x)

Sym(y) < Sym(x)

Related 
by symmetry

Not related 
by symmetry

🍦
Scalar 
sampling

🌼
Nonscalar 
sampling

🥸
Missing 
information

🥸
Missing 
information

🍦
Direct
prediction

(1) (2) (3)

multiple 
correct
outputs

single 
correct
output

multiple 
correct
outputs
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(2) Multiple outputs ⇨ Not related by symmetry ⇨ Missing Information

input output 1 output 2

By symmetry these outputs must be generated 
by different inputs. 
e.g. unobserved system features.
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(2) Multiple outputs ⇨ Not related by symmetry ⇨ Missing Information

input output 1 output 2

By symmetry these outputs must be generated 
by different inputs. 
e.g. unobserved system features.
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When can symmetry tell you something you don't know...
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When can symmetry tell you something you don't know...

inputs x and 
outputs y

single 
correct
output
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by symmetry

Not related 
by symmetry

🍦
Scalar 
sampling

🌼
Nonscalar 
sampling

🥸
Missing 
information

🥸
Missing 
information

🍦
Direct
prediction

(1) (2) (3)

multiple 
correct
outputs

single 
correct
output

multiple 
correct
outputs
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Goal: Partition this graph 
into two subgraphs

[1, 0]

[0, 1]
subgraph 1
subgraph 2

(3) Multiple outputs ⇨ Related by symmetry  ⇨ Nonscalar sampling
An analogous problem to the square ⇨ rectangle for the permutation group.  
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Trained

Learned

Goal: Partition this graph 
into two subgraphs

[1, 0]

[0, 1]

[1, 0, 0, 1]

[½, ½, ½, ½]

subgraph 1
subgraph 2

(3) Multiple outputs ⇨ Related by symmetry  ⇨ Nonscalar sampling
An analogous problem to the square ⇨ rectangle for the permutation group.  
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Trained

Learned

Implied

Goal: Partition this graph 
into two subgraphs

[1, 0]

[0, 1]

[1, 0, 0, 1]

[0, 1, 1, 0]

[½, ½, ½, ½]

subgraph 1
subgraph 2

(3) Multiple outputs ⇨ Related by symmetry  ⇨ Nonscalar sampling
An analogous problem to the square ⇨ rectangle for the permutation group.  
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Trained

Learned

Implied

Goal: Partition this graph 
into two subgraphs

[1, 0]

[0, 1]

[1, 0, 0, 1]

[0, 1, 1, 0]

[½, ½, ½, ½]

subgraph 1
subgraph 2

Not particular helpful.
Can't recover distinct 
partitions.

(3) Multiple outputs ⇨ Related by symmetry  ⇨ Nonscalar sampling
An analogous problem to the square ⇨ rectangle for the permutation group.  
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Trained

Learned

Implied

Goal: Partition this graph 
into two subgraphs

[1, 0]

[0, 1]

[1, 0, 0, 1]

[0, 1, 1, 0]

[½, ½, ½, ½]

subgraph 1
subgraph 2

(3) Multiple outputs ⇨ Related by symmetry  ⇨ Nonscalar sampling
An analogous problem to the square ⇨ rectangle for the permutation group.  
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(3) Multiple outputs ⇨ Related by symmetry  ⇨ Nonscalar sampling
An analogous problem to the square ⇨ rectangle for the permutation group.  

Trained

Learned

Implied

Goal: Partition this graph 
into two subgraphs

[1, 0]

[0, 1]

[1, 0, 0, 1]

[0, 1, 1, 0]

[½, ½, ½, ½]

subgraph 1
subgraph 2

Does not have unique 
decomposition!
... but this (often) does!
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6 different vectors
in reciprocal space
(+½,  +½,     0)
(+½,   -½,     0)
(  0,   +½,  +½)
(  0,   +½,   -½)
(+½,     0,  +½)
(+½,     0,   -½)

b+c c+a

a-b b-c c-a

a+b
a

b

cWant to predict all 
possible order 
parameters and 
sample equally!

Predict 
distortion 
displacements

Target 
distorted 
structure

(3) Multiple outputs ⇨ Related by symmetry  ⇨ Nonscalar sampling
A physical example: Structural phase transitions of crystals

Octahedral tilting 
in perovskites

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org
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When can symmetry tell you something you don't know...

inputs x and 
outputs y

single 
correct
output

Sym(y) ≥ Sym(x)

Sym(y) < Sym(x)

Related 
by symmetry

Not related 
by symmetry

🍦
Scalar 
sampling

🌼
Nonscalar 
sampling

🥸
Missing 
information

🥸
Missing 
information

🍦
Direct
prediction

(1) (2) (3)

multiple 
correct
outputs

single 
correct
output

multiple 
correct
outputs



Euclidean neural networks are built 
with the powerful assumption that 
atomic systems exist in 3D Euclidean 
space.

E(3)NNs have demonstrated accuracy 
on a wide range of atomistic systems.

TA
K

EA
W

AY
S

Tess Smidt | tsmidt@mit.edu | e3nn.org

This makes these models data-efficient, 
robust, scalable, and generalizable.

QM accurate MD 
on 100s of millions 
of atoms.

ENN properties can uncover missing 
information and efficiently learn statistics 
of physical systems.



Calling in backup (slides)!

90
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92



93



The input to our network is geometry and (geometric tensor) features on that geometry.

94

geometry = [[x0, y0, z0],[x1, y1, z1]]
features = [

[m0, v0y, v0z, v0x, a0y, a0z, a0x]
[m1, v1y, v1z, v1x, a1y, a1z, a1x]

] 
...

tsmidt@mit.edu | T. E. Smidt. Trends in Chemistry (2021) | e3nn.org
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geometry = [[x0, y0, z0],[x1, y1, z1]]
features = [

[m0, v0y, v0z, v0x, a0y, a0z, a0x]
[m1, v1y, v1z, v1x, a1y, a1z, a1x]

] 
scalar = e3nn.o3.Irrep(“0e”)  # L=0, even
vector = e3nn.o3.Irrep(“1o”)  # L=1, odd
irreps = 1 * scalar + 1 * vector + 1 * vector

The input to our network is geometry and (geometric tensor) features on that geometry.
We categorize our features by how they transform under rotation and parity
as irreducible representations of O(3).

tsmidt@mit.edu | T. E. Smidt. Trends in Chemistry (2021) | e3nn.org



96

geometry = [[x0, y0, z0],[x1, y1, z1]]
features = [

[m0, v0y, v0z, v0x, a0y, a0z, a0x]
[m1, v1y, v1z, v1x, a1y, a1z, a1x]

] 
scalar = e3nn.o3.Irrep(“0e”)  # L=0, even
vector = e3nn.o3.Irrep(“1o”)  # L=1, odd
irreps = 1 * scalar + 1 * vector + 1 * vector

The input to our network is geometry and (geometric tensor) features on that geometry.
We categorize our features by how they transform under rotation and parity
as irreducible representations of O(3).

tsmidt@mit.edu | T. E. Smidt. Trends in Chemistry (2021) | e3nn.org

In order for the network to preserve 
symmetry, we need to tell it what 
symmetry there is to begin with
(e.g. scalars, vectors, ...)



from e3nn import o3

Rs_s_orbital = o3.Irrep(“0e”)

Rs_p_orbital = o3.Irrep(“1o”)

Rs_d_orbital = o3.Irrep(“2e”)

Rs_f_orbital = o3.Irrep(“3o”)

tsmidt@mit.edu | T. E. Smidt. Trends in Chemistry (2021) | e3nn.org

All data (input, intermediates, output) in E(3)NNs are geometric tensors.
Geometric tensors are the “data types” of 3D space and have many forms.
But they all transform predictably under rotation, translation, and inversion.

(angular portion of hydrogen atomic orbitals)



We learn complex descriptions by interacting given features and functions of geometry.

>> e.g. convolutions with Euclidean symmetry



convolutional neural networks:
Used for images. In each layer, scan over image with learned filters.

http://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/

In standard image convolutions, filter depends on coordinate system.



For atoms and other point set data, rather than image convolutions, we perform 
continuous convolutions… 
We can operate any geometric data: 
voxels, meshes, splines, points, etc. For atoms...
We use points. Images of atomic systems are sparse and imprecise. We use continuous convolutions 

with atoms as convolution 
centers.

Neighbor  
atoms

Convolution 
center

vs.

filter filter function



=
Neighbor  
atoms

Convolution 
center

...and in order to interact our filters with our 
inputs we need geometric tensor algebra.

E(3) symmetry preserving convolutional filters are based 
on learned radial functions and spherical harmonics...

… and we require the convolutional filter to be symmetry-preserving.
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These networks can recognize equivalent recurring geometric patterns that 
appear in different locations and orientations (from seeing only one example).



103

Why not limit yourself to invariant functions? 
You have to guarantee that your input features already
contain any necessary equivariant interactions (e.g. cross-products).

All learnable 
equivariant 
functions

Functions you actually 
wanted to learn.All learnable 

invariant 
functions.

All invariant 
functions 
constrained by 
your data.

OR



104

Just like the properties of physical systems,
the outputs of E(3)NNs have equal or higher symmetry than the inputs.

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org
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✓ ✗

Just like the properties of physical systems,
the outputs of E(3)NNs have equal or higher symmetry than the inputs.

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org
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(1) Single output ⇨ Missing Information
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Trained

Learned

Implied

(3) Multiple outputs ⇨ Related by symmetry  ⇨ Nonscalar sampling
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Predict 
distortion 
displacements

Target 
distorted 
structure

Octahedral tilting 
in perovskites

Using the training procedure itself, we can find data that is implied by symmetry
(symmetry-breaking “order parameters”).

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org
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6 different vectors
in reciprocal space
(+½,  +½,     0)
(+½,   -½,     0)
(  0,   +½,  +½)
(  0,   +½,   -½)
(+½,     0,  +½)
(+½,     0,   -½)

b+c c+a

a-b b-c c-a

a+b
a

b

c
Using gradients we 
can recover the 
o.p. that matches 
the data.

Predict 
distortion 
displacements

Target 
distorted 
structure

Using the training procedure itself, we can find data that is implied by symmetry
(symmetry-breaking “order parameters”).

Octahedral tilting 
in perovskites

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org
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We can additionally put constraints on the “learned” order parameters to recover 
structures of intermediate symmetry. 

input recovered output (with o.p. constraint)target output

e.g. constrain 
pseudovector order 
parameters to have 
zero z-component

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org
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We can additionally put constraints on the “learned” order parameters to recover 
structures of intermediate symmetry. 

input recovered output (with o.p. constraint)target output

e.g. constrain 
pseudovector order 
parameters to have 
zero z-component

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org
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One open question: 
Dealing with correlated outputs

Instead of order parameters, what if we just 
make our outputs more useful, e.g. 
sampleable?

This requires higher order correlations.

For per atom predictions, 
we trace over these correlations.

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org

✓

✓
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✗

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org

One open question: 
Dealing with correlated outputs

Instead of order parameters, what if we just 
make our outputs more useful, e.g. 
sampleable?

This requires higher order correlations.

For per atom predictions, 
we trace over these correlations.



114

✗

tsmidt@mit.edu | T. E. Smidt, M. Geiger, B. K. Miller. Physical Review Research (2021) | e3nn.org

One open question: 
Dealing with correlated outputs

Instead of order parameters, what if we just 
make our outputs more useful, e.g. 
sampleable?

This requires higher order correlations.

For per atom predictions, 
we trace over these correlations.

Application: Generative models / design 
tools for physical systems
● Lay down patterns, not just single 

points at a time
● Learn hierarchical representations of 

physical systems
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When given primitive unit cells, conventional unit cells, and supercells of the 
same crystal the network makes the predictions that mean the same thing. 
(assuming periodic boundary conditions)



Lorem ipsum dolor sit 
amet, consectetur 
adipiscing elit. Morbi 
ultricies, justo ac viverra 
euismod, justo odio 
eleifend dolor, a imperdiet 
quam nibh finibus mauris. 
Morbi lobortis a lorem id 
dapibus. Interdum et 
malesuada fames...

116

Neural networks are specially designed for different data types 
in order to make use of special features (symmetries) of the data.

Text

Recurrent
The meaning of a 
current word 
depends on what 
came before.

Images

Convolutional
Pixels closer 
together are more 
important to each 
other.

Graph

Graph
Data on nodes 
interacts via edges

Science data in 3DData type

Type of
neural 
network

Spatial translation 
symmetry 

Time translation 
symmetry 

Permutation
symmetry 

Euclidean
Physical data “means” 
the same thing even 
when we use different 
coordinate systems

Euclidean
symmetry 
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If the network can identify an instance of a local or global pattern, it is guaranteed to 
identify the pattern in any location / orientation / mirror (change of coordinate system).

✓if
then...

✓mirrors
(rotation +   
 inversion)

✓translations

✓rotations

tsmidt@mit.edu | T. E. Smidt. Trends in Chemistry (2021) | e3nn.org
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When can symmetry tell you something you don't know...

given inputs x...

single output y multiple outputs yi ∈ {y}

Sym(y) ≥ Sym(x) Sym(y) < Sym(x)

Related 
by symmetry
D(m)y ∈ {y},
∀m ∈G/H

Not related 
by symmetry🍦

Scalar 
sampling

🌼
Nonscalar 
sampling

🥸
Missing 
information

Sym(yi) ≥ Sym(x)

🥸
Missing 
information

Sym(yi) < Sym(x)

🍦
direct
prediction

(1)

(2)
(3)



nn with emojis
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neural networks (deep learning) ⊂ machine learning ⊂ artificial intelligence

🤖 An introduction to machine learning with emojis 

🥳



model

121

Goal is a model, 
a program that learns
to give predictions 
based on examples...

neural networks (deep learning) ⊂ machine learning ⊂ artificial intelligence
Calculus finger of 

blame!

🤪 🤪 
🤪 🤪 
🤪 🤪 
🤪 🤪 
🤪

🐵🍌
🐰🥕
🐶🦴
🐱🐭
🐔🐛
🐝🌼
🐮🌱
🍦

🤖 An introduction to machine learning with emojis 

🥳

�� ��

��

model parameters

Example Task: 
Predict the animal’s favorite treat.

Calculus finger of 
blame!



model
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Goal is a model, 
a program that learns
to give predictions 
based on examples and 
feedback it gets during 
training.

Error function evaluates 
how well model is doing.

neural networks (deep learning) ⊂ machine learning ⊂ artificial intelligence
Calculus finger of 

blame!

🤪 🤪 
🤪 🤪 
🤪 🤪 
🤪 🤪 
🤪

🐵🍌
🐰🥕
🐶🦴
🐱🐭
🐔🐛
🐝🌼
🐮🌱
🍦

🤖 An introduction to machine learning with emojis 

🥳

��


��

��
error function

model parameters

(🐔 - 🐛)2 

Calculus finger of 
blame!

Example Task: 
Predict the animal’s favorite treat.



model
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Goal is a model, 
a program that learns
to give predictions 
based on examples and 
feedback it gets during 
training.

Error function evaluates 
how well model is doing.

Neural networks use 
derivatives (calculus) to 
update model 
parameters.

neural networks (deep learning) ⊂ machine learning ⊂ artificial intelligence
Calculus finger of 

blame!

🤪 🤪 
🤪 🤪 
🤪 🤪 
🤪 🤪 
🤪

🐵🍌
🐰🥕
🐶🦴
🐱🐭
🐔🐛
🐝🌼
🐮🌱
🍦

🤖 An introduction to machine learning with emojis 

🥳

��


��

��
error function

model parameters

(🐔 - 🐛)2 

Calculus finger of 
blame!

Example Task: 
Predict the animal’s favorite treat.



model
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Goal is a model, 
a program that learns
to give predictions 
based on examples and 
feedback it gets during 
training.

Error function evaluates 
how well model is doing.

Neural networks use 
derivatives (calculus) to 
update model 
parameters.

neural networks (deep learning) ⊂ machine learning ⊂ artificial intelligence
Calculus finger of 

blame!

🤪 😱 
🤪 😬 
🤪 🤪 
🤪 😭 
🤪

🐵🍌
🐰🥕
🐶🦴
🐱🐭
🐔🐛
🐝🌼
🐮🌱
🍦

🤖 An introduction to machine learning with emojis 

🥳

��


��

��
error function

model parameters

(🐔 - 🐛)2 

Calculus finger of 
blame!

Calculus finger 

of blame!
Example Task: 
Predict the animal’s favorite treat.
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Goal is a model, 
a program that learns
to give predictions 
based on examples and 
feedback it gets during 
training.

Error function evaluates 
how well model is doing.

Neural networks use 
derivatives (calculus) to 
update model 
parameters.

neural networks (deep learning) ⊂ machine learning ⊂ artificial intelligence
Calculus finger of 

blame!

🤪 😇 
🤪 🤔 
🤪 🤪 
🤪 🧐 
🤪

🐵🍌
🐰🥕
🐶🦴
🐱🐭
🐔🐛
🐝🌼
🐮🌱
🍦

🤖 An introduction to machine learning with emojis 

🥳

��


��

��
error function

model parameters

Example Task: 
Predict the animal’s favorite treat.

(🐛 - 🐛)2 

Calculus finger of 
blame!

Calculus thumb 

of approval!
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Goal is a model, 
a program that learns
to give predictions 
based on examples and 
feedback it gets during 
training.

Error function evaluates 
how well model is doing.

Neural networks use 
derivatives (calculus) to 
update model 
parameters.

neural networks (deep learning) ⊂ machine learning ⊂ artificial intelligence
Calculus finger of 

blame!

🤪 😇 
🤪 🤔 
🤪 🤪 
🤪 🧐 
🤪

🐵🍌
🐰🥕
🐶🦴
🐱🐭
🐔🐛
🐝🌼
🐮🌱
🍦

🤖 An introduction to machine learning with emojis 

🥳

��


��

��
error function

model parameters

Example Task: 
Predict the animal’s favorite treat.

(🐔 - 🥕)2 

Calculus finger of 
blame!
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Goal is a model, 
a program that learns
to give predictions 
based on examples and 
feedback it gets during 
training.

Error function evaluates 
how well model is doing.

Neural networks use 
derivatives (calculus) to 
update model 
parameters.

neural networks (deep learning) ⊂ machine learning ⊂ artificial intelligence
Calculus finger of 

blame!

🤪 😇 
🤪 🤔 
🥴 😜 
😳 🧐 
🤪

🐵🍌
🐰🥕
🐶🦴
🐱🐭
🐔🐛
🐝🌼
🐮🌱
🍦

🤖 An introduction to machine learning with emojis 

🥳

��


��

��
error function

model parameters

Example Task: 
Predict the animal’s favorite treat.

(🐔 - 🥕)2 

Calculus finger of 
blame!

Calculus finger 

of blame!



model
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Goal is a model, 
a program that learns
to give predictions 
based on examples and 
feedback it gets during 
training.

Error function evaluates 
how well model is doing.

Neural networks use 
derivatives (calculus) to 
update model 
parameters.

neural networks (deep learning) ⊂ machine learning ⊂ artificial intelligence
Calculus finger of 

blame!

🤪 😇 
🤪 🤔 
🤓 😁 
🥳 🧐 
🤪

🐵🍌
🐰🥕
🐶🦴
🐱🐭
🐔🐛
🐝🌼
🐮🌱
🍦

🤖 An introduction to machine learning with emojis 

🥳

��


��

��
error function

model parameters

Example Task: 
Predict the animal’s favorite treat.

(🥕 - 🥕)2 

Calculus finger of 
blame!

Calculus thumb 

of approval!
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Goal is a model, 
a program that learns
to give predictions 
based on examples and 
feedback it gets during 
training.

Error function evaluates 
how well model is doing.

Neural networks use 
derivatives (calculus) to 
update model 
parameters.

neural networks (deep learning) ⊂ machine learning ⊂ artificial intelligence
Calculus finger of 

blame!

🤪 😇 
🤪 🤔 
🤓 😁 
🥳 🧐 
🤪

🐵🍌
🐰🥕
🐶🦴
🐱🐭
🐔🐛
🐝🌼
🐮🌱
🍦

🤖 An introduction to machine learning with emojis 

🥳

��


��

��
error function

model parameters

Example Task: 
Predict the animal’s favorite treat.

(🐔 - 🌼)2 

Calculus finger of 
blame!
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Goal is a model, 
a program that learns
to give predictions 
based on examples and 
feedback it gets during 
training.

Error function evaluates 
how well model is doing.

Neural networks use 
derivatives (calculus) to 
update model 
parameters.

neural networks (deep learning) ⊂ machine learning ⊂ artificial intelligence
Calculus finger of 

blame!

🤥 😇 
😵 🤔 
🤓 😁 
🥳 🧐 
🥺

🐵🍌
🐰🥕
🐶🦴
🐱🐭
🐔🐛
🐝🌼
🐮🌱
🍦

🤖 An introduction to machine learning with emojis 

🥳

��


��

��
error function

model parameters

Example Task: 
Predict the animal’s favorite treat.

(🐔 - 🌼)2 

Calculus finger of 
blame!

Calculus finger 

of blame!
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Goal is a model, 
a program that learns
to give predictions 
based on examples and 
feedback it gets during 
training.

Error function evaluates 
how well model is doing.

Neural networks use 
derivatives (calculus) to 
update model 
parameters.

neural networks (deep learning) ⊂ machine learning ⊂ artificial intelligence
Calculus finger of 

blame!

🤠 😇 
🤗  🤔 
🤓 😁 
🥳 🧐 
😎🐵🍌

🐰🥕
🐶🦴
🐱🐭
🐔🐛
🐝🌼
🐮🌱
🍦

🤖 An introduction to machine learning with emojis 

🥳

��


��

��
error function

model parameters

Example Task: 
Predict the animal’s favorite treat.

(🌼 - 🌼)2 

Calculus finger of 
blame!

Calculus thumb 

of approval!

Back to main


