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Main Themes

Parallel tempering and its limit in�nite swapping are methods for
accelerated Monte Carlo. They work by coupling reversible Markov
chains with di�erent \temperatures" to enhance the sampling
properties of the ensemble. An important question is how to choose
the temperatures.

One source of improved sampling is straightforward from the
construction{increased mobility of the lower temperature chains. A
second emerges most clearly in the in�nite swapping limit, and these
two sources of variance reduction respond in di�erent ways to
temperature selection.

One can explicitly identify the optimal temperature assignments in
the low temperature limit, when sampling is most di�cult.



Outline

Some problems of interest

Review of parallel tempering (aka replica exchange)

The in�nite swapping limit{symmetrized dynamics and a weighted
empirical measure

First source of variance reduction{lowered energy barriers

Small detour{in�nite swapping with independent and identically
distributed samples{variance reduction originating due to weights

Return to the Markov di�usion setting:

Small noise (low temperature) limit via Freidlin-Wentsell methods
Explicit solution to optimal temperature assignments in the small noise
limit



Some problems of interest

Example 1 (physical sciences). Compute functionals with respect to a
Gibbs measure of the form

�(dx) = e�V (x)=�dx
.
Z (�);

where V : Rd ! R is the potential of a (relatively) complex physical
system. We use that �(dx) is the stationary distribution of the solution to

dX = �rV (X )dt +
p
2�dW ;

as well as related discrete time models.

The function V (x) is de�ned on a
large space, and includes, e.g., various inter-molecular potentials.
Representative quantities of interest:

average potential energy:

Z
V (x)

e�V (x)=�dx

Z (�)

heat capacity:

Z "
V (x)�

Z
V (y)

e�V (y)=�dy

Z (�)

#2
e�V (x)=�dx

Z (�)
:
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Some problems of interest

In general has a very complicated surface, with many deep and shallow
local minima. An example: potential energy surface is the Lennard-Jones
cluster of 38 atoms. This potential has � 1014 local minima.

The lowest
150 and their \connectivity" graph are as in �gure (taken from Doyle,
Miller & Wales, JCP, 1999).
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Some problems of interest

Example 2 (path FIM). Consider reversible system with stationary
distribution and transition density

��(dx) = e�V
�(x)=�dx

.
Z �(�); p�(x ; y);

where � 2 � are a collection of model parameters, and p�(x ; y) exhibits
metastability. Would like to compute the path Fisher information matrixZ

��(dx)

Z
p�(x ; y)

h
r�p�(x ; y)

i h
r�p�(x ; y)

iT
dy

via Monte Carlo. Used to obtain sensitivity bounds for sensitivities in
� 2 �.



Some problems of interest

Example 3 (combinatorics and counting). Counting problems involving
subsets of very large discrete spaces, such as number of binary matrices
with given row and column sums, graphs with degree sequence, etc.

For
matrices problem, let ri � n; i = 1; : : : ;m, cj � m; j = 1; : : : ; n, and de�ne
potential

V (x) =
mX
i=1

������
nX
j=1

xij � ri

������ ; where x 2 S :
=

(
f0; 1gn�m :

mX
i=1

xij = cj

)
:

Then can estimate #fx 2 S : V (x) = 0g by approximating

1

Z (�)

X
x2Si

e�V (x)=� =
1

Z (�)
jSi j e�i=�

for various sets Si
:
= fx 2 S : V (x) = ig and small � > 0.
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Some problems of interest

Well-known corresponding Markov chains. We are concerned with
case where structure of energy landscape V (x) is complicated, with
disconnected regions of importance. Very long simulation times
needed for small � .

Many other interesting applications have same features (e.g.,
Bayesian statistics), with V now depending on data.
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Review of parallel tempering

Return to model from Example 1:

dX = �rV (X )dt +
p
2�dW ;

with computational approximation

�T (dx) =
1

T

Z T

0
�X (t)(dx)dt 2 P(Rd):

Well known di�culty: the \rare event sampling problem," i.e., the
infrequent moves between deep local minima of V .



Review of parallel tempering

How to speed up a single particle? Use \parallel tempering" (aka \replica
exchange", due to Geyer, Swendsen and Wang).

Idea of parallel tempering, two temperatures.

Besides �1 = � ,
introduce higher temperature �2 > �1. Thus

dX1 = �rV (X1)dt +
p
2�1dW1

dX2 = �rV (X2)dt +
p
2�2dW2;

with W1 and W2 independent. Then one obtains a Monte Carlo
approximation to

�(x1; x2) = e
�V (x1)

�1 e
�V (x2)

�2

�
Z (�1)Z (�2):
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Review of parallel tempering

Now introduce swaps, i.e., X1 and X2 exchange locations with state
dependent intensity

ag(x1; x2) = a

�
1 ^ �(x2; x1)

�(x1; x2)

�
= a

�
1 ^ e�

h
V (x1)
�1

+
V (x2)
�2

i
+
h
V (x2)
�1

+
V (x1)
�2

i�
;

with a > 0 the \swap rate."



Review of parallel tempering

Now have a Markov jump-di�usion. Easy to check: with this swapping
intensity still have detailed balance, and thus

�a(x1; x2) = �(x1; x2) = e
�V (x1)

�1 e
�V (x2)

�2

�
Z (�1)Z (�2):

Higher temperature �2 > �1 � greater di�usivity of X a2

� easier communication for X a2

� passed to X a1 via swaps

This helps overcome the \rare event sampling problem."
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The in�nite swapping limit

Various rates of convergence (large deviation empirical measure rate,
asymptotic variance) optimized by letting a!1.

This suggests one
consider the in�nite swapping limit a!1, except

if a is large but �nite almost all computational e�ort is directed at
swap attempts, rather than di�usion dynamics,

if a!1 then limit process not well de�ned (no tightness).

An alternative perspective: rather than swap particles, swap
temperatures, and use \weighted" empirical measure.

Particle swapping. Process:

(X a1 ;X
a
2 ) ;

Approximation to �(dx):

1

T

Z T

0
�(X a1 ;X a2 )

(dx)dt
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The in�nite swapping limit

Temperature swapping.

Process:

dY a1 = �rV (Y a1 )dt +
p
2r1(Z a)dW1

dY a2 = �rV (Y a2 )dt +
p
2r2(Z a)dW2;

where r(Z a(t)) jumps between �1 and �2 with intensity ag(Y
a
1 (t);Y

a
2 (t)).

Approximation to �(dx):

1

T

Z T

0

h
1f0g(Z

a)�(Y a1 ;Y a2 )(dx) + 1f1g(Z
a)�(Y a2 ;Y a1 )(dx)

i
dt:
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The in�nite swapping limit

The advantage is a well de�ned weak limit as a!1:

dY1 = �rV (Y1)dt +
p
2�1�1(Y1;Y2) + 2�2�2(Y1;Y2)dW1

dY2 = �rV (Y2)dt +
p
2�2�1(Y1;Y2) + 2�1�2(Y1;Y2)dW2;

�T (dx) =
1

T

Z T

0

�
�1(Y1;Y2)�(Y1;Y2) + �2(Y1;Y2)�(Y2;Y1)

�
ds;

and

�1(x1; x2) =
e
�
h
V (x1)
�1

+
V (x2)
�2

i
Z�(x1; x2)

; �2(x1; x2) =
e
�
h
V (x2)
�1

+
V (x1)
�2

i
Z�(x1; x2)

:

For generalization to K temperatures �K � � � � � �1 one must compute �
weights of all permutations of (x1; : : : ; xK ), practical implementation
requires PINS (partial INS) for K � 7.
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Variance reduction{lowered energy barriers

How do PT and INS improve sampling?

The invariant distribution of (Y1;Y2) is the symmetrized measure

1

2
[�(x1; x2) + �(x2; x1)]

=
1

2Z (�1)Z (�2)

�
e
�V (x1)

�1 e
�V (x2)

�2 + e
�V (x2)

�1 e
�V (x1)

�2

�
:

The \implied potential"

� log
�
e
�V (x1)

�1 e
�V (x2)

�2 + e
�V (x2)

�1 e
�V (x1)

�2

�
has lower energy barriers than the original

V (x1)

�1
+
V (x2)

�2
:



Variance reduction{lowered energy barriers

E.g., densities when V (x) is a double well, orginal product density and
density of implied potential:

However, to simply minimize the maximum barrier height one should let
�2 !1.



In�nite swapping with IID samples

To remove dynamics and identify other sources of variance reduction,
temporarily assume can generate iid samples from stationary distribution

�� (dx) =
1

Z (�)
e�V (x)=�dx ;

and hence iid samples (Y1;Y2) from symmetrized distribution

1

2
[��1(dy1)��2(dy2) + ��2(dy1)��1(dy2)] :

To obtain an unbiased estimator for integrals wrt ��1(dx1)��2(dx2) must
again use weighted samples (weighted empirical measure):

�1(Y1;Y2)�(Y1;Y2) + �2(Y1;Y2)�(Y2;Y1)

with as before

�1(x1; x2) =
e
�
h
V (x1)
�1

+
V (x2)
�2

i
Z�(x1; x2)
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In�nite swapping with IID samples

Is this useful? Speci�cally, if we can compute the �'s, is it better than
standard MC?

The answer is yes, and reason is analogous to why (well designed)
importance sampling improves MC.

Note that probabilities

�� (dx) =
1

Z (�)
e�V (x)=�dx

have an obvious large deviation property when � ! 0. If A � Rd does
not contain global minimum of V and @A \nice", then �� (A) decays
exponentially in � : �� (A) � exp� [infx2A V (x)] =� .
How to assess performance for approximating probabilities �� (A) and
expected values Z

e�
1
�
F (x)�� (dx)

via MC?
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How to assess performance for approximating probabilities �� (A) and
expected values Z
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F (x)�� (dx)
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In�nite swapping with IID samples

For standard Monte Carlo we average iid copies of 1fX2Ag. One

needs K � eV �=� ;V � = [infx2A V (x)] samples for bounded relative
error.

Alternative approach: construct iid random variables s�1 ; : : : ; s
�
K with

Es�1 = �� (A) and use the unbiased estimator

q̂�;K
:
=
s�1 + � � �+ s�K

K
:

Performance determined by Var(s�1 ), and since unbiased by E (s
�
1 )
2.

By Jensen's inequality

�� log E (s�1 )
2 � �2� log Es�1 = �2� log �� (A)! 2V �:

An estimator is called asymptotically e�cient if

lim inf
�!0

�� log E (s�1 )
2 � 2V �:

For standard MC

lim
�!0

�� log E
�
1fX2Ag

�2
= V �:
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In�nite swapping with IID samples

To approximate �� (A), we propose the INS estimator based on IID
samples:

s� = �1(Y
�
1 ;Y

�
2 )�(Y �1 ;Y �2 )(A;R

d) + �2(Y
�
1 ;Y

�
2 )�(Y �2 ;Y �1 )(A;R

d)

= �1(Y
�
1 ;Y

�
2 )1fY �1 2Ag + �2(Y

�
1 ;Y

�
2 )1fY �2 2Ag;

where (Y �1 ;Y
�
2 ) sampled from

1

2
[�� (dy1)�� r (dy2) + �� r (dy1)�� (dy2)] ;

with r � 1, so that �2 = � r � � = �1.

Can also consider analogous
estimator based on K temperatures

�K = � rK with rK � rK�1 � � � � � r2 � r1 = 1:
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In�nite swapping with IID samples

Theorem

For the INS estimator based on K temperatures

lim
�!0

�� log E (s� )2 = M(r1; : : : ; rK )

�
inf
x2A

V (x)

�
;

where M(r1; : : : ; rK ) solves the LP

M(r1; : : : ; rK ) = inf
fI :I1=1;Ik2[0;1] for k=2;:::;Kg

242 KX
j=1

1

rj
Ij � min

�2�K

8<:
KX
j=1

1

rj
I�(j)

9=;
35 :

Moreover the supremum over rK � rK�1 � � � � � r2 � r1 is
M(r1; : : : ; rK ) = 2� (1=2)K and is uniquely achieved at rk = 2k�1.

Thus K = 5 temperatures gives 1:96875 or 98:4% of optimal value.

Analogous result for functionals
R
e�

1
�
F (x)�� (dx).
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In�nite swapping with IID samples

Why does it work? The weights � act much like likelihood ratio in
importance sampling.

For K = 2 and small � > 0, there are three types of
outcomes, [recall V � = infx2A V (x)]:

s� = 1 when (Y �1 ;Y
�
2 ) 2 A� A; which occurs with approximate

probability P ((Y �1 ;Y
�
2 ) 2 A� A) � e�

1
�
V � � e� 1

� r
V � = e�

1
� (1+

1
r )V

�
.

s� = 0 when (Y �1 ;Y
�
2 ) 2 Ac � Ac ; with approximate probability

P ((Y �1 ;Y
�
2 ) 2 Ac � Ac) � 1.

s� � �1 (Y �1 ;Y �2 ) when (Y �1 ;Y �2 ) 2 A� Ac or Ac � A, with
approximate probability

P ((Y �1 ;Y
�
2 ) 2 A� Ac) + P ((Y �1 ;Y �2 ) 2 Ac � A)

� e�
1
�
V � + e�

1
� r
V �

� e�
1
� r
V � :
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In�nite swapping with IID samples

The de�nition of �1 gives

�1 (Y
�
1 ;Y

�
2 ) �

e�
1
�
V �

e�
1
�
V � + e�

1
� r
V �
� e�

1
� (1�

1
r )V

�
;

and combining the three possibilities gives

E (s� )2 � 12 � e�
1
� (1+

1
r )V

�
+ (�1 (Y

�
1 ;Y

�
2 ))

2 � e�
1
� r
V �

� e�
1
� (1+

1
r )V

�
+ e�

1
� (2�

1
r )V

�

� e�
1
� [(1+

1
r )^(2�

1
r )]V

�
:

Maximum decay rate at r = 2.
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Small noise limit via Freidlin-Wentsell methods

Return to the di�usion model and two temperature INS:

dY1 = �rV (Y1)dt +
p
2�1�1(Y1;Y2) + 2�2�2(Y1;Y2)dW1

dY2 = �rV (Y2)dt +
p
2�2�1(Y1;Y2) + 2�1�2(Y1;Y2)dW2;

with

�1(x1; x2) =
e
�
h
V (x1)
�1

+
V (x2)
�2

i
Z�(x1; x2)

; �2(x1; x2) =
e
�
h
V (x2)
�1

+
V (x1)
�2

i
Z�(x1; x2)

;

stationary with respect to symmetrized distribution

1

2Z (�1)Z (�2)

�
e
�V (x1)

�1 e
�V (x2)

�2 + e
�V (x2)

�1 e
�V (x1)

�2

�
:

We will let �2 = � r � � = �1, identify the analogue of the decay rate of
second moment, and optimize in the limit � ! 0. Will also present
corresponding results for K temperatures.
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Small noise limit via Freidlin-Wentsell methods

Problem of interest is again to estimate �� (A), but now using

s�T =
1

T

Z T

0

h
�1(Y

�
1 (t);Y

�
2 (t))1fY �1 (t)2Ag + �2(Y

�
1 (t);Y

�
2 (t))1fY �2 (t)2Ag

i
dt:

Performance criteria is the rate of growth of variance per unit time:

T (�)Var(s�T (�))
2 =

1

T (�)
Var(T (�)s�T (�))

2;

where T (�) = expM=� . The optimizer for temperature placement will be
independent of M, but one should imagine M large enough that a
regenerative structure can be used. This regenerative structure is the key
to evaluating the limit � ! 0.
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Small noise limit via Freidlin-Wentsell methods

Consider for example a two well model for V and corresponding noiseless
dynamics for (Y �1 ;Y

�
2 ):

deepest well at (xL; xL), next deepest at (xL; xR) and (xR ; xL), shallowest
at (xR ; xR).
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Small noise limit via Freidlin-Wentsell methods

An extension of Freidlin-Wentsell theory used to justify the approximation
of

f(Y �1 (t);Y �2 (t)); t 2 [0;T ]g

when � > 0 small by �nite state continuous time Markov chain, with states

f(xL; xL); (xL; xR); (xR ; xL); (xR ; xR)g ;

transition rates determined by the quasipotential

Q(y1; y2) = min

�
V (y1) +

1

r
V (y2);V (y2) +

1

r
V (y1)

�
�
�
1 +

1

r

�
V (xL):



Small noise limit via Freidlin-Wentsell methods

Q(y1; y2) = min

�
V (y1) +

1

r
V (y2);V (y2) +

1

r
V (y1)

�
�
�
1 +

1

r

�
V (xL);

Not standard since non-smooth potential. Then compute

lim
�!0

�� log
h
T (�)Var(s�T (�))

2
i

using regenerative structure.
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Optimal temperatures in the small noise limit

�� (A) with A a subset of shallower well that includes mimimum.
lim�!0�� log �� (A) = (hL � hR).

Theorem

Consider the two well, K temperature problem for estimating �� (A). Let
hR = �hL with � 2 (0; 1]. Then

inf
1�r2�����rK�1

lim
�!0

�� log
h
T (�)Var(s�T (�))

2
i

=

8<:
�
2�

�
1
2

�K�1�
hL � 2hR if � � 1=2�

2�
�
1
2

�K�2�
(hL � hR) if � � 1=2

with optimal r 's�
1; 2; : : : ; 2K�2; 2K�1

�
and

�
1; 2; : : : ; 2K�2;1

�
:
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Consider the two well, K temperature problem for estimating �� (A). Let
hR = �hL with � 2 (0; 1]. Then

inf
1�r2�����rK�1

lim
�!0

�� log
h
T (�)Var(s�T (�))

2
i

=

8<:
�
2�

�
1
2

�K�1�
hL � 2hR if � � 1=2�

2�
�
1
2

�K�2�
(hL � hR) if � � 1=2

with optimal r 's�
1; 2; : : : ; 2K�2; 2K�1

�
and

�
1; 2; : : : ; 2K�2;1

�
:
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Generalizations/comments:

All cases of three well model have optimal temperatures in small noise
limit as one of these two forms

Conjecture that same is true for arbitrary �nite number of wells

Analogous results for functionals, discrete time models

Geometric spacing has been suggested based on other arguments for
PT/INS (see references)



Summary

\Rare events" issues of various sorts are one of the banes of e�cient
Monte Carlo

As such, it is natural to use various asymptotic theories to understand
issues of algorithm design

There is a relatively long history of the use of large deviation ideas in
the design of algorithms for estimating probabilities of single rare
events, but less on how to overcome impact of rare events on MCMC

Have presented one such use in the context of parallel replica
algorithms to understand and optimize the mechanisms that produce
variance reduction
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