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Open Problems, Key Challenges, Emerging Techniques
Open Problem: Often equations are unknown, or are only partially known
Key Challenges: Combinatorially large search space for candidate models 
Emerging Techniques:  Machine learning, sparse (parsimonious) methods

Open Problem: Nonlinear dynamics still poorly understood
Key Challenges: Topologically complex, no closed form (Poincare)
Emerging Techniques:  Koopman spectral analysis (linear embeddings)

Open Problem: Optimal nonlinear control and estimation
Key Challenges: Finding intrinsic coordinates (Koopman eigenfunctions)
Emerging Techniques:  Uncertainty quantification and robust control

Open Problem: Chaos, transients, intermittent, and uncertain phenomena
Key Challenges: Limitations of topological and operator perspectives
Emerging Techniques:  Time delay embeddings facilitate linear regression

Open Problem: Optimal sensing for problems with multi scale physics
Key Challenges: Largely heuristic, brute-force, lack of basic principles
Emerging Techniques:  Compressed sensing, library learning



Finite-time Lyapunov exponents  (FTLE)

ẋ = x

ẏ = �y + x2 Haller, 2002; 
Shadden et al., 2005

Discrete-time update

2 Background on Koopman analysis

Consider a continuous-time dynamical system, given by:

d

dt

x = f(x), (1)

where x 2 M is an n-dimensional state on a smooth manifold M. The vector field f is an element
of the tangent bundle TM of M, such that f(x) 2 T

x

M. Note that in many cases we dispense
with manifolds and choose M = Rn and f a Lipschitz continuous function.

For a given time t, we may consider the flow map Ft : M ! M, which maps the state x(t0)
forward time t into the future to x(t0 + t), according to:

Ft(x(t0)) = x(t0 + t) = x(t0) +

Z t0+t

t0

f(x(⌧)) d⌧. (2)

In particular, this induces a discrete-time dynamical system:

xk+1 = Ft(xk), (3)

where xk = x(kt). In general, discrete-time dynamical systems are more general than continuous
time systems, but we choose to start with continuous time for illustrative purposes.

We also define a real-valued observable function g : M ! R, which is an element of an infinite-
dimensional Hilbert space. Typically, the Hilbert space is given by the Lebesque square-integrable
functions on M; other choices of a measure space are also valid.

The Koopman operator Kt is an infinite-dimensional linear operator that acts on observable
functions g as:

Ktg = g � Ft (4)

where � is the composition operator, so that:

Ktg(xk) = g(Ft(xk)) = g(xk+1). (5)

In other words, the Koopman operator Kt defines an infinite-dimensional linear dynamical system
that advances the observation of the state gk = g(xk) to the next timestep:

g(xk+1) = Ktg(xk). (6)

Note that this is true for any observable function g and for any point xk 2 M.
In the original paper by Koopman, Hamiltonian fluid systems with a positive density were

investigated. In this case, the Koopman operator Kt is unitary, and forms a one-parameter family
of unitary transformations in Hilbert space.

We may also describe the continuous-time version of the observable dynamical system in
Eq. (6) with the infinitesimal generator K of the one-parameter family of transformations Kt [6] :

d

dt

g = Kg. (7)

The linear dynamical systems in Eqs. (7) and (6) are analogous to the dynamical systems in Eqs. (1)
and (3), respectively. It is important to note that the original state x may be the observable, and the
infinite-dimensional operator Kt will advance this observable function. Note that we are denoting
this operator K in bold because it is an operator that operates on an infinite dimensional vector
space; given a particular basis for Hilbert space, K may be thought of as a generalization of a
matrix to infinite dimensions (i.e., an infinite-dimensional linear operator). Again, for Hamiltonian
systems, the infinitesimal generator K is self-adjoint.
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Figure 1: Schematic illustrating the Koopman operator for nonlinear dynamical systems. The
dashed lines from yk ! xk indicate that we would like to be able to recover the original state.

3 Koopman observable subspaces and exact finite-dimensional models

As with any vector space, we may choose a basis for Hilbert space and represent our observable
function g in this basis. For simplicity, let us consider basis observable functions y1(x), y2(x), etc.,
and let a given function g(x) be written in these coordinates as:

g =
1X

k=1

↵kyk. (8)

We introduce the notion of a Koopman-invariant observable subspace, given by span{ys1 , ys2 , · · · , ysm}
such that if a given function g is in this subspace,

g = ↵1ys1 + ↵2ys2 + · · · + ↵mysm , (9)

then the action of the Koopman operator K on g remains in the subspace:

Kg = �1ys1 + �2ys2 + · · · + �mysm . (10)

For observable functions in these invariant subspaces, it is possible to restrict the Koopman op-
erator to this subspace, yielding a finite-dimensional linear operator K. K acts on a vector space
Rm, with the coordinates given by the values of ysk(x). This induces a finite-dimensional linear
system, as in Eqs. (6) and (7). Koopman eigenfunctions ', such that K' = �', generate invariant
subspaces; however, these may or may not yield insights into the dynamics of the original state x.

We are especially interested in finding Koopman-invariant subspaces that include the original
state variables x1, x2, · · · , xn as observables. The Koopman operator restricted to this subspace is
finite-dimensional, linear, and it advances the original state dynamics, as well as the other observ-
ables in the subspace, as shown in Fig. 1. These Koopman-invariant subspaces may be identified
using data-driven methods, as discussed in Sec. 3.1. In the following sections, we will show that
this is rather restrictive, and it is not possible for the vast majority of nonlinear systems. In fact, it
is impossible to determine a finite-dimensional linear Koopman system that includes the original
state variables as observables, for any system with multiple fixed points, or any more general at-
tractors. This is because all finite-dimensional linear systems have a single fixed point, and cannot
be topologically conjugate to a system with multiple fixed points. However, this does not preclude
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Discrete-time update

2 Background on Koopman analysis

Consider a continuous-time dynamical system, given by:

d

dt

x = f(x), (1)

where x 2 M is an n-dimensional state on a smooth manifold M. The vector field f is an element
of the tangent bundle TM of M, such that f(x) 2 T

x

M. Note that in many cases we dispense
with manifolds and choose M = Rn and f a Lipschitz continuous function.

For a given time t, we may consider the flow map Ft : M ! M, which maps the state x(t0)
forward time t into the future to x(t0 + t), according to:

Ft(x(t0)) = x(t0 + t) = x(t0) +

Z t0+t

t0

f(x(⌧)) d⌧. (2)

In particular, this induces a discrete-time dynamical system:

xk+1 = Ft(xk), (3)

where xk = x(kt). In general, discrete-time dynamical systems are more general than continuous
time systems, but we choose to start with continuous time for illustrative purposes.

We also define a real-valued observable function g : M ! R, which is an element of an infinite-
dimensional Hilbert space. Typically, the Hilbert space is given by the Lebesque square-integrable
functions on M; other choices of a measure space are also valid.

The Koopman operator Kt is an infinite-dimensional linear operator that acts on observable
functions g as:

Ktg = g � Ft (4)

where � is the composition operator, so that:

Ktg(xk) = g(Ft(xk)) = g(xk+1). (5)

In other words, the Koopman operator Kt defines an infinite-dimensional linear dynamical system
that advances the observation of the state gk = g(xk) to the next timestep:

g(xk+1) = Ktg(xk). (6)

Note that this is true for any observable function g and for any point xk 2 M.
In the original paper by Koopman, Hamiltonian fluid systems with a positive density were

investigated. In this case, the Koopman operator Kt is unitary, and forms a one-parameter family
of unitary transformations in Hilbert space.

We may also describe the continuous-time version of the observable dynamical system in
Eq. (6) with the infinitesimal generator K of the one-parameter family of transformations Kt [6] :

d

dt

g = Kg. (7)

The linear dynamical systems in Eqs. (7) and (6) are analogous to the dynamical systems in Eqs. (1)
and (3), respectively. It is important to note that the original state x may be the observable, and the
infinite-dimensional operator Kt will advance this observable function. Note that we are denoting
this operator K in bold because it is an operator that operates on an infinite dimensional vector
space; given a particular basis for Hilbert space, K may be thought of as a generalization of a
matrix to infinite dimensions (i.e., an infinite-dimensional linear operator). Again, for Hamiltonian
systems, the infinitesimal generator K is self-adjoint.
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Figure 1: Schematic illustrating the Koopman operator for nonlinear dynamical systems. The
dashed lines from yk ! xk indicate that we would like to be able to recover the original state.

3 Koopman observable subspaces and exact finite-dimensional models

As with any vector space, we may choose a basis for Hilbert space and represent our observable
function g in this basis. For simplicity, let us consider basis observable functions y1(x), y2(x), etc.,
and let a given function g(x) be written in these coordinates as:

g =
1X

k=1

↵kyk. (8)

We introduce the notion of a Koopman-invariant observable subspace, given by span{ys1 , ys2 , · · · , ysm}
such that if a given function g is in this subspace,

g = ↵1ys1 + ↵2ys2 + · · · + ↵mysm , (9)

then the action of the Koopman operator K on g remains in the subspace:

Kg = �1ys1 + �2ys2 + · · · + �mysm . (10)

For observable functions in these invariant subspaces, it is possible to restrict the Koopman op-
erator to this subspace, yielding a finite-dimensional linear operator K. K acts on a vector space
Rm, with the coordinates given by the values of ysk(x). This induces a finite-dimensional linear
system, as in Eqs. (6) and (7). Koopman eigenfunctions ', such that K' = �', generate invariant
subspaces; however, these may or may not yield insights into the dynamics of the original state x.

We are especially interested in finding Koopman-invariant subspaces that include the original
state variables x1, x2, · · · , xn as observables. The Koopman operator restricted to this subspace is
finite-dimensional, linear, and it advances the original state dynamics, as well as the other observ-
ables in the subspace, as shown in Fig. 1. These Koopman-invariant subspaces may be identified
using data-driven methods, as discussed in Sec. 3.1. In the following sections, we will show that
this is rather restrictive, and it is not possible for the vast majority of nonlinear systems. In fact, it
is impossible to determine a finite-dimensional linear Koopman system that includes the original
state variables as observables, for any system with multiple fixed points, or any more general at-
tractors. This is because all finite-dimensional linear systems have a single fixed point, and cannot
be topologically conjugate to a system with multiple fixed points. However, this does not preclude
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In particular, this induces a discrete-time dynamical system:

xk+1 = Ft(xk), (3)

where xk = x(kt). In general, discrete-time dynamical systems are more general than continuous
time systems, but we choose to start with continuous time for illustrative purposes.

We also define a real-valued observable function g : M ! R, which is an element of an infinite-
dimensional Hilbert space. Typically, the Hilbert space is given by the Lebesque square-integrable
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functions g as:
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Note that this is true for any observable function g and for any point xk 2 M.
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investigated. In this case, the Koopman operator Kt is unitary, and forms a one-parameter family
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We may also describe the continuous-time version of the observable dynamical system in
Eq. (6) with the infinitesimal generator K of the one-parameter family of transformations Kt [6] :

d

dt
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The linear dynamical systems in Eqs. (7) and (6) are analogous to the dynamical systems in Eqs. (1)
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infinite-dimensional operator Kt will advance this observable function. Note that we are denoting
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Figure 2: Illustration of two examples with a slow manifold . In both cases, µ = �0.05 and � = �1.

Figure 3: Visualization of three-
dimensional linear Koopman sys-
tem from Eq. (26) along with pro-
jection of dynamics onto the x1-x2
plane. The attracting slow mani-
fold is shown in red, the constraint
y3 = y

2
1 is shown in blue, and the

slow unstable subspace of Eq. (26)
is shown in green. Black trajecto-
ries of the linear Koopman system
in y project onto trajectories of the
full nonlinear system in x in the
y1-y2 plane. Here, µ = �0.05 and
� = 1. Figure is reproduced with
Code 1.

4.1.1 Continous-time examples

Here, we consider two examples with slow manifolds, which are illustrated in Fig. 2. The first
system, with quadratic attracting manifold x2 = x
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To understand the embedding of a nonlinear dynamical system in a higher-dimensional ob-
servable subspace, in which the dynamics are linear, consider the system with quadratic attracting
manifold from Eq. (26). The full three-dimensional Koopman observable vector space is visualized
in Fig. 3. Trajectories that start on the invariant manifold y3 = y

2
1 , visualized by the blue surface,

are constrained to stay on this manifold. There is a slow subspace, spanned by the eigenvectors
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To understand the embedding of a nonlinear dynamical system in a higher-dimensional ob-
servable subspace, in which the dynamics are linear, consider the system with quadratic attracting
manifold from Eq. (26). The full three-dimensional Koopman observable vector space is visualized
in Fig. 3. Trajectories that start on the invariant manifold y3 = y

2
1 , visualized by the blue surface,

are constrained to stay on this manifold. There is a slow subspace, spanned by the eigenvectors
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corresponding to the slow eigenvalues µ and 2µ; this subspace is visualized by the green surface.
Finally, there is the original asymptotically attracting manifold of the original system, y2 = y

2
1 ,

which is visualized as the red surface. The blue and red parabolic surfaces always intersect in a
parabola that is inclined at a 45� angle in the y2-y3 direction. The green surface approaches this
45� inclination as the ratio of fast to slow dynamics become increasingly large. In the full three-
dimensional Koopman observable space, the dynamics are given by a stable node, with trajectories
rapidly attracting onto the green subspace and then slowly approaching the fixed point.

4.1.2 Intrinsic coordinates defined by eigen-observables of the Koopman operator

The left eigenvectors of the Koopman operator yield Koopman eigenfunctions (i.e., eigenobserv-
ables). The Koopman eigenfunctions of Eq. (26) corresponding to eigenvalues µ and � are:

'µ = x1, and '� = x2 � bx

2
1 with b =

�

� � 2µ
. (28)

The constant b in '� captures the fact that for a finite ratio �/µ, the dynamics only shadow the
asymptotically attracting slow manifold x2 = x

2
1, but in fact follow neighboring parabolic trajec-

tories. This is illustrated more clearly by the various surfaces in Fig. 3 for different ratios �/µ.
In this way, a set of intrinsic coordinates may be determined from the observable functions

defined by the left eigenvectors of the Koopman operator on an invariant subspace. Explicitly,

'↵(x) = ⇠↵y(x), where ⇠↵K = ↵⇠↵. (29)

These eigen-observables define observable subspaces that remain invariant under the Koopman
operator, even after coordinate transformations. As such, they may be regarded as intrinsic co-
ordinates [17] on the Koopman-invariant subspace. As an example, consider the system from
Eq. (26), but written in a coordinate system that is rotated by 45�:

⌘ = x + y

⇠ = x � y
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x = (⌘ + ⇠) /2

y = (⌘ � ⇠) /2
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The original eigenfunctions, written in the new coordinate systems are:
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It is easy to verify that these remain eigenfunctions:
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In fact, in this new coordinate system, it is possible to write the Koopman subspace system:
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6 Koopman operator optimal control

A long held hope of Koopman operator theory is that it would provide insights into the control of
nonlinear systems. Here, we present results of designing control laws using linear control theory
on the truncated Koopman operator; these Koopman operator optimal controllers (KOOCs) then
induce a nonlinear controller on the state-space that dramatically outperforms optimal control on
the linearized fixed point.

This is only a brief introduction to the theory of Koopman optimal control, and there are nu-
merous extensions that must be developed and explored. There are existing connections between
DMD and control systems [11], and there are ongoing efforts to extend this to the Koopman opera-
tor framework. There are a number of systems where it is not clear how to use the Koopman linear
operator for control, and these will be briefly outlined below. Moreover, we have not yet proven
the nonlinear optimality of these new controllers, but the numerical performance is striking.

6.1 Simple motivating example

As a motivating example, consider the nonlinear system in Eq. (26), but with the stability of the x2

direction reversed (i.e., � = 1 instead of � = �1), and modified to include actuation on the second
state:

d

dt


x1

x2

�
=


µ 0
0 �

� 
x1

x2

�
+


0

��x

2
1

�
+


0
1

�
u, (50)

with µ = �.1 and � = 1. Again, this may be put into a Koopman formalism as:

d

dt
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1
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u. (51)

Now, let us assume that we have a quadratic cost function, as in the linear-quadratic-regulator
(LQR) control framework:

J =

Z 1

0
x

T (⌧)Qx(⌧) + u(⌧)TRu(⌧) d⌧, (52)

where Q weighs the cost of deviations of the state x from the origin and R weighs the cost of
control expenditure. For now, we will consider the following Q and R for simplicity:

Q =


1 0
0 1

�
R = 1. (53)

In this way, all state deviations and control expenditures are weighed equally.
For linear systems, such as the linearization of Eq. (50), it is possible to derive the matrix C that

results in the optimal control law u = �Cx; this control law is optimal in the sense that it achieves
the minimal attainable cost function J . However, this controller will only be optimal for a small
vicinity of the fixed point where linearization is valid. Outside this vicinity, when nonlinear terms
become large, all guarantees of optimality are lost.

Instead of linearizing near the fixed point and computing the optimal LQR controller, here we
use the Koopman linear system in Eq. (51). We still have the same cost on the state x, so we use

a modified weight matrix Q̃ given by Q̃ =


Q 0
0 0

�
and R̃ = R. In this way, we may develop an
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Figure 5: Illustration of LQR control around a nonlinear fixed point using standard linearization
(black) and truncated Koopman (red). The Koopman optimal controller achieves a much smaller
overall cost, approximately 1/3 of the cost of the standard LQR solution.

optimal linear controller for the Koopman representation of our nonlinear system. In this case, the
Koopman linear control law, given by u = C̃y, may be interpreted as a nonlinear control law on
the original state x:

u = �
⇥
K̃1 K̃2

⇤ 
x1

x2

�
� K̃3x

2
1. (54)

The results of the standard LQR compared with this Koopman operator optimal controller are
shown in Fig. 5, and the Matlab code is provided in Code 2. In this example, the KOOC achieves
a cost of approximately 1/3 the cost of standard LQR.

6.2 Limitations of Koopman operator optimal control

In the current framework, there are a number of limitations to the approach advocated above. We
will illustrate this on a simple variation on the example above, in which µ is unstable instead of �
and the control input effects the first state x1 instead of x2:

d

dt


x1

x2

� 
µ 0
0 �

� 
x1

x2

�
+


0

��x

2
1

�
+


1
0

�
u, (55)

with µ = .1 and � = �1. In this example, it is necessary to move the actuation to the first state
x1, otherwise this state will be unstable and uncontrollable. What is more troubling, is that the
subspace spanned by x1, x2, and x

2
1 is no longer Koopman-invariant, since the expression for the

time derivative of y3 = x

2
1 is more complicated now:

d

dt

y3 = 2x1
d

dt

x1 = 2x1 (µx1 + u) . (56)

Thus, there is a troublesome extra nonlinear term x1u in the expression for d
dty3. However, this

may not be too large of a problem, considering that we don’t weight excursions of y3 in the cost
function. What is a larger problem, is that the state y3 has a positive eigenvalue 2µ, which is
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5.2 Example: Nonlinear fixed point with a center manifold

Consider the simple nonlinear system with a single isolated fixed point at the origin:

d

dt

x = x

2
. (45)

The approach above would suggest that we augment the observable subspace with the quadratic
polynomial y2 = x

2, so that:

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�
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
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x

2

�
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However, the expression for the time-derivative of y2 requires higher polynomials in x:

d

dt

y2 = 2xẋ = 2x3. (47)

Similarly, if we introduce y3 = x

3, then

d

dt
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and so on. This results in an infinite Koopman expansion:
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Again, it is interesting to note that the determinant of this Koopman operator is 0, even though
the system has finite-time blow up!
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y3 = 3x2ẋ = 3x4, (48)

and so on. This results in an infinite Koopman expansion:

d

dt

2

66666664

y1

y2

y3

y4

y5
...

3

77777775

=

2

66666664

0 1 0 0 0 · · ·
0 0 2 0 0 · · ·
0 0 0 3 0 · · ·
0 0 0 0 4 · · ·
0 0 0 0 0 · · ·
...

...
...

...
... . . .

3

77777775

2

66666664

y1

y2

y3

y4

y5
...

3

77777775

where

2

66666664

y1

y2

y3

y4

y5
...

3

77777775

=

2

66666664

x

x

2

x

3

x

4

x

5

...

3

77777775

. (49)

Again, it is interesting to note that the determinant of this Koopman operator is 0, even though
the system has finite-time blow up!

0 10 20 30 40 50 60 70 80
0

0.01

0.02

0.03

0.04

0.05

t

x

 

 
Full System
r=1
r=2
r=3
r=4
r=5
r=6
r=7
r=8
r=9
r=10

Figure 4: Illustration of Koopman linear system converging towards true solution as the rank of
the truncation r is increased.

12

5.2 Example: Nonlinear fixed point with a center manifold

Consider the simple nonlinear system with a single isolated fixed point at the origin:

d

dt

x = x

2
. (45)

The approach above would suggest that we augment the observable subspace with the quadratic
polynomial y2 = x

2, so that:

y1

y2

�
=


x

x

2

�
. (46)

However, the expression for the time-derivative of y2 requires higher polynomials in x:

d

dt
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the truncation r is increased.
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6.2 Example: Nonlinear fixed point with a center manifold

Consider the simple nonlinear system with a single isolated fixed point at the origin:

d

dt

x = x

2
. (51)

The Carleman linearization approach above would suggest that we augment the observable sub-
space with the quadratic polynomial y2 = x

2, so that:

y1

y2

�
=


x

x

2

�
. (52)

However, the expression for the time-derivative of y2 requires higher polynomials in x:

d

dt

y2 = 2xẋ = 2x3. (53)

Similarly, if we introduce y3 = x

3, then d

dt

y3 = 3x2ẋ = 3x4, and so on. This results in an infinite
Koopman expansion:

d

dt
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x
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3

777775
. (54)

Note that the determinant of any finite-rank truncation of the Koopman operator is 0, even though
the system has finite-time blow up! For this problem, it is possible to use eigenfunction coordinates
to obtain a linear model in terms of an eigenfunction that may be inverted to recover the state1:

'(x) = e

�1/x =) d

dt

'(x) = x

�2
e

�1/x
ẋ = '(x). (55)

Identifying eigenfunctions from data and using these linear models for control is a high-priority
future direction.
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Figure 5: Illustration of Koopman linear system from Eq. (54) converging towards true solution as
the rank of the truncation r is increased.
1From a personal communication with C. W. Rowley.
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6.2 Example: Nonlinear fixed point with a center manifold

Consider the simple nonlinear system with a single isolated fixed point at the origin:

d

dt

x = x

2
. (51)

The Carleman linearization approach above would suggest that we augment the observable sub-
space with the quadratic polynomial y2 = x

2, so that:

y1

y2

�
=


x

x

2

�
. (52)

However, the expression for the time-derivative of y2 requires higher polynomials in x:

d

dt

y2 = 2xẋ = 2x3. (53)

Similarly, if we introduce y3 = x

3, then d

dt

y3 = 3x2ẋ = 3x4, and so on. This results in an infinite
Koopman expansion:
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Note that the determinant of any finite-rank truncation of the Koopman operator is 0, even though
the system has finite-time blow up! For this problem, it is possible to use eigenfunction coordinates
to obtain a linear model in terms of an eigenfunction that may be inverted to recover the state1:

'(x) = e

�1/x =) d

dt

'(x) = x

�2
e

�1/x
ẋ = '(x). (55)

Identifying eigenfunctions from data and using these linear models for control is a high-priority
future direction.
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Figure 5: Illustration of Koopman linear system from Eq. (54) converging towards true solution as
the rank of the truncation r is increased.
1From a personal communication with C. W. Rowley.
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5.2 Example: Nonlinear fixed point with a center manifold

Consider the simple nonlinear system with a single isolated fixed point at the origin:

d

dt

x = x

2
. (45)

The approach above would suggest that we augment the observable subspace with the quadratic
polynomial y2 = x

2, so that:

y1

y2

�
=


x

x

2

�
. (46)

However, the expression for the time-derivative of y2 requires higher polynomials in x:

d

dt

y2 = 2xẋ = 2x3. (47)

Similarly, if we introduce y3 = x

3, then

d

dt

y3 = 3x2ẋ = 3x4, (48)

and so on. This results in an infinite Koopman expansion:
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. (49)

Again, it is interesting to note that the determinant of this Koopman operator is 0, even though
the system has finite-time blow up!
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Figure 4: Illustration of Koopman linear system converging towards true solution as the rank of
the truncation r is increased.
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d

dt
'(x) = r'(x) · f(x)d

dt
'(x) = r'(x) · f(x) =) r'(x) · f(x) = �'(x)

PDE for Koopman 
Eigenfunctions!

d

dt
x = f(x)

Nonlinear dynamics
in original coordinates

d

dt
'(x) = �'(x)

Linear dynamics in 
eigenfunction coordinates
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III.  Identified System

4.2 Example 2: Lorenz system (Nonlinear ODE)

Here, we consider the nonlinear Lorenz system to explore the identification of chaotic dynamics:

ẋ = �(y � x) (18)
ẏ = x(⇢ � z) � y (19)
ż = xy � �z. (20)

For this example, we use the standard parameters � = 10, � = 8/3, ⇢ = 28, with an initial condition⇥
x y z
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Figure 3: Trajectories of the Lorenz system for short-time integration from t = 0 to t = 20 (top)
and long-time integration from t = 0 to t = 250 (bottom). The full dynamics (left) are compared
with the sparse identified systems (middle, right) for various additive noise. The trajectories are
colored by �t, the adaptive Runge-Kutta time step. This color is a proxy for local sensitivity.
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T
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II.  Sparse Regression to Solve for Active Terms in the Dynamics

4.2 Example 2: Lorenz system (Nonlinear ODE)

Here, we consider the nonlinear Lorenz system to explore the identification of chaotic dynamics:

ẋ = �(y � x) (18)
ẏ = x(⇢ � z) � y (19)
ż = xy � �z. (20)

For this example, we use the standard parameters � = 10, � = 8/3, ⇢ = 28, with an initial condition⇥
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Figure 3: Trajectories of the Lorenz system for short-time integration from t = 0 to t = 20 (top)
and long-time integration from t = 0 to t = 250 (bottom). The full dynamics (left) are compared
with the sparse identified systems (middle, right) for various additive noise. The trajectories are
colored by �t, the adaptive Runge-Kutta time step. This color is a proxy for local sensitivity.
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Here, we consider the nonlinear Lorenz system to explore the identification of chaotic dynamics:

ẋ = �(y � x) (18)
ẏ = x(⇢ � z) � y (19)
ż = xy � �z. (20)

For this example, we use the standard parameters � = 10, � = 8/3, ⇢ = 28, with an initial condition⇥
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Figure 3: Trajectories of the Lorenz system for short-time integration from t = 0 to t = 20 (top)
and long-time integration from t = 0 to t = 250 (bottom). The full dynamics (left) are compared
with the sparse identified systems (middle, right) for various additive noise. The trajectories are
colored by �t, the adaptive Runge-Kutta time step. This color is a proxy for local sensitivity.
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I.  True Lorenz System

M
odel O

ut

Figure 1: Schematic of our algorithm for sparse identification of nonlinear dynamics, demonstrated on
the Lorenz equations. Data is collected from measurements of the system, including a time history of the
states X and derivatives ˙

X. Next, a library of nonlinear functions of the states, ⇥(X), is constructed. This
nonlinear feature library is used to find the fewest terms needed to satisfy ˙

X = ⇥(X)⌅. The few entries
in the vectors of ⌅, solved for by sparse regression, denote the relevant terms in the right-hand side of the
dynamics. Parameter values are � = 10, � = 8/3, ⇢ = 28, (x0, y0, z0)

T
= (�8, 7, 27)

T . The trajectory on the
Lorenz attractor is colored by the adaptive time-step required, with red requiring a smaller tilmestep.

Each column of ⇥(X) represents a candidate function for the right hand side of Eq. (3). There
is tremendous freedom of choice in constructing the entries in this matrix of nonlinearities. Since
we believe that only a few of these nonlinearities are active in each row of f , we may set up a
sparse regression problem to determine the sparse vectors of coefficients ⌅ =

⇥
⇠1 ⇠2 · · · ⇠

n

⇤

that determine which nonlinearities are active, as illustrated in Fig. 1.
˙

X = ⇥(X)⌅. (7)

Each column ⇠
k

of ⌅ represents a sparse vector of coefficients determining which terms are
active in the right hand side for one of the row equations ˙

x

k

= f

k

(x) in Eq. (3). Once ⌅ has been
determined, a model of each row of the governing equations may be constructed as follows:

˙

x

k

= f

k

(x) = ⇥(x

T

)⇠
k

. (8)

Note that ⇥(x

T

) is a vector of symbolic functions of elements of x, as opposed to ⇥(X), which is
a data matrix. This results in the overall model

˙

x = f(x) = ⌅

T

(⇥(x

T

))

T

. (9)

We may solve for ⌅ in Eq. (7) using sparse regression.
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SINDy
     ‘xi_1’    ‘xi_2’    ‘xi_3’

‘x’  [-9.9614] [27.5343] [      0]
‘y’  [ 9.9796] [-0.8038] [      0]
‘z’  [      0] [      0] [-2.6647]
‘xx’ [      0] [      0] [      0]
‘xy’ [      0] [      0] [ 1.0003]
‘xz’ [      0] [-0.9900] [      0]
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This example provides a compelling test-case for the proposed algorithm, since the under-
lying form of the dynamics took nearly three decades to uncover. Indeed, the sparse dynamics
algorithm correctly identifies the on-attractor and off-attractor dynamics using quadratic nonlin-
earities and preserves the correct slow-manifold dynamics. It is interesting to note that when the
off-attractor trajectories are not included in the system identification, the algorithm incorrectly
identifies the dynamics using cubic nonlinearities, and fails to correctly identify the dynamics
associated with the shift mode, which connects the mean flow to the unstable steady state.

4.3.1 Direct numerical simulation

The direct numerical simulation involves a fast multi-domain immersed boundary projection
method [41, 11]. Four grids are used, each with a resolution of 450 ⇥ 200, with the finest grid
having dimensions of 9 ⇥ 4 cylinder diameters and the largest grid having dimensions of 72 ⇥ 32

diameters. The finest grid has 90,000 points, and each subsequent coarser grid has 67,500 distinct
points. Thus, if the state includes the vorticity at each grid point, then the state dimension is
292,500. The vorticity field on the finest grid is shown in Fig. 7. The code is non-dimensionalized
so that the cylinder diameter and free-stream velocity are both equal to one: D = 1 and U1 = 1,
respectively. The simulation time-step is �t = 0.02 non dimensional time units.

4.3.2 Mean field model

To develop a mean-field model for the cylinder wake, first we must reduce the dimension of
the system. The proper orthogonal decomposition (POD) [16], provides a low-rank basis that is
optimal in the L

2 sense, resulting in a hierarchy of orthonormal modes that are ordered by mode
energy. The first two most energetic POD modes capture a significant portion of the energy; the
steady-state vortex shedding is a limit cycle in these coordinates. An additional mode, called the
shift mode, is included to capture the transient dynamics connecting the unstable steady state
with the mean of the limit cycle [31] (i.e., the direction connecting point ‘C’ to point ‘B’ in Fig. 7).

In the three-dimensional coordinate system described above, the mean-field model for the
cylinder dynamics are given by:

ẋ = µx � !y + Axz (24a)
ẏ = !x + µy + Ayz (24b)
ż = ��(z � x

2 � y

2
). (24c)

If � is large, so that the z-dynamics are fast, then the mean flow rapidly corrects to be on the (slow)
manifold z = x

2
+y

2 given by the amplitude of vortex shedding. When substituting this algebraic
relationship into Eqs. 24a and 24b, we recover the Hopf normal form on the slow manifold.

Remarkably, similar dynamics are discovered by the sparse dynamics algorithm, purely from
data collected from simulations. The identified model coefficients, shown in Table 5, only include
quadratic nonlinearities, consistent with the Navier-Stokes equations. Moreover, the transient
behavior, shown in Figs. 9 and 10, is captured qualitatively for solutions that do not start on the
slow manifold. When the off-attractor dynamics in Fig. 9 are not included in the training data, the
model incorrectly identifies a simple Hopf normal form in x and y with cubic nonlinearities.

The data from Fig. 10 was not included in the training data, and although qualitatively similar,
the identified model does not exactly reproduce the transients. Since this initial condition had
twice the fluctuation energy in the x and y directions, the slow manifold approximation may not
be valid here. Relaxing the sparsity condition, it is possible to obtain models that agree almost
perfectly with the data in Figs. 8-10, although the model includes higher order nonlinearities.
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4.4 Example 4: Bifurcations and Normal Forms

It is also possible to identify normal forms associated with a bifurcation parameter µ by suspend-
ing it in the dynamics as a variable:

˙

x = f(x; µ) (25a)
µ̇ = 0. (25b)

It is then possible to identify the right hand side f(x; µ) as a sparse combination of functions of
components in x as well as the bifurcation parameter µ. This idea is illustrated on two examples,
the one-dimensional logistic map and the two-dimensional Hopf normal form.

4.4.1 Logistic map

The logistic map is a classical model that exhibits a cascade of bifurcations, leading to chaotic
trajectories. The dynamics with stochastic forcing ⌘

k

and parameter µ are given by

x

k+1 = µx

k

(1 � x

k

) + ⌘

k

. (26)

Sampling the stochastic system at ten parameter values of µ, the algorithm correctly identifies the
underlying parameterized dynamics, shown in Fig. 11 and Table 6.

Stochastic System Sparse Identified System

0 0.5 1
4

3

2

1

x

µ

0 0.5 1
4

3

2

1

x

µ

0 0.5 1
4

3.82

3.63

3.45

x

µ

0 0.5 1
4

3.82

3.63

3.45

x

µ

Figure 11: Attracting sets of the logistic map vs. the parameter µ. (left) Data from stochastically
forced system and (right) the sparse identified system. Data is sampled at rows indicated in red for
µ 2 {2.5, 2.75, 3, 3.25, 3.5, 3.75, 3.8, 3.85, 3.9, 3.95}. The forcing ⌘k is Gaussian with magnitude 0.025.
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Fig. 2. SINDy algorithm for rational functions. Assemble a matrix, ⇥(X, ẋk) where each column is a nonlinear function evaluated for time series data
x1, x2, x3.. and one species derivative ẋk(t). Next, calculate N a orthonormal basis for the null space of ⇥. Then, use an alternating directions method [48]
to find a sparse vector, ⇠, in the null space. The sparse vector ⇠, then satisfies ⇥⇠ = 0. Using the sparse coefficients from ⇠ and the functional library ⇥
assemble the inferred model. This algorithm must be performed for the derivative ẋk of each species.

Fig. 3. A. Increasing the sparsity threshold � during ADM creates coefficient
vectors, ⇠, with monotonically decreasing number of terms. B. For each ⇠(�)
we calculate an error as |⇥⇠|, and produce the Pareto Front. For the cases
tested here, a large cliff in the error indicates the best choice of ⇠(�) (circled
on A. and B.) and the most parsimonious model.

As the appropriate � is unknown a priori, we repeat the
third and fourth steps for varying �. Increasing � increases
the sparsity (decreasing the number of terms) in ⇠, as shown
in Fig. 3A. Each ⇠(�) produces an inferred model of varying
accuracy and sparsity. From these models we calculate a Pareto
front and select the most parsimonious model, as shown in
Fig. 3B. A Pareto front is calculated by plotting the number
of terms on the x-axis vs an error indicating how well ⇠
satisfies our implicit equation, |⇥⇠|, on the y-axis. The most
parsimonious model is readily identifiable at the sharp drop-off
in error. As we will show, this method succeeds at identifying
the correct rational terms and coefficients.

B. General formulation for implicit ODEs

The procedure above may be applied to identify more
general implicit ordinary differential equations, beyond those
just containing rational function nonlinearities. The library
⇥(X, ẋ

k

(t)) contains a subset of the columns of the li-
brary ⇥(

⇥
X Ẋ

⇤
), which is obtained by building nonlinear

functions of the state x and derivative ẋ. Identifying the
sparsest vector in the null space of ⇥(

⇥
X Ẋ

⇤
) provides more

flexibility in identifying nonlinear equations with mixed terms

containing various powers of any combination of derivatives
and states. For example, the system given by

ẋ3x� ẋx2
� x3 = 0 (14)

may be encoded as a sparse vector in the null space of
⇥(

⇥
X Ẋ

⇤
). It is also straightforward to extend the formu-

lation to include higher order derivatives, by increasing the
features in the ⇥ library. For example, second-order implicit
dynamical systems may be formulated in the following library:

⇥

�⇥
X Ẋ Ẍ

⇤�
. (15)

The generality of this approach enables the identification of
many more systems of interest, in addition to those systems
with rational function nonlinearities explored below.

IV. RESULTS

The implicit-SINDy architecture is tested on a number of
canonical models of biological networked dynamical systems.
Validation of the method on these models allows for potential
broader application. We demonstrate that the method is fast,
accurate and robust for inferring Michaelis-Menten enzyme
kinetics, the regulatory network for competence in bacteria,
and the metabolic network for yeast glycolysis.

A. Simple example: Michaelis-Menten kinetics

Perhaps the most well known model for enzyme kinetics is
the Michaelis-Menten model [68], [69]. This model captures
the dynamics of an enzyme binding and unbinding with a
substrate (x), and then reacting irreversibly to produce a
product, as shown in Fig. 4. A separation of time-scales
argument, where binding and unbinding dynamics are fast,
or a more general steady state assumption [70], reduces the
dynamics to a single state-variable equation with a rational
function in the dynamics. Traditionally, biochemists vary the
initial concentration of x in a titration experiment to fit the
Michaelis-Menten equation to the data.

6 IEEE TRANSACTIONS ON COMMUNICATIONS

Fig. 4. Algorithm applied to the Michaelis-Menten kinetics for an enzymatic reaction. Step 1) Generate two time series of the single state variable, x(t),
and time derivative, ẋ(t). Step 2) Discovered active functions and their corresponding coefficients are indicated by color. The error drops sharply at 4 terms
on the Pareto front (circled) . The most parsimonious model has four active functions: two in the numerator and two in the denominator (indicated by color).
Step 3) Allowing for rational function factorization, the inferred model is equivalent to the original model.

Using time series data from only two initial concentrations,
our algorithm extracts the correct functional form from a
larger subset of possible functions and fits the coefficients
accurately (Fig. 4). First we generate data from the single
dynamic equation

ẋ = j
x

�

V
max

x

K
m

+ x
, (16)

with some flux source of x, j
x

, and an enzymatic reaction of
the Michaelis-Menten form consuming x. Here, V

max

is the
maximum rate of the reaction and K

m

is the concentration of
half-maximal reaction rate. Generally the time series data of
the concentration, x(t), is measurable, while the time series
data for the derivative can be calculated from x(t).

Next, we apply implicit-SINDy to determine the coefficient
vector ⇠ and sparsely select the active functions in the dy-
namics. The library contains polynomial terms up to degree
four and has 10 columns. The Pareto front for this system has
a sharp drop off in error from around 0.01 to 10�5 at four
terms, indicating the � for the most parsimonious model. The
associated ⇠ selects 4 active terms from the function library.

Finally, the rational function constructed from ⇥ and ⇠
needs to be factored to be interpreted as the source flux and
Michaelis-Menten terms. When rearranged, the coefficients
match the original system. Unsurprisingly, the inferred model
matches the original model for time series generated from new
initial conditions that were not used in the training data.

B. Regulatory network: B. subtilis competence
Having shown that our method works for the simplest

rational model relevant to biological networks, we next test

it on a regulatory model with two state variables [71]. Süel et
al. [71] demonstrated that a dynamic gene network enables
cells to switch between multiple behaviors – in this case
B. subtilis bacteria switch between taking up DNA from
the environment (competence) and vegetative growth. Other
regulatory networks such as the circadian clock [72], [73] and
cell cycle oscillators have been successfully described using
models with similar structure and dynamics. In particular,
similar dynamics may drive cancer-relevant systems like the
tumor suppressor p53 [74].

The dynamics of regulatory system with two states can be
described by the following two non-dimensional equations:

ẋ1 = a1 +
a2x

2
1

a3 + x2
1

�

x1

1 + x1 + x2
, (17a)

ẋ2 =
b1

1 + b2x5
1

�

x2

1 + x1 + x2
. (17b)

These two equations are a reduction of dynamical system with
six states. Each rational function arises from a steady state
(or time-scale separation) assumption about the regulatory
processes. The second term (scaled by a2) in Eq. (17a)
represents protein x1, ComK, activating its own production
in an autoregulatory, positive feedback loop. The first term
(scaled by b1) in Eq. (17b), describes x1 mediated repression
of x2, ComS, in a negative feedback loop. Both of these
terms have a Hill-function form, where the power indicates
the number of x1 proteins involved cooperatively in the regu-
latory complex [37]. The combination of positive and negative
feedback results in the network’s functional capabilities. The
last term in Eqs. (17a) and (17b) describes degradation of x1
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Figure 1. Schematic of model selection process, with a) data generation, b) generation of a set of potential models, and c)

comparison fo the models as a function of the number of terms in the model and relative Akaike information criteria (AICc).

Section c) shows how models are down-selected from a combinatorially large model space using sparse identification of

nonlinear dynamics (SINDy) and then further sub-selected and ranked using information criteria.

In this work we demonstrate a new mathematical framework that leverages information
criteria for model selection with sparse regression for evaluating a combinatorially large set
of candidate models. Specifically, we circumvent a direct computation of information criteria
for the combinatorially large set of models by first sub-selecting candidate functional forms
from which are most consistent with the time series data. Thus we integrate two maturing
fields of statistical analysis: (i) sparse regression for nonlinear systems identification via SINDy
and (ii) model selection via information criteria. Our algorithm is demonstrated to produce a
robust procedure for discovering parsimonious, nonlinear dynamical systems from time series
measurement data alone. We demonstrate the methodology on a number of important examples,
including the SEIR (susceptible-exposed-infectious-recovered) disease model and the Lorenz
equations, and demonstrate its efficacy as a function of noise, length of time series and other
key regression factors. Our sparse selection of dynamical models from information theory criteria
ranks the candidate models and further shows that the correct model is strongly supported
by the AIC/BIC metrics. Ultimately, the method provides a cross-validated and ranked set of

Including Information Theory for Model Selection
Proceedings of the Royal Society A
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In this work we demonstrate a new mathematical framework that leverages information
criteria for model selection with sparse regression for evaluating a combinatorially large set
of candidate models. Specifically, we circumvent a direct computation of information criteria
for the combinatorially large set of models by first sub-selecting candidate functional forms
from which are most consistent with the time series data. Thus we integrate two maturing
fields of statistical analysis: (i) sparse regression for nonlinear systems identification via SINDy
and (ii) model selection via information criteria. Our algorithm is demonstrated to produce a
robust procedure for discovering parsimonious, nonlinear dynamical systems from time series
measurement data alone. We demonstrate the methodology on a number of important examples,
including the SEIR (susceptible-exposed-infectious-recovered) disease model and the Lorenz
equations, and demonstrate its efficacy as a function of noise, length of time series and other
key regression factors. Our sparse selection of dynamical models from information theory criteria
ranks the candidate models and further shows that the correct model is strongly supported
by the AIC/BIC metrics. Ultimately, the method provides a cross-validated and ranked set of
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Figure 2. Schematic representation of Pareto front, defined as the number of terms vs the error (left axis, green),

compared with number of terms vs AIC score (right axis, dashed magenta). Left grey dot indicates a high-error model with

zero terms (dx/dt= 0). Grey box shows the region of parsimonious models balancing error and complexity. Right grey

dot indicates an overfit model, which can produce zero error. Note that the standard AIC score has an asymptotic penalty

of 2K for the number of terms, resulting in a line slope of 2.

can be connected with the SINDy architecture to hierarchically rank models on the Pareto front
for automatic selection of the most informative model. As outlined in Fig. 1, the AIC scores can be
used to correctly infer dynamical systems for a given time-series data set from a combinatorially
large set of models. To our knowledge, this is the first explicit demonstration of how information
theory can be exploited for the identification of dynamical systems.

Successful model identification inherently requires a rigorous method for validation and
comparison. Model selection procedures found in the literature (i.e. [1,5,6]) typically rely on a
Pareto analysis which balance accuracy and model complexity. Fig. 2 illustrates this trade-off. As
the solid-green line (left axis) indicates, the error for a dynamical system model with zero terms
(dx/dt= 0) is high. Increasing the complexity of the model, by adding terms, provides a better
fit to the data. As the number of terms in the model approaches the number of free parameters,
one can guarantee the error will tend toward zero. However, overfitting to data, especially in the
presence of noise, produces models that poorly predict the behavior of validation experiments
(out-of-sample data). The over-training and over-completeness of models are critical concerns in
machine learning methods. One generally seeks to identify parsimonious models (grey box in
Fig. 2) where the error is significantly reduced using the minimal number of terms. Parsimony
not only avoids overfitting to training data, but also reflects an Occam’s razor approach, which
is generally preferred in physical and biological modeling. Unfortunately, interpreting the Pareto
analysis is often ambiguous. The Pareto Front may not have a sharp elbow but instead have a
cluster of models near the elbow.

Information theory provides a rigorous statistical framework for selecting a model from a
set of candidate models given validation data. As early as the 1950s, a measure of information
loss between empirically collected data and model generated data was proposed to be computed
using the Kullback-Leibler (KL) divergence [7,8]. Akaike built upon this notion to establish a



SINDy: Partial Differential Equations
Science Advances, 2017

Rudy, SLB, Proctor, Kutz

 
t

1a.  Data Collection
2

1

0

1

2

2

1

0

1

2

2

1

0

1

2

2

1

0

1

2

2

1

0

1

2

d.  Identified Dynamics
!
t

+ 0.9931u!
x

+ 0.9910v!
y

= 0.0099!
xx

+ 0.0099!
yy

!t + (u ·r)! =
1

Re
r2!

Compare to True 
Navier Stokes (Re = 100)

Fu
ll 

D
at

a

(!, u, v)1

(!, u, v)2

(!, u, v)3

1b.  Build Nonlinear 
Library of Data and 

Derivatives

…= !t = ⇥(!, u, v)⇠!
t

! !
x1 u v !
y

u
v!

y
y

u
v!

x
y

⇠

1c.  Solve Sparse 
Regression

argmin
⇠

k⇥⇠ � !tk22 + �k⇠k0

2c.  Solve Compressed 
Sparse Regression

Sampling

2

1

0

1

2

2a.  Subsample Data 2b.  Compressed library!t = ⇥(!, u, v)⇠

=

C!t = C⇥(!, u, v)⇠

= C⇥

C
om

pr
es

se
d 

 D
at

a

C
argmin

⇠
kC⇥⇠ � C!tk22 + �k⇠k0



Open Problems, Key Challenges, Emerging Techniques
Open Problem: Often equations are unknown, or are only partially known
Key Challenges: Combinatorially large search space for candidate models 
Emerging Techniques:  Machine learning, sparse (parsimonious) methods

Open Problem: Nonlinear dynamics still poorly understood
Key Challenges: Topologically complex, no closed form (Poincare)
Emerging Techniques:  Koopman spectral analysis (linear embeddings)

Open Problem: Optimal nonlinear control and estimation
Key Challenges: Finding intrinsic coordinates (Koopman eigenfunctions)
Emerging Techniques:  Uncertainty quantification and robust control
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