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Living	systems	are	far	from	equilibrium.



Models	of	living	systems	have	traditionally	been	sufficiently	

simple	that	they	can	be	simulated	directly.
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Actomyosin “phase”	diagram

Freedman,	Banerjee,	Hocky,	Dinner,	Biophysical	Journal	(2017)



Examples	of	models	of	living	systems

that	are	challenging	to	simulate		directly.

Multimodality Tail	statistics

Warmflash and	Dinner	(2008)Allen,	Warren,	and	ten	Wolde (2005)



Nonequilibrium systems	present	a	number	of	challenges	for	

enhanced	sampling	methods:

• no	a	priori knowledge	of	the	distribution	function;

• microscopically	irreversible	dynamics;

• global	flows	in	phase	space.

A =
A(q)e−βE dq∫
e−βE dq∫

P(q)W (q→ q ') = P(q ')W (q '→ q)



Upon	attempted	boundary	crossing:

• add	point	to	flux	list,

• note	flux	to	adjust	region	weights,

• restart	walker,	partitioning	weight

between	saved	and	active	copies

1) Divide	order	parameter	space

2) Sample	each	region	and	estimate	fluxes

3) Estimate	weights

4)	Repeat	until	weights	and	fluxes	converge

Original	Nonequilibrium Umbrella	Sampling	Algorithm

Warmflash,	Bhimalapuram,	Dinner	(2007)	J.	Chem.	Phys.	127,	154112.

Dickson,	Dinner	(2010)	Annu.	Rev.	Phys.	Chem.	61,	441-59.



Further	developments	of	original	NEUS

• Reaction	path	discovery	(string	method)

– Dickson	et	al.	JCP	130,	074104	(2009)

• Rates

– Dickson	et	al.	JCP	131,	154104	(2009)

– Vanden-Eijnden JCP	131,	044120	(2009)

• Parallelism

– Dickson	et	al.	JCTC	7,	2710-2720	(2011).

Idea:  redefine distance metric to 
separate trajectories originating in 
attractors A and B. 

Flux from SA into 
attractor B

Probability of 
being in SA

Transition rates follow immediately.

Vanden-Eijnden, Venturoli (2009)
Dickson et al. (2009)



Splitting	methods	preserve	the	underlying	dynamics	but	branch	

and	prune	the	trajectories	to	focus	sampling	in	specific	areas
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• Weighted	Ensemble	(WE)

• Forward	Flux	Sampling	(FFS)

• Steered	Transition	Path	

Sampling	(STePS)

• Nonequilibrium Umbrella	

Sampling	(NEUS)

NEUS	is	distinct	in	that	it	is	also	a	stratification	method.

key	difference



Torrie,	Valleau,	J Comput Phys 23,	187	(1977)

Pangali,	Rao,	Berne,	J Chem Phys 71,	2975	(1979)

Equilibrium	umbrella	sampling	is	a	well-known	stratification	method	

in	molecular	simulation.

e.g.,	WHAM,

MBAR
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Nonequilibrium US Equilibrium	US

Can	we	make	a	framework	that	encompasses	both	these	methods?

Work	with	Jeremy	Tempkin,	Erik	Thiede,	

Brian	Van	Koten,	and	Jonathan	Weare

Funding	from	NIH



Outline

• Motivation

• Eigenvector	Method	for	Umbrella	Sampling	(EMUS)
- Formulation

- Error	analysis

- Examples

Thiede,	Van	Koten,	Weare,	Dinner,	J	Chem Phys	145,	084115	(2016)

Dinner,	Thiede,	Van	Koten,	Weare,	arxiv:1705.08445	(2017)

• Nonequilibrium Umbrella	Sampling	(NEUS)
- Formulation

- Examples

Dinner,	Tempkin,	Van	Koten,	Mattingly,	Weare,	SIREV;	arXiv:1610.09426



Umbrella	sampling	as	an	eigenproblem

!! ! = !! ! ! !
∫!! ! ! ! !"!

!! ! = exp −! ! − !!! !
!

! ! ∝ exp −!!! ! !

!! = ∫!! ! ! ! !"!!

We	want	to	obtain	the	free	energy,	or	equivalently	the	probability:	

To	this	end,	we	apply	a	bias,	e.g.,

Simulation	i samples	from	the	probability

To	align	the	probabilities	from	different	simulations,	we	need	to	determine	

the	normalization,	equivalent	to	the	zero	of	free	energy:



Once	we	have	the	normalization,	we	can	calculate	any	average	from

In	particular,	

or

with	the	stochastic	matrix	F defined	as

Umbrella	sampling	as	an	eigenproblem

!!" =
!! !
!! !!

!! ! !"!!

! = !!
! !
!! !!

!! ! !"
!

!

!! = !! = !!
!! !
!! !!

!! ! !"
!

!

!! = !!!!!
!

!



EMUS	procedure

1. Estimate	F and	 " #	by	sampling	from	pj .
2. Solve	the	eigenvector	equation	

3. Compute	the	desired	expectation	as	a	weighted	average	



This	Eigenvector	Method	for	

Umbrella	Sampling	(EMUS)	

for	obtaining	the	window	

normalizations	performs	

comparably	to	existing	

methods	while	facilitating	

mathematical	analysis	of	the	

error.



while	EMUS	corresponds	to

The	dependence	of	αij on	z in	MBAR	

necessitates	self-consistent	solution	and	

complicates	error	analysis.			

EMUS	satisfies	the	extended	bridge	sampling	equation

with	arbitrary	αij.		For	MBAR,	Shirts	and	Chodera (2008)	chose

Relation	to	Multistate	Bennett	Acceptance	Ratio	(MBAR)

“MBAR”

EMUS	can	be	

viewed	as	the	

first	iteration	

of	MBAR.



We can prove a central limit theorem for EMUS. A key result is

For practical computation, write

var !!" ≈ !!var!
!!!"
!!!"

!! !
!! !!!!

!!

EMUS	Error	analysis

var ! ! ≈ var ∇! ! ! ∙ ! !

number	of	independent	samples

Delta	method	

!!!"
!!!"

= − !
!!!"

log !!
!!

= 1
!!

!!!
!!!"

− 1
!!
!!!
!!!"

!



EMUS	Error	analysis

We can go further by exploiting the eigenvector framework for umbrella

sampling,

In particular,

where # denotes the group inverse: AA#A = A, A#AA# = A#, AA# = A#A.

Golub, G; Meyer, C. “Using the QR Factorization and Group Inversion to Compute,

Differentiate, and Estimate the Sensitivity of Stationary Probabilities for Markov

Chains.” SIAM J. Alg. Disc. Meth. 7, 12 (1986)

!!!
!!!"

= !! ! − ! !"
# !



Algorithm	for	assigning	computational	effort	to	

minimize	the	overall	error	in	an	average

1. Sample	to	obtain	the	entries	in	F.
2. Calculate	the	group	inverse	of	I-F,	and	in	turn	the	matrix	of	derivatives	

∂Glm/∂Fij.
3. For	each	window,	construct	the	trajectory	

4. Calculate	the	variance	and	autocorrelation	time	of	this	trajectory to	

obtain

1. Assign	computational	resources	proportional	to	erri,	which	we	term	the	

“relative	importances”.

err!! = var! !!" !!	

!!! =
!!!"
!!!"

!! !!"
!! !!"!!

!



EMUS	error	contributions	to	ΔG(C7eq – C7ax)	
of	the	alanine	dipeptide

Potential	of	mean	force	(kcal/mol) Window	importances



EMUS	error	contributions	to	ΔG(TS1	– C7ax)	
of	the	alanine	dipeptide

Window	importances
Just	TS1

Just	C7ax



EMUS	applied	to	ADP	release	from	a

circadian	clock	protein

(KaiC,	AAA+	ATPase)

Potential	of	Mean	Force

Asymptotic	Variance

Simulations	by	Lu	Hong



EMUS	Summary

• We	cast	equilibrium	US	as	an	eigenproblem.

• The	non-iterative	nature	of	EMUS	facilitates	

error	analysis.

• Average-specific	window	contributions	can	be	

used	to	guide	sampling.

• https://github.com/ehthiede/EMUS
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Outline

• Motivation

• Eigenvector	Method	for	Umbrella	Sampling	(EMUS)
- Formulation

- Error	analysis

- Examples

Thiede,	Van	Koten,	Weare,	Dinner,	J	Chem Phys	145,	084115	(2016)

Dinner,	Thiede,	Van	Koten,	Weare,	arxiv:1705.08445	(2017)

• Nonequilibrium Umbrella	Sampling	(NEUS)
- Formulation

- Examples

Dinner,	Tempkin,	Van	Koten,	Mattingly,	Weare,	SIREV;	arXiv:1610.09426
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We	seek	to	calculate	nonequilibrium expectations	as	a	sum	over	

windows:

To	this	end,	we	define	windows	in	space	and	time	and	define	an	

index	process	J ∈{1,	2,	…,	n}.	



Now,

⇡i(t, dx) =
P
⇥
t < ⌧, X

(t) 2 dx, J

(t) = i

⇤

zi



The	key	difference	from	EMUS	is	that	now,	to	obtain	pj,	we	sample	

trajectory	segments	with	initial	points	drawn	from	the	entry	point	

distribution	into	window	j,	pj&.		If	we	can	do	that,	the	zi can	be	shown	
to	satisfy	

where	G is	the	matrix	of	window-to-window	transition	probabilities	

and	a accounts	for	the	initial	condition.	



⇡̄j(s, dy) =
1

zj(1�Gjj)

(P
i 6=j ziGij�ij(s, dy), if s > 0

ajP[X(0) 2 dy|J (0) = j] if s = 0

window-to-window	transition	probabilities

(analog	of	Fij in	EMUS)

conditional	distribution	for	a	

particular	neighbor	pair

This	defines	a	fixed-point	iteration	for	G and	g.		

NEUS	is	a	form	of	stochastic	approximation.	

We	use	the	statistics	of	exit	points	

to	update	estimates	of	gij in	
neighboring	windows.

entry-point	distribution



NEUS	procedure	(parallels	EMUS)

1. Estimate	G and	 " # by	sampling	from	pj using	the	latest	
estimates	of	the	weights	z and	the	entry	point	distributions.

2. Solve	the	affine	eigenvector	equation	

3. Compute	the	desired	expectation	as	a	weighted	average	
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In	effect,	we	have	obtained	a	procedure	for	generating	the	dynamics	

of	the	index	process	J from	short	trajectory	segments.



Advantages	of	new	NEUS	procedure

• Unified	framework	for	equilibrium	and	nonequilibrium US.

• Shows	NEUS	is	a	form	of	stochastic	approximation.

• Allows	computing	expectations	over	non-stationary	processes.
- Can	be	used	to	obtain	exact	dynamical	statistics	for	microscopically	

reversible	dynamics.

- Can	be	used	for	any	process	in	which	the	microscopic	dynamics	

defines	the	distribution	function.

Dinner,	Tempkin,	Van	Koten,	Mattingly,	Weare,	SIREV;	arXiv:1610.09426



Example:		Compute	probability	of	hitting	set	B	before	set	A

for	times	less	than	tmax.

Potential	of	mean	force	(kcal/mol)



�

Example:		Compute	probability	of	hitting	set	B	before	set	A

for	times	less	than	tmax (direct	shooting).



�

Example:		Compute	probability	of	hitting	set	B	before	set	A

for	times	less	than	tmax (stratification).



Example:		Compute	probability	of	hitting	set	B	before	set	A

for	times	less	than	tmax.

For	a	sufficiently	easy	

problem,	we	can	verify	that	

we	obtain	the	same	result	as	

direct	simulation.

Direct	shooting	(106 simulations)

NEUS



Example:		Compute	probability	of	hitting	set	B	before	set	A

for	times	less	than	tmax.

Direct	shooting	(106 simulations)

NEUS

If	we	shift	the	initial	

condition	to	make	

the	problem	harder,	

direct	integration	

becomes	impossible	

but	NEUS	costs	the	

same.



Example:		Compute	a	free	energy	difference	by	stratifying	the	

irreversible	work,	a	path-dependent	variable

Jarzynski’s equality	provides	an	exact	relationship	between	the	exponential	of	

the	accumulated	work,	W(t),	in	a	driven	process	and	the	free	energy	difference.

This	equality	has	been	useful	in	measuring	free	energies	in	single-molecule	

force	spectroscopy	experiments	as	well	as	providing	a	computational	strategy	

for	computing	free	energies	from	steered	molecular	dynamics	simulations.

e���F = he��W (t)

i



Example:		Compute	a	free	energy	difference	by	stratifying	the	

irreversible	work,	a	path-dependent	variable

In	practice,	such	simulations	suffer	from	severe	statistical	errors	in	the	fast-

switching	regime	because	the	low-work	tail	dominates	the	average.38 C. Chipot and A. Pohorille
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Fig. 2.1. P0(∆U), the Boltzmann factor exp (−β∆U) and their product, which is the inte-
grand in (2.12). The low-∆U tail of the integrand, marked with stripes is poorly sampled
with P0(∆U) and, therefore, is known with low statistical accuracy. However, it provides an
important contribution to the integral

to (2.12), we obtain

exp(−β∆A) =
C√
2πσ

∫
exp

[
−

(
∆U − ⟨∆U⟩0 − βσ2

)2
/2σ2

]
d∆U (2.15)

Here, C is independent of ∆U

C = exp
[
−β

(
⟨∆U⟩0 −

1
2
βσ2

)]
(2.16)

Comparing (2.13) and (2.15), we note that exp (−β∆U) P0(∆U) is a Gaussian, as
is P0(∆U), but is not normalized and shifted toward low ∆U by βσ2. This means
that reasonably accurate evaluation of ∆A it via direct numerical integration is pos-
sible only if the probability distribution function in the low-∆U region is sufficiently
well known up to two standard deviations from the peak of the integrand or βσ2

+ 2 standard deviations from the peak of P0(∆U), located at ⟨∆U⟩0. This state-
ment is clearly only qualitative — the reader is referred to Chap. 6 for detailed error
analysis in FEP methods. This simple example, nevertheless, clearly illustrates the
limitations in the direct application of (2.12). If σ is small, e.g., equal to kBT , 95%
of the sampled values of ∆U are within 2σ of the peak of exp (−β∆U) P0(∆U) at
room temperature. However, if σ is large, for example equal to 4kBT , this percent-
age drops to 5%. Moreover, most of these samples correspond to ∆U larger than
⟨∆U⟩0 − βσ2 (the peak of the integrand). For this value of σ, ∆U smaller than the
peak of the integrand will be sampled, on average, only 63 out of 106 times. Not
surprisingly, estimates of ∆A will be highly inaccurate in this case, as illustrated in
Fig. 2.1. Several techniques for dealing with this problem will be discussed later in
this chapter and in Chap. 6.

Chipot and	Pohorille,	Free	Energy	Simulations,	Springer,	2007.
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Example:		Compute	a	free	energy	difference	by	stratifying	the	

irreversible	work,	a	path-dependent	variable

l



Example:		Compute	a	free	energy	difference	by	stratifying	the	

irreversible	work,	a	path-dependent	variable
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NEUS	Summary

• We	cast	NEUS	as	an	affine	eigenproblem with	

a	structure	that	parallels	equilibrium	US.

• Solving	it	involves	fixed	point	iteration	of	

window-to-window	transition	probabilities	

and	entry-point	distributions	(reflecting	that	

NEUS	is	both	a	splitting	and	a	stratification	

method).

• Present	algorithm	allows	sampling	new	

classes	of	dynamical	averages.


