Living systems are far from equilibrium.
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Models of living systems have traditionally been sufficiently
simple that they can be simulated directly.
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Freedman, Banerjee, Hocky, Dinner, Biophysical Journal (2017)



Examples of models of living systems
that are challenging to simulate directly.
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Nonequilibrium systems present a number of challenges for
enhanced sampling methods:

* no a priori knowledge of the distribution function;

* microscopically irreversible dynamics;

P(@)W(q— q")y=<P(q"W(q'— q)

* global flows in phase space.



Original Nonequilibrium Umbrella Sampling Algorithm

1) Divide order parameter space
2) Sample each region and estimate fluxes

3) Estimate weights
4) Repeat until weights and fluxes converge

Upon attempted boundary crossing:
e add point to flux list,
e note flux to adjust region weights,
e restart walker, partitioning weight
between saved and active copies

Warmflash, Bhimalapuram, Dinner (2007) J. Chem. Phys. 127, 154112.
Dickson, Dinner (2010) Annu. Rev. Phys. Chem. 61, 441-59.




Further developments of original NEUS

* Reaction path discovery (string method)
— Dickson et al. JCP 130, 074104 (2009)

* Rates
— Dickson et al. JCP 131, 154104 (2009)
— Vanden-Eijnden JCP 131, 044120 (2009)

e Parallelism
— Dickson et al. JCTC 7, 2710-2720 (2011). ——




Splitting methods preserve the underlying dynamics but branch
and prune the trajectories to focus sampling in specific areas

key difference

Weighted Ensemble (WE) Fij \

<; <j vg"
Forward Flux Sampling (FFS)

Steered Transition Path ﬁ/\)
Sampling (STePS)
Nonequilibrium Umbrella _/\/E

Sampling (NEUS)

NEUS is distinct in that it is also a stratification method.



Equilibrium umbrella sampling is a well-known stratification method
in molecular simulation.
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>



Can we make a framework that encompasses both these methods?
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Outline
e Motivation

* Eigenvector Method for Umbrella Sampling (EMUS)
- Formulation
- Error analysis
- Examples

Thiede, Van Koten, Weare, Dinner, ] Chem Phys 145, 084115 (2016)
Dinner, Thiede, Van Koten, Weare, arxiv:1705.08445 (2017)

* Nonequilibrium Umbrella Sampling (NEUS)
- Formulation
- Examples

Dinner, Tempkin, Van Koten, Mattingly, Weare, SIREV; arXiv:1610.09426



Umbrella sampling as an eigenproblem

We want to obtain the free energy, or equivalently the probability:
m(x) & exp(—,BHo (x))
To this end, we apply a bias, e.g.,
Yi(x) = exp(—B(q - 4§)°)
Simulation i samples from the probability
; Com(x)
fl/)i(x)n(x)dx

To align the probabilities from different simulations, we need to determine
the normalization, equivalent to the zero of free energy:

zi = [ Yi()m(x)dx

mi(x) =



Umbrella sampling as an eigenproblem

Once we have the normalization, we can calculate any average from

(f)= Z Zi f Zkfllgi)(X) 1; (x) dx

In particular,

Zj = (lp]> = 2 Z J Zk {p(kx()x) T[i(x)dx

Zj = EZL'FU

i
with the stochastic matrix F defined as
(X
fy = [ <2
2k Wi (x)

or

mi(x)dx



EMUS procedure

1. Estimate Fand (f); by sampling from 7. .
2. Solve the eigenvector equation

2T = 2"

3. Compute the desired expectation as a weighted average
T

[ soman =350,
reR4

j=1



This Eigenvector Method for
Umbrella Sampling (EMUS)
for obtaining the window
normalizations performs
comparably to existing
methods while facilitating
mathematical analysis of the
error.
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Relation to Multistate Bennett Acceptance Ratio (MBAR)

EMUS satisfies the extended bridge sampling equation

L
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—

E Zi Qlj

)Yz

with arbitrary a;. For MBAR, Shirts and Chodera (2008) chose

MBAR nl/zz

Q; (z) =

>k Uk(@)m(2)nk /2
while EMUS corresponds to
1

2k T(@)Yr(2)

The dependence of a; on zin MBAR
necessitates self-consistent solution and
complicates error analysis.
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EMUS Error analysis

We can prove a central limit theorem for EMUS. A key result is

~ aGlm l/Jj (X)
var(Gyn) = Z n;var;i 5 F, YRTNC)

i T j
number of independent samples \

Delta method

var(f (g)) = var(Vf(g) - g)

For practical computation, write

aGlm_ 0 9 (Zl) . 1 aZm 1 aZl
oF,  OF, °\z,)  7,0F, z0F,



EMUS Error analysis

We can go further by exploiting the eigenvector framework for umbrella
sampling,

In particular,

where # denotes the group inverse: AA*A = A, A*AA* = A%, AA* = A¥A,

Golub, G; Meyer, C. “Using the QR Factorization and Group Inversion to Compute,
Differentiate, and Estimate the Sensitivity of Stationary Probabilities for Markov
Chains.” SIAM J. Alg. Disc. Meth. 7, 12 (1986)



Algorithm for assigning computational effort to
minimize the overall error in an average

. Sample to obtain the entries in F.

. Calculate the group inverse of /-F, and in turn the matrix of derivatives
0G,,,/OF;.
. For each window, construct the trajectory

aGlm l/)j(xni)
aFij 2 Wi (i)

Vni =

. Calculate the variance and autocorrelation time of this trajectory to
obtain

err? = var; (Vn;)/n;

. Assign computational resources proportional to err, which we term the
“relative importances”.
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EMUS error contributions to AG(TS1-C,_,)
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EMUS applied to ADP release from a
circadian clock protein

(KaiC, AAA+ ATPase)
: A Potential of Mean Force ! |

B-hairpin

Simulations by Lu Hong



EMUS Summary

We cast equilibrium US as an eigenproblem. Zj = ZZiFij

)
i f zkt]pkm mi(x)dx

The non-iterative nature of EMUS facilitates
error analysis. — =z;(I - F)*

Average-specific window contributions can be ATy
used to guide sampling. ”

https://github.com/ehthiede/EMUS -




Outline
e Motivation

* Eigenvector Method for Umbrella Sampling (EMUS)
- Formulation
- Error analysis
- Examples

Thiede, Van Koten, Weare, Dinner, ] Chem Phys 145, 084115 (2016)
Dinner, Thiede, Van Koten, Weare, arxiv:1705.08445 (2017)

* Nonequilibrium Umbrella Sampling (NEUS)
- Formulation
- Examples

Dinner, Tempkin, Van Koten, Mattingly, Weare, SIREV; arXiv:1610.09426



We seek to calculate nonequilibrium expectations as a sum over
windows:

B (3 ()| =3 2();

To this end, we define windows in space and time and define an
index process J €{1, 2, ..., n}.




Now,

-------------------------

............................

-----------------------------



The key difference from EMUS is that now, to obtain 7, we sample
trajectory segments with initial points drawn from the entry point
distribution into window j, .. If we can do that, the z; can be shown
to satisfy

2G4+ at = 2*

where G is the matrix of window-to-window transition probabilities
and a accounts for the initial condition.

e e TR U S J =

e s e T (r)

_____ " o - : | ' 2R
----- XX

..... K o T el s s ﬁj(s,dy)



window-to-window transition probabilities conditional distribution for a

(analog of F; in EMUS) particular neighbor pair
entry-point distribution j \ /
hd 1 Zz;éj ZZG’L]/YZ] (37 dy)a if s >0
7'(-] (S, dy) — ' B (0) 0) _ . L
zi(1 = Gjj) | q;P[X® € dy|J® =j] ifs=0
J =]
We use the statistics of exit points ................
to update estimates of y; in pJ =1 y_(")
neighboring windows. vij (8, dy) R Vg
' l : ‘ v x
Leecccccccccccccaccccncnas ‘——‘X—“‘X‘——‘ ..
This defines a fixed-point iteration for G and y. T - (lq‘|§
- Tka\ 5, QY ),
(G(G,7),T(G,7) = (G,7) | ek

NEUS is a form of stochastic approximation.



NEUS procedure (parallels EMUS)

1.

Estimate Gand (f); by sampling from 7, using the latest
estimates of the weights z and the entry point distributions.
Solve the affine eigenvector equation

72 L =z

Compute the desired expectation as a weighted average

T—1

E Y fltde)| = (),

t=0 _

91e49]|



institute for pure & applied mathernatlcs

Workshop llI: Surrogate Models and Coarsening Techniques

In effect, we have obtained a procedure for generating the dynamics
of the index process J from short trajectory segments.




Advantages of new NEUS procedure
* Unified framework for equilibrium and nonequilibrium US.
 Shows NEUS is a form of stochastic approximation.

* Allows computing expectations over non-stationary processes.
- Can be used to obtain exact dynamical statistics for microscopically

reversible dynamics.
- Can be used for any process in which the microscopic dynamics

defines the distribution function.

Dinner, Tempkin, Van Koten, Mattingly, Weare, SIREV; arXiv:1610.09426



Example: Compute probability of hitting set B before set A
for times less than T ..

Potential of mean force (kcal/mol)

180 15.0 9 :
135 _8f | A [ B
120 ' o 7| '
120 g’ |
e © 6 |
"' ]O-') g 5 i :
| 9.0 Al |
LA ) - (O]
OF (.0 S 3l i
6.0 . |
) T.SZ Crax n & \ i
o 1 — NI |
— 3.0 0150 1(\35 50 0 50 100 150
~120 N ‘ - - -
£\ % o
y W\
~180 ! I\ UU
180 -120 -6 O 60 120 = = o
¢ "
ic_. 6 ¢ 2Cl 02 _an
/ ,,”f N % \
1CHy, 2N Y 2c 80,

2H 20



Example: Compute probability of hitting set B before set A

for times less than t

(direct shooting).
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Example: Compute probability of hitting set B before set A

for times less than 1, (stratification).
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Example: Compute probability of hitting set B before set A
for times less than T ..

Direct shooting (10 simulations) ;o
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For a sufficiently easy
problem, we can verify that
we obtain the same result as
direct simulation.
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¢ (deg)

Example: Compute probability of hitting set B before set A
for times less than T ..

Direct shooting (10° simulations)
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Example: Compute a free energy difference by stratifying the
irreversible work, a path-dependent variable

Jarzynski’s equality provides an exact relationship between the exponential of
the accumulated work, W, in a driven process and the free energy difference.

e PAF — (o=BW )

This equality has been useful in measuring free energies in single-molecule
force spectroscopy experiments as well as providing a computational strategy
for computing free energies from steered molecular dynamics simulations.

tForce

Extension g "

System free

energy F(2)

Distanca 7



Example: Compute a free energy difference by stratifying the
irreversible work, a path-dependent variable

In practice, such simulations suffer from severe statistical errors in the fast-
switching regime because the low-work tail dominates the average.

24 i ! | ! | ! | ! | ! | ! | ! |
2.0 —exp(—pAU) .- -
1.6 | ]
S 12FfF .
3 L
Q L
0.8 'p (AU)x } ]
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I N
04 \ .
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Chipot and Pohorille, Free Energy Simulations, Springer, 2007.



Example: Compute a free energy difference by stratifying the
irreversible work, a path-dependent variable

V(z,\) =5(x* —1)* +3x + 10(x — (2\ — 1))?

t—1
WO =3"V(e+1,X9)-v(e,x®),  w®=o0

¢=0

N
- ! (1
AF ~ —kT In ~ 7Z:;exp(—BVVi )




Example: Compute a free energy difference by stratifying the
irreversible work, a path-dependent variable
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NEUS Summary

We cast NEUS as an affine eigenproblem with 2'G+at =2z
a structure that parallels equilibrium US.

Solving it involves fixed point iteration of
window-to-window transition probabilities
and entry-point distributions (reflecting that
NEUS is both a splitting and a stratification
method).

10°

107!

. . 107
Present algorithm allows sampling new

10
classes of dynamical averages.

107

107
10—1:
10 13

10—15




