Embedding Quantum Regions in Classical Environments

Harald Oberhofer

Chair for Theoretical Chemistry, TUM
Why

scaling:

too expensive for large systems

Harald Oberhofer | IPAM, October 2017
Why

scaling:

charged systems:

too expensive for large systems
Why

scaling:

![Graph showing relative CPU time vs. number of Ar atoms for different functionals: LDA, PBE, PBE0, XYG3, RPT2. The graph indicates that RPT2 and XYG3 have higher relative CPU times, with RPT2 being the highest.](image)

too expensive for large systems

charged systems:
Why

scaling:

![Graph showing scaling of CPU time with the number of Ar atoms.](image)

- RPT2
- XYG3
- PBE
- PBE0
- LDA

relative CPU time

number of Ar atoms

1000
500
1

too expensive for large systems

charged systems:

- too expensive for large systems

Harald Oberhofer | IPAM, October 2017
Why

scaling:

too expensive for large systems

charged systems:
Why

scaling:

number of Ar atoms
relative CPU time

RPT2
XYG3
PBE
PBE0
LDA

too expensive for large systems

charged systems:

PBC charge correction
⇒ finite size effects

Harald Oberhofer | IPAM, October 2017
Levels of coarse graining
Levels of coarse graining

Rutile TiO$_2$ cluster w/o embedding
no band-gap, wrong work function
Levels of coarse graining

atomistic embedding
Levels of coarse graining

atomistic embedding
Levels of coarse graining

atomistic embedding

continuum embedding
Levels of coarse graining

atomistic embedding

continuum embedding
Atomistic embedding (QM/MM)

seamless coupling between quantum mechanics (QM) and molecular mechanics (MM)

![Diagram of seamless coupling between QM and MM](image)

Structure of a QM/MM simulation

Example: Crystal with positive and negative sites

- Cut large cluster
- Designate QM and MM atoms
- Positive sites near QM atoms \Rightarrow charge leakage
- Replace singularities with Pseudo-potentials \Rightarrow transition region
- Still missing: Periodic Madelung potential, correction for multipole moments
- Fitted charges to fix Potential in QM Zone
Structure of a QM/MM simulation

Example: Crystal with **positive** and **negative** sites

- Cut large cluster
- Designate QM and MM atoms
- Positive sites near QM atoms ⇒ charge leakage
- Replace singularities with Pseudo-potentials ⇒ transition region
- Still missing: Periodic Madelung potential, correction for multipole moments
- Fitted charges to fix Potential in QM Zone
Structure of a QM/MM simulation

Example: Crystal with positive and negative sites
- Cut large cluster
- Designate QM and MM atoms
- Positive sites near QM atoms ⇒ charge leakage
- Replace singularities with Pseudo-potentials ⇒ transition region
- Still missing: Periodic Madelung potential, correction for multipole moments
- Fitted charges to fix Potential in QM Zone
Structure of a QM/MM simulation

Example: Crystal with positive and negative sites

- Cut large cluster
- Designate QM and MM atoms
- **Positive sites** near QM atoms ⇒ *charge leakage*
- Replace singularities with Pseudo-potentials ⇒ transition region
- Still missing: Periodic Madelung potential, correction for multipole moments
- Fitted charges to fix Potential in QM Zone
Structure of a QM/MM simulation

Example: Crystal with positive and negative sites
- Cut large cluster
- Designate QM and MM atoms
- **Positive sites** near QM atoms ⇒ **charge leakage**
- Replace **singularities** with Pseudo-potentials ⇒ **transition region**
- Still missing: Periodic Madelung potential, correction for multipole moments
- Fitted charges to fix Potential in QM Zone
Structure of a QM/MM simulation

Example: Crystal with positive and negative sites
- Cut large cluster
- Designate QM and MM atoms
- Positive sites near QM atoms ⇒ charge leakage
- Replace singularities with Pseudo-potentials ⇒ transition region
- Still missing: Periodic Madelung potential, correction for multipole moments
- Fitted charges to fix Potential in QM Zone
Structure of a QM/MM simulation

Example: Crystal with **positive** and **negative** sites
- Cut large cluster
- Designate QM and MM atoms
- Positive sites near QM atoms ⇒ charge leakage
- Replace singularities with Pseudo-potentials ⇒ transition region
- **Still missing:** Periodic Madelung potential, correction for multipole moments
- **Fitted charges** to fix Potential in QM Zone
Effect of environment polarisability (MM)

IP \((\text{TiO}_2)\)
Effect of environment polarisability (MM)

IP \((\text{TiO}_2)\)

Binding Energy
\(\text{OH}@\text{TiO}_2\)
Effect of environment polarisability (MM)

IP (TiO$_2$)

Binding Energy

OH@TiO$_2$

“Seamless embedding” recovers electronic structure
(DOS of the rutile TiO$_2$ 110-surface)

Example: Rutile TiO$_2$ (110) Surface Oxygen Vacancy

$$G_f(q) \approx E_{\text{defect}}(q) - E_{\text{pristine}}(q) + \mu_O + q\varepsilon_f$$

FHI-aims HSE06, tight settings, polarisably embedded Ti$_{46}$O$_{92}$

Example: Rutile TiO2 (110) Surface Oxygen Vacancy

\[G_f(q) \approx E_{\text{defect}}(q) - E_{\text{pristine}}(q) + \mu_O + q\varepsilon_f \]

FHI-aims HSE06, tight settings, polarisably embedded Ti\textsubscript{46}O\textsubscript{92}

\[V_0^\circ \ 	ext{closed-shell singlet} \]
\[V_0^2+ \ 	ext{open-shell singlet/triplet} \]

Charged defect stable over wide range of doping (\(\varepsilon_f\)) and oxidation conditions

Charges localise at defects \(\Rightarrow\) photo-electrocatalysis

Harald Oberhofer | IPAM, October 2017
Example: Free Energy Barriers

Example: Free Energy Barriers

Example: Free Energy Barriers

Example: Free Energy Barriers

Initial proton abstraction driven by electron hole:

FHI-aims HSE06, tight settings, umbrella sampling/energy gap reaction coordinate

Basis-set corrected barrier 200 ± 40 meV

Continuum embedding

\[\nabla \cdot [\nabla \nu(r)] = -4\pi n_{\text{sol}}(r) \]

Poisson equation in \textit{vacuum}

Parameters:
Continuum embedding

\[\nabla \cdot \left[\varepsilon[n_{\text{el}}(r)] \nabla \nu(r) \right] = -4\pi n_{\text{sol}}(r) \]

Parameters:

- \(\{n_{\text{min}}, n_{\text{max}}\} \)
 solvation cavity shape
- \(\{\alpha, \beta, \gamma\} \)
 non-electrostatics

Poisson equation in a **dielectric continuum**
Continuum embedding

\[\nabla \cdot \left[\varepsilon[n_{el}(r)] \nabla \nu(r) \right] = -4\pi n_{sol}(r) - 4\pi n^{\text{PB}}_{\text{ion}}(r) \]

Parameters:

- \(\{n_{\text{min}}, n_{\text{max}}\} \) - solvation cavity shape
- \(\{\alpha, \beta, \gamma\} \) - non-electrostatics
- \(\{a\} \) - ion size
- \(\{n^{\alpha}_{\text{min}}, n^{\alpha}_{\text{max}}\} \) - ion cavity shape (Stern layer)

(modified) Poisson Boltzmann equation in a dielectric continuum
Continuum embedding

\[\nabla \cdot \left[\varepsilon \left[n_{\text{el}}(r) \right] \nabla \nu(r) \right] = -4\pi n_{\text{sol}}(r) - 4\pi n_{\text{ion}}^{\text{PB}}(r) \]

Parameters:

- \(\{n_{\text{min}}, n_{\text{max}}\} \) : solvation cavity shape
- \(\{\alpha, \beta, \gamma\} \) : non-electrostatics
- \(\{a\} \) : ion size
- \(\{n_{\text{min}}^{\alpha}, n_{\text{max}}^{\alpha}\} \) : ion cavity shape (Stern layer)

Ionic "cavity" not necessarily same as solvation cavity \(\Rightarrow 8 \text{ parameters in total} \)

Significance of the parameters

Example: Nitrobenzene in H₂O with 1M NaCl
Significance of the parameters

Example: Nitrobenzene in H$_2$O with 1M NaCl
Significance of the parameters

Example: Nitrobenzene in H$_2$O with 1M NaCl
With four parameters I can fit an elephant, and with five I can make him wiggle his trunk.

J. von Neumann via E. Fermi
With four parameters I can fit an elephant, and with five I can make him wiggle his trunk.

J. von Neumann via E. Fermi

An elephant pattern.

5 parameter fit output, note the trunk wiggling.

Fixing *solvation* parameters

240 molecule test-set with known experimental solvation free energies

⇒ fit solvation parameters

Fixing solvation parameters

Fixing solvation parameters

Fixing ionic parameters

First approach salt activity coefficients (KCl)

\[
\ln(\gamma_{\pm}) \propto c_s^{1/2}M^{1/2}
\]

Debye-Hückel vs. experiment [1]

Fixing ionic parameters

First approach salt activity coefficients (KCl)

\[\ln(\gamma^+_{\pm}) \]

Debye-Hückel

MPBE

electrostatics only

Fixing ionic parameters

First approach **salt activity coefficients** (KCl)

\[
\ln(\gamma^+) = \text{fit parameters}
\]

\[
\gamma^+ = \text{physical observables}
\]

\[
c_s^{1/2}M^{1/2}
\]

⇒ ion parameters can be fit to physical observables

Fixing ionic parameters

Molecular test-set, **Setschenow coefficients**

Linear relationship of solvation free energy of (neutral) molecules with salt concentration

\[\Delta \Delta G_{\text{ion}} \propto k_s c_S \]

Fixing ionic parameters

Molecular test-set, Setschenow coefficients

Linear relationship of solvation free energy of (neutral) molecules with salt concentration

$$\Delta \Delta G_{\text{ion}} \propto k_s c_S$$

Holds for concentrations $\lesssim 2M$.

Fixing ionic parameters

Molecular test-set, **Setschenow coefficients**

Linear relationship of solvation free energy of (neutral) molecules with salt concentration

\[\Delta \Delta G_{\text{ion}} \propto k_S c_S \]

Holds for concentrations \(\lesssim 2M \).

Generally \(k_S > 0 \) ⇒ **salting out**.

Fixing ionic parameters

Molecular test-set, Setschenow coefficients

Linear relationship of solvation free energy of (neutral) molecules with salt concentration

\[\Delta \Delta G_{\text{ion}} \propto k_S c_S \]

Holds for concentrations \(\lesssim 2 \text{M} \).

Generally \(k_S > 0 \) ⇒ salting out.

Independence of ion parameters

Best results generally found for $a = 0$ (point-like ions), ensures Setschenow linearity.
Independence of ion parameters

Best results generally found for $\alpha = 0$ (point-like ions), ensures Setschenow linearity.

Stern layer width d_α versus “softness” ξ_α.
Independence of ion parameters

Best results generally found for $\alpha = 0$ (point-like ions), ensures Setschenow linearity.

Stern layer width d_α versus “softness” ξ_α.

Stern layer sizes for anions d^-_α and cations $d^+\alpha$.
Independence of ion parameters

Best results generally found for $a = 0$ (point-like ions), ensures Setschenow linearity.

Stern layer width d_α versus “softness” ξ_α.

Stern layer sizes for anions d^-_α and cations d^+_α.

Setschenow coefficients depend only on $d^-_\alpha = d^+_\alpha = d_\alpha$.
Scaling relation for d_α (Stern Layer width)

What to do with other salts (with often little or no experimental data)?
Scaling relation for d_α (Stern Layer width)

What to do with other salts (with often little or no experimental data)?

d_α correlates with the hydration number.

⇒ predict ionic parameter.

SMPB in practice

Free energy functional

\[\Omega_{\varepsilon,\alpha_{\text{ion}}}^{\pm}[v, n_{\text{el}}] = T^S[n_{\text{el}}] + E^{xc}[n_{\text{el}}] + \Omega_{\varepsilon,\alpha_{\text{ion}}}^{\text{mf}}[v, n_{\text{el}}] + \Omega_{\varepsilon}^{\text{non-mf}}[n_{\text{el}}] \]

min \(v\)

min \(n_{\text{el}}\)

SMPBE modified KS-eq.

\textbf{Newton-Multipole-Expansion Relaxation Method (MERM)}
Solving the MPBE

Regularisation

\[v = v^\text{free} + \delta v \]

Rewrite SMPB as root-finding Problem

\[\mathcal{F}[v] = \nabla \cdot [\varepsilon \nabla v] + 4\pi (n_{\text{sol}} + n_{\text{ion}}[v]) = 0 \]

Solving the MPBE

Regularisation
\[v = v^{\text{free}} + \delta v \]

Rewrite SMPB as root-finding Problem
\[\mathcal{F}[v] = \nabla.[\varepsilon \nabla v] + 4\pi (n_{\text{sol}} + n_{\text{ion}}[v]) = 0 \]

Linearise, Newton in function space
\[
\begin{align*}
\mathcal{F}'[v_n](\delta v_{n+1} - \delta v_n) &= -\mathcal{F}[v_n], \\
(\nabla.[\nabla \varepsilon] - \hbar^2[v_n])\delta v_{n+1} &= -4\pi \varepsilon q[v_n]
\end{align*}
\]

Solving the MPBE

Regularisation

\[v = v^{\text{free}} + \delta v \]

Rewrite SMPB as root-finding Problem

\[\mathcal{F}[v] = \nabla \cdot [\varepsilon \nabla v] + 4\pi (n_{\text{sol}} + n_{\text{ion}}[v]) = 0 \]

Linearise, Newton in function space

\[
\begin{align*}
\mathcal{F}'[v_n](\delta v_{n+1} - \delta v_n) &= -\mathcal{F}[v_n], \\
(\nabla \cdot [\nabla \varepsilon] - h^2[v_n])\delta v_{n+1} &= -4\pi \varepsilon q[v_n]
\end{align*}
\]

Solve by relaxation method, recast as screened Poisson equation

\[(\Delta - \kappa^2)\delta v_{n+1} = -4\pi q[v_n] + \hat{L}_1[v_n] \delta v_{n+1}, \]

\[\delta v_{n+1}(\mathbf{r}) = -\int d\mathbf{r}' G_1(|\mathbf{r} - \mathbf{r}'|) \left(-4\pi q[v_n(\mathbf{r}')] + \hat{L}_1[v_n(\mathbf{r}')] \delta v_{n+1}(\mathbf{r}') \right), \]

\[G_1(|\mathbf{r} - \mathbf{r}'|) = \frac{1}{|\mathbf{r} - \mathbf{r}'|} e^{-\kappa |\mathbf{r} - \mathbf{r}'|} \]

Solving the MPBE

Regularisation

\[v = v^{\text{free}} + \delta v \]

Rewrite SMPB as root-finding Problem

\[\mathcal{F}[v] = \nabla \cdot [\varepsilon \nabla v] + 4\pi (n_{\text{sol}} + n_{\text{ion}}[v]) = 0 \]

Linearise, Newton in function space

\[\mathcal{F}'[v_n](\delta v_{n+1} - \delta v_n) = -\mathcal{F}[v_n], \]
\[(\nabla \cdot \nabla \varepsilon - h^2[v_n])\delta v_{n+1} = -4\pi \varepsilon q[v_n] \]

Solve by relaxation method, recast as screened Poisson equation

\[(\Delta - \kappa^2)\delta v_{n+1} = -4\pi q[v_n] + \hat{L}_1[v_n]\delta v_{n+1}, \]
\[\delta v_{n+1}(r) = -\int d\mathbf{r}' G_1(|\mathbf{r} - \mathbf{r}'|) \left(-4\pi q[v_n(\mathbf{r}')] + \hat{L}_1[v_n(\mathbf{r}')]\delta v_{n+1}(\mathbf{r}')\right), \]
\[G_1(|\mathbf{r} - \mathbf{r}'|) = \frac{1}{|\mathbf{r} - \mathbf{r}'|} e^{-\kappa|\mathbf{r} - \mathbf{r}'|} \]

Solve Integral by Multi-centre multipole expansion

MERM

Solving the MPBE

KS-Equation

- SCF update KS-Hamiltonian
- solve eigenvalue problem
- update electron density

Poisson Solver

Solve via multi-centre
Multipole expansion

\(n_{el} \)

\(V \)

Solving the MPBE

KS-Equation

- SCF:
 - **update** KS-Hamiltonian
 - **solve** eigenvalue problem
 - **update** electron density

- **MPBE**

 - **rewrite** MPBE: \(F[v] = 0 \)
 - **solve** for \(v \) via Newton method
 - Newton step \(\leftrightarrow \) **solve** "tangent equation"

- **MERM**

 - **recast** "tangent equation" into \textit{Screened Poisson Equation}
 - \textit{to be solved} self-consistently
 - **integrate** SPE via \textit{Multipole Expansion}
 - \textit{ME based Relaxation Method}

n_{el}

Acknowledgements

The Team:
Dr. Daniel Berger (now UCLA), embedding, defects
Dr. Thomas Stecher, barriers
Dr. Christoph Schober, Organic electronics screening
Dr. Stefan Ringe, Poisson-Boltzmann
Markus Sinstein, implicit solvation
Matthias Kick, DFT+U, defects
Ahmad Agung, barriers
Christian Kunkel, data mining
Christoph Muschielok, MOFs
Simiam Ghan, inorganic charge transport

Thanks To:
Prof. Karsten Reuter
Dr. Christoph Scheurer