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Molecular simulations: 

Sampling of representative configurations of the system (MD or MC) 

Computation of macroscopic properties (laws of statistical physics) 

 

Forcefield: mathematical expression of the interatomic potential as a 

function of the nuclei positions 

 

 

 

 

Forcefield parameters: 

Physical interpretation 

Calibrated to reproduce some reference (theoretical or 

experimental) data 

 

 

Molecular simulations and forcefields 
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Uncertainties in molecular simulations 

Importance of monitoring uncertainties in molecular 

simulations: 

Molecular simulation used as a decision tool (industrial 

applications) 

 → Confidence interval for the prediction needed 

Multi-scale simulations 

 → Transfer of uncertainties along the different scales 
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Uncertainties and errors in molecular simulations 

Numerical uncertainties: 

Limited sampling of the configuration space 

Use of efficient but “approximate” algorithms 

Can be monitored and reduced « easily » 

 

Parametric uncertainties: 

Forcefield parameters calibrated over uncertain experimental data 

How to evaluate them? → statistical calibration 

What is their impact on the computed properties? → uncertainty 
propagation 

 

Modeling errors: 

Forcefields may be unable to reproduce some reference data 

Can we correct them? 

Transferability issue for the correction of model inadequacy? 
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Outline of the presentation 

Bayesian calibration framework 

 

Statistical calibration of a forcefield for Argon: 

Comparing numerical and parametric uncertainties 

Transferability issues 

 

Calibration of a water forcefield: 

How to decrease the computational burden? 

Use of surrogate models and Efficient Global Optimization strategies 

 

How to deal with model inadequacy? 

 

Conclusions 
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Statistical calibration and uncertainty propagation 

Prior Likelihood 

X2 
X1 

Y 

𝑃 𝜃| 𝑌𝑖,𝑒𝑥𝑝 ∝ 𝑃 𝑌𝑖,𝑒𝑥𝑝 |𝜃 × 𝑃 𝜃  

𝑃 𝑌𝑖,𝑒𝑥𝑝 |𝜃 =  
1

𝑢𝑖 2𝜋
exp −

𝑌𝑖 − 𝑌𝑖,𝑒𝑥𝑝
2

2𝑢𝑖
2

𝑖

 

𝜃 = 𝑋1, 𝑋2  

X1 X2 

P 

PDF:  

𝑃 Ω| 𝑌𝑖,𝑖𝑒𝑥𝑝  

Calibration data:  

𝑌 = 𝑌(𝑋1, 𝑋2) 

Bayesian calibration 
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Statistical calibration and uncertainty propagation 
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Results of a simulation:  

𝑍 = 𝑍(𝑋1, 𝑋2) 

Uncertainty propagation 

Monte Carlo sampling of the PDF and estimation of the model: 
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A simple test-case: forcefield for Argon 

Two-parameters Lennard-Jones  

forcefield for Argon: 

 

Statistical calibration: 

Uniform prior 

Experimental data for calibration: 

 2nd virial coefficient B from 150K to 450K 

  

  

Specificities of this calibration: 

Only two parameters 

Analytical expression linking B to the parameters 𝜎 and 𝜀 

 → Analytical PDFs and 𝑢𝑖,𝑚𝑜𝑑 = 0 
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Calibration on 2nd virial coefficient 

Various sources of measurements 

At first sight: successfull calibration and small uncertainties 

Experimental 

data 

Optimal 

parameters 

𝜎 = 3.422 ± 0.002 Å 
𝜀 = 119.61 ± 0.09 K 

(lit.: 𝜎 = 3.405Å ; 𝜀 = 119K) 



IPAM Workshop: UQ for Stochastic Systems and Applications – 11/17/2017 13 / 43 

Calibration on 2nd virial coefficient 

Gaussian hypothesis for the residues violated 

Possible origins of the problem: 

Inadequacy of the model 

Inconsistency between some experimental data 

Underestimated experimental uncertainties 

 

 

𝑤𝑖 =
𝐵 𝜎 , 𝜀 , 𝑇𝑖 − 𝐵𝑖,𝑒𝑥𝑝

𝑢𝑖
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Calibration on 2nd virial coefficient 

Gaussian hypothesis for the residues violated 

Possible origins of the problem: 

Inadequacy of the model 

Inconsistency between some experimental data 

Underestimated experimental uncertainties 

 

 

𝑤𝑖 =
𝐵 𝜎 , 𝜀 , 𝑇𝑖 − 𝐵𝑖,𝑒𝑥𝑝

𝑢𝑖
 

𝑢𝑖
′2 = 𝑢𝑖,𝑒𝑥𝑝

2 + 𝑢𝑖,𝑚
2  

Additive uncertainties on 
model predictions 

𝑢𝑚 = 𝒩(0, 𝑠2) 
⟶ not transferable for 
prediction to other 
quantities 
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Calibration on 2nd virial coefficient 

Gaussian hypothesis for the residues violated 

Possible origins of the problem: 

Inadequacy of the model 

Inconsistency between some experimental data 

Underestimated experimental uncertainties 

 

 

𝑤𝑖 =
𝐵 𝜎 , 𝜀 , 𝑇𝑖 − 𝐵𝑖,𝑒𝑥𝑝

𝑢𝑖
 

𝐵𝑖,𝑒𝑥𝑝
′ (𝜎, 𝜀) = 𝐵𝑖,𝑒𝑥𝑝(𝜎, 𝜀) + 𝜆𝑆(𝑖) 

Fixed Laboratory Effects Model 
(FLEM):  
• Each experimental set bears an 

unknown but constant bias. 
• Modification of the data by 

adding a term (to be calibrated) 
that depends on the 
experimental data set. 
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Calibration on 2nd virial coefficient 

Gaussian hypothesis for the residues violated 

Possible origins of the problem: 

Inadequacy of the model 

Inconsistency between some experimental data 

Underestimated experimental uncertainties 

 

 

𝑤𝑖 =
𝐵 𝜎 , 𝜀 , 𝑇𝑖 − 𝐵𝑖,𝑒𝑥𝑝

𝑢𝑖
 

𝑢𝑖
′2 = 𝑢𝑖,𝑒𝑥𝑝

2 + 𝑢𝑖,add
2  

Random Laboratory Effects 
Model (RLEM): 
Each experimental data bears a 
supplementary unknown bias 

𝑢add = 𝒩(0, 𝑠2) 
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Calibration on 2nd virial coefficient 

Gaussian hypothesis for the residues violated 

Possible origins of the problem: 

Inadequacy of the model 

Inconsistency between some experimental data 

Underestimated experimental uncertainties:  

 

 

𝑢𝑖
′ = 𝑠 × 𝑢𝑖,𝑒𝑥𝑝 

𝑤𝑖 =
𝐵 𝜎 , 𝜀 , 𝑇𝑖 − 𝐵𝑖,𝑒𝑥𝑝

𝑢𝑖
 

SCAL: 
Scaling of experimental 
uncertainties by an a 
priori unknown factor 
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Various calibration schemes 

SCAL and RLEM models achieve statistical consistency in the 

residuals 

Long-range correlation remains at different temperatures (limitation of 

the LJ interaction model) 

STD SCAL 

FLEM RLEM 

Distribution of residuals G
au

ss
ia

n
 t

h
eo

re
ti

ca
l d

is
tr

ib
u

ti
o

n
 QQ-plot 



IPAM Workshop: UQ for Stochastic Systems and Applications – 11/17/2017 19 / 43 

Results of the SCAL calibration 

Values from literature: 

 s = 3.405 Å, e = 119.8 K 

Small scaling factor for uncertainties (<2) 

Small uncertainties on the parameters 

Strong correlation between σ and ε 

Experimental 

data 

Optimal 

parameters 

Markov chain over the PDF 

s = 3.422 ± 0.004 Å 

e = 119.61 ± 0.18 K 
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Uncertainty propagation in molecular simulation 

LHS sample of the PDF of 𝜎, 𝜀   

Computation of L/V phase diagrams 

and liquid viscosities 

Parametric uncertainties remain small 

and do not allow to reconcile computed 

and experimental values 
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Numerical/parametric uncertainties 

Parameters uncertainties amplified by molecular simulation 

Parametric uncertainties bigger than numerical uncertainties 
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A first conclusion 

What we have learnt from this LJ system: 

An operative methodology for statistical calibration and uncertainty 

propagation 

Parametric uncertainties small but greater than numerical 

uncertainties 

Taking into account parametric uncertainty is not sufficient to have 

quantitative transferability to other properties 

 

 

What to do next: 

Increase the complexity of the forcefield? 

Is the method tractable when calibration data requires molecular 

simulation to be evaluated? 

How to deal with model inadequacy? 

 

Cailliez and Pernot, J. Chem. Phys. 134, 054124 (2011) 
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Outline of the presentation 
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TIP4P water forcefield: strategy of calibration 

TIP4P water forcefield: 

Various parameter sets available in the literature 

4 parameters: 𝜎, 𝜀, 𝑞𝐻 , 𝑙2 

Calibration data: liquid water density 

at 5 temperatures from 253K to 350K 

Molecular simulations needed to  

compute the calibration data 

 

 

 

Strategy of calibration: 

Use of surrogate models (GP) to avoid the use of expensive 

molecular simulations 
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Which surrogate? 

Function to be optimized in the calibration process:  

𝐹 𝜃 =  
𝑌𝑖(𝜃) − 𝑌𝑖,𝑒𝑥𝑝

2

𝑢2

5

𝑖=1

 

 

Option 1: Use a GP as a « direct » surrogate model for 𝐹 

++ : efficient optimization strategies using GP surrogate models (EGO) 

- -  : 𝐹 is a quickly-varying function of 𝜃 with large amplitude 

 

Option 2: Use GP models for each observable 𝑌𝑖 and then a composite 

surrogate model for 𝐹 

++ : 𝑌𝑖 are smooth and rather monotonous functions of 𝜃 

- -  : The surrogate model for 𝐹 is not a GP 

 

Representative  

simulation uncertainty 
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Building of the surrogate models 

Initial sampling of the parameter 

space: 

Maximin LHS 

84 parameter sets (D1) 

 

Surrogate models: 

One for each property 

Leave-one-out predictivity 

coefficients: 

 

 

Some parameter sets lead to 

badly converged simulations: 

“Glassy-like” water 

Subsample of 57 parameter 

sets (D2) 

𝑄2 ≥ 92% 

D1: black & grey dots D2: black dots 
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Calibration with GP surrogate models 

The minimum region of the estimator does not necessarily reproduce 

accurately the real minimum 

Iterative improvement of the estimator of the PDF:  

Use of “Efficient Global Optimization” (EGO) algorithms 

Estimator 𝐹  

Real function 

Minimum of the 

estimator 

Real minimum 

F 

𝐹 𝜃 =  
𝑌𝑖
 (𝜃) − 𝑌𝑖,𝑒𝑥𝑝

2

𝑢2
𝑖

 

𝜃 

𝜃1 

𝜃2 

𝜃3 𝜃4 
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Efficient Global Optimization 

Point where EI is maximum 

Estimator 

Real function 

F 

𝐸𝐼 𝜃 = 𝔼 max 𝐹 𝜃∗ − 𝐹 (𝜃) , 0  

𝜃∗:  max −𝐹 𝜃 − 𝑠 𝜃 {𝜃𝑖} 

Expected Improvement:  

use of the uncertainty prediction 𝑠(𝜃) of the surrogate model 𝐹  

Two technical difficulties: 

GP optimised on stochastic data 

𝐹  not a GP: EI computed numerically 

Huang et al., 2006,  

J. Glob. Opt., 34: 441 

𝜃 
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Efficient Global Optimization 

Iterative procedure 

End of the procedure:  

Initial Iteration 1 Iteration 2 

Iteration 5 Iteration 4 Iteration 3 

F 

F F F 

F F 

𝐸𝐼𝑟 =
𝐸𝐼

max 𝐹 − min 𝐹 
< 10−5 

𝜃 𝜃 𝜃 

𝜃 𝜃 𝜃 
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EGO convergence 

Rapid convergence of the EGO 

Rapid improvement of the prediction around the optimum 

Single well defined optimum of the score function 

 

Real evaluation from MD results 

Surrogate prediction 

𝐹  at the end of the  

calibration procedure 
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Results of the calibration 

D1 calibration dataset: ≈90 parameter sets used 

D1 and D2 calibration: similar results – low sensitivity to badly 

converged simulations 

TIP4P-2005 Opt. EGO-D1 

Markov chain 

over the PDF 

Opt. EGO-D2 

D1 calibration 
dataset 

D2 calibration 
dataset 
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Parametric uncertainties – TIP4P forcefield 

Uncertainty propagation using kriging surrogate models for density and 

vaporization enthalpy 

Parametric uncertainties bigger than numerical uncertainties 
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A second conclusion 

Similar conclusions as for the argon case regarding parametric 

uncertainties: 

At least as big as numerical uncertainties 

Taking into account parametric uncertainty is not sufficient to have 

quantitative transferability to other properties 

Use of surrogate models: 

Extensive exploration of parameter space at lower cost 

Global sensitivity analysis (reduce parameter space dimension) 

Global optimisation of the parameters possible 

 

 

Limitations and unresolved issues:  

Reducing the cost of the optimization procedure 

How to deal with model inadequacy? 

 

Cailliez, Bourasseau, and Pernot, J. Comp. Chem. 35: 130-149 (2014) 



IPAM Workshop: UQ for Stochastic Systems and Applications – 11/17/2017 34 / 43 
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The issue of model inadequacy 

Inadequacy remains at the calibration stage 

Prediction inefficient even taking into account parameters uncertainties 

Model Manifold 

Calibration data 

Optimal parameters  

(𝜃 ± 𝑢𝜃) 

𝑦𝑖 = ℳ 𝑥𝑖 , 𝜃 + 𝑅𝑖 + 𝑒𝑖  

(Deterministic) model 

Calibration data 

Residual 

Experimental 
uncertainty 
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Solving model inadequacy on synthetic data 

Krypton described by a Lennard-Jones potential: 

𝜃 = 𝜎 = 3.6Å; 𝜀 = 195K  

Gas-phase viscosity: Chapman-Enskog model: 

 

 

 

𝜂 = ℳ 𝑇, 𝜎, 𝜀 = 2.6693 
𝑚𝑇

𝜎2Ω
 

Ω =
𝐴

𝑇∗ 𝐵
+

𝐶

exp 𝐷𝑇∗
+

𝐸

exp 𝐹𝑇∗
 𝑇∗ = 𝑇 𝜀  

Standard calibration  

Synthetic data: 

100 data points for various 𝑇, generated 

with a modified value of 𝐶 in CE formula 

Generation of synthetic « experimental » 

uncertainties 
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Correcting the model (GP) 

Add a discrepancy term to correct model errors: 

 

 

 

 

 

 

 

 

 

 

 

Inadequacy issue is resolved but… 

Non-transferability of the correction to the prediction of another type of data 

 

 Kennedy & O’Hagan (2001), J. Roy. Stat. Soc. B, 63: 425-464 

𝑦𝑖 = ℳ 𝑥𝑖 , 𝜃 + 𝐺𝑃 𝑥𝑖 , 𝜃𝐾 + 𝑒𝑖 
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Correction at the prediction level (Disp) 

Adding a stochastic term to the model to increase the uncertainty of the 

prediction: 

 

 

 

 

 

 

 

 

 

 

 

Justified if no trend in the residuals 

Non-transferable to the prediction of another property 

𝑦𝑖 = ℳ 𝑥𝑖 , 𝜃 + 𝑒𝐷 + 𝑒𝑖                  𝑒𝐷 = 𝒩(0, s2) 
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Increase parameter uncertainties 

Optimizing the covariance matrix Σ𝜃 of the parameters 
 

Variance inflation (VarInf):  

scaling the covariance matrix obtained 

from standard calibration: Σ𝜃
′ = 𝑠 × Σ𝜃 

 

Hierarchical Bayesian framework* (Hier): 

Divide the dataset 𝐷 in series 𝐷𝑖 

Calibrate parameters 𝜃𝑖 for each 𝐷𝑖 

Find hyperparameters to reproduce the 

 distribution of 𝜃𝑖 ∶ 𝜃𝑖~𝒩(𝜇𝜃 , Σ𝜃) 
 

« Direct » stochastic modeling** (ABC): 

ℳ(𝜃) ⟶ ℳ(𝜃, Σ𝜃) 

Optimize 𝑝 𝜃, Σ𝜃|𝐷  
* Wu et al. (2015), Phil. Trans. R. Soc. A 374: 20150032 

** Csilléry et al., Trends Ecol Evol. 2010;25:410–418. 
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Increase parameter uncertainties 

VarInf and Hier calibrations: overestimated prediction bands 

ABC calibration: most reasonable option 

 

0 

0 0 

0 0 

0 
Standard calibration VarInf calibration Hier calibration ABC calibration 
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A real test-case on experimental data 

When transferability to other properties is not an issue, Disp correction 

is OK 

ABC calibration:  

reasonable but problems of multimodality of the solutions 

Might be improved… 

Experimental data for Krypton viscosity 

Pernot & Cailliez (2017), AIChE J:63(10): 4642-4665 



IPAM Workshop: UQ for Stochastic Systems and Applications – 11/17/2017 42 / 43 

Concluding remarks 

Study of parameters uncertainties in molecular simulations is still in its 

infancy 

 

Bayesian calibration is an adequate framework to determine forcefield 

parameters and their uncertainties 

 

Surrogate models and Efficient Global Optimization strategies can be 

used to alleviate the computational burden of the calibration 

 

Parametric uncertainties may be the main source of uncertainties in the 

calculation of fluid properties 

 

Model inadequacy and transferability to various properties are major 

issues for quantitative reliable predictions 
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