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AlphaFold2 Revolution



Summary of Capabilities

• Single proteins and complexes
• As long as can fit into GPUs
• Median accuracy ~2Å

• Struggles a bit with
• Multi-domain proteins

• Struggles a lot with
• Mutations
• Single sequences

• Can’t handle
• Ligands, co-factors, et cetera.
• Modified amino acids
• Environmental conditions
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CASP15#1 PEZYFoldings AF2-based. Diverse MSAs. 
Custom, fine-tuned AF2 refinement

ESM-singlesequence is 
the top pure pLM method 
(Built using OpenFold)

#2 UM-TBM Diverse MSAs. Threading then AF2 
predictions guide I-TASSER REMC

#3 Yang-Server Diverse MSAs. AF2 
predictions fed to trRosettaX2

ColabFold and NBIS-af2-standard

BAKER top non-
AF2 method

Credit to Dan Rigden



Calibrated Predictions

Jumper et al., Nature 2021
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Human Proteome Coverage

Tunyasuvunakool et al., Nature 2021



OpenFold
Reproducing AlphaFold2 (and beyond)



Why?

1. Full scale retraining (for new applications)

2. Modular components (in PyTorch)

3. Knowledge acquisition / reproduce DeepMind’s results

4. License for commercial use

Four initial motivations:
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Complexes, complexes, complexes…



Complexes, complexes, complexes…

Credit: Minkyung Baek Credit: Dzmitry Padhorny

Basic principle: feed AF2 a concatenated sequence (AF2 unchanged)



Humphreys et al., Science 2021



Burke et al., bioRxiv 2021

Complexes, complexes, complexes…



Evans et al., bioRxiv 2021
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AlphaFold2-Multimer

Presenter Notes
Presentation Notes
The point here would be emphasizing the gains to be had from retraining a new model.
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Jumper et al., Nature 2021

AlphaFold2 Architecture

Presenter Notes
Presentation Notes
I think a big point here (and the next slide) is about how this has yielded new primitives of broad interest to lots of areas in biology.



Jumper et al., Nature 2021

AlphaFold2 Architecture

Presenter Notes
Presentation Notes
Explain role of physical priors here. Not a big effect, but communicates an idea.



Reuse of AF2 Components (RNA Structure Prediction)

Robin Pearcea, Gilbert S. Omenna, Yang Zhang, bioRxiv 2022



Reuse of AF2 Components (Inverse Folding, Refinement)

Matt McPartlon, Ben Lai, Jinbo Xu, bioRxiv 2022
Matt McPartlon, Jinbo Xu, bioRxiv 2022



Reuse of AF2 Components (Structure Generation)

Namrata Anand, Tudor Achim, arXiv 2022
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How well does it work?

AlphaFold2 Mean GDT_TS: 77.8

OpenFold Mean GDT_TS: 77.3

AlphaFold2 Mean RMSD: 2.25Å

OpenFold Mean RMSD: 2.22Å

On held-out validation set (CAMEO)
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How well does it work? (inference characteristics)

1. Faster inference than AF2 (up to 3X faster on proteins < 1,000 residues)
2. Low-memory attention (Rabe and Staats 2021)

• Inference on longer chains than AF2 (4,000+ residues on mortal GPUs)
• Both monomer and multimer modes (large complexes)
• Applicable to published AF2 weights

3. Trade speed for memory, inference for longer sequences / complexes

4. Cost is code complexity, e.g.,:
• Original triangle multiplicate update was ~10 lines of code
• Optimized version is now nearly 400 lines of code



How well does it work? (training characteristics)

1. bfloat16 precision training on A100 GPUs (AF2 trained on TPUs)

2. In-progress float16 precision training (would enable V100 GPUs)

3. Distributed training via DeepSpeed and PyTorch Lightning

4. Custom memory-efficient CUDA kernels for attention

5. Large amounts of precomputed MSAs for self-distillation (>AF2’s)



How does it learn? (convergence)

Step
LD

DT

1. Model exhibits fast convergence
• ≈90% of final IDDT in 2-3 days

(44 A100 GPUs)
• Total training time ≈80 days

(inclusive of self-distillation)

2. Fine-tuning stage
• Crops increased to 384 residues and auxiliary losses turned on
• Primarily resolves physical violations; overall accuracy little affected

IDDT = 0.9



How does it learn? (self-assessment)
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How does it learn? (secondary structure acquisition)
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How does it learn? (secondary structure acquisition)



How does it learn? (multiple scales)
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How does it learn? (multiple dimensions)

Apparent progression from point ⟶ 1D ⟶ 2D ⟶ 3D ⟶ secondary structure elements

7LBU_A






How does it learn? (multiple dimensions)

Apparent progression from point ⟶ 1D ⟶ 2D ⟶ 3D ⟶ secondary structure elements

7B3A_A
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How does it learn? (multiple dimensions)
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How does it learn? (multiple dimensions)



How does it learn? (multiple dimensions)

Is it just about dimensions?

Can a stronger statement 
be made?



How does it learn? (staggered PCA projections!)
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How well does it learn? (data reductions)
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How well does it learn? (data reductions)



In the trenches of training (new features)



Stage 1 (complete)
• Full implementation of AlphaFold v2.0.1, including training code
• Implementation of AlphaFold-Multimer inference code

Stage 2 (complete)
• Fresh retraining of model weights
• Demonstrate full reproduction capability

Stage 3 (academic-industry consortium)
• Open platform for machine-learned biomolecular modeling

• Single sequence prediction (language models + AF2)
• Structural priors / integration with experimental data
• Multiple conformations and intrinsically disordered proteins
• Protein-small molecule
• Large multi-unit complexes
• Protein design
• Unnatural amino acids

Where are we at?



OpenFold Software
Gustaf Ahdritz
Nazim Bouatta
Sachin Kadyan
Luna Xia
Will Gerecke
Dan Berenberg (NYU)
PyTorch Team 

OpenFold Executive Committee
Lucas Nivon (Cyrus)
Brian Weitzner (Outpace Bio)
Yih-En Andrew Ban (Arzeda)
Andrew Watkins (Genentech)

OpenFold Organizing
Raul Rabadan (Columbia)
David Mobley (OMSF)
Karmen Condic-Jurkic (OMSF)
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