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Surface segregation phenomenon

Surface segregation in metal alloys: preferential enrichment of the
surface by one of the constituents.

Equilibrium structures of PdAAu nanoparticles
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¢ Mechanism of surface segregation?
¢ Kinetic Trapping?



A problem of time scale

Atoms move on a femtosecond time scale, but many interesting processes occur
on a human time scale of seconds or minutes.
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We need computational methods A classical dynamics simulation of a
which can reach time scales that typical rare event requires ~1012 steps!
are orders of magnitude longer than
possible with classical dynamics M}

How can we use parallel computational
resources to extend the time scale of
atomistic simulations?




Adaptive kinetic Monte Carlo (AKMC)
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Transition state theory

A statistical theory for calculating the rate of slow
thermal processes — rare event dynamics

Requires an N-1 dimensional dividing surface that is

a bottleneck for the transition: ]
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Harmonic transition state theory

® Minima
Find saddle points on the energy surface ® Saddle Points

Rate of escape through each saddle point region:
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Methods for finding transition states

Min-mode following:
Find saddle points Unknown final state

Nudged elastic band:
Known final state
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Adatom diffusion on Al(100)

AE: 0.23 eV
v: 7 -1013 51
AE: 0.37 eV
v: 510135
o AE: 0.41 eV
Statistics v 2 1015 5
temperature: 300K
total transitions: 1000
distinct transitions: 112 _
total time: 55 ns AE:0.44 eV
dimer searches per step: 50 v: 3 -1014 s-1

distinct processes per step: 15



Adatom diffusion on Al(100)

Lowest energy mechanisms found in 1000 searches, using an EAM potential.
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Dimer method: efficiency

The Good: 60 processes with energy less than 2 eV were found with
1000 searches with a relatively low computational cost.

Number of Saddle Points Found (of 1000)
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The Bad: some saddles are hard to find; it is hard to estimate how
complete the event table is; some are not connected.



Molecular dynamics saddle search AKMC

Method:

1. Determine the initial state minimum. {\
2. Run high temperature MD until a

minimization converges to a new minimum.

3. Use (for example) a nudged elastic band to
find a saddle corresponding to the escape. T
AE
4. Calculate the TST escape rate and update

the confidence in the rate table.

5. When an error estimator in the total escape
rate drops below a desired value, use KMC
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to advance the simulation to a new state. 0 &
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6. Repeat. s/ ®
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MDSS rate table error estimator

Error in the rate table
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where F is the set of events found E
and K is the total rate 0
Probability of finding a saddle L

p(t; ki) = 1 — exp(—k;t)

for a process with rate k;jin MD time t

Rel. Error Total Rate

103

Approximate estimator for E(F)
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solid: E(F) "™ Mima,
dashed: X(F) ~ ~ Mma=ku,

assume the ki found in F are characteristic of the full set in K



MDSS: Efficiency

1. Pt heptamer
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2. Al adatom § 10°
more complicated g 100}
processes are found E, 102 }
by both methods ‘é 10° f
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3. Fe vacancies “q:, 10°
many processes available § 107
with only a few contributing 132
significantly to the rate; (o5 |
dimer must find all of them 10°

More importantly

MDSS has an accurate error estimator; min-mode searches do not

Pt Dimer

Pt MD

10°

10°
Force Calls

10°

107



EN EON code

http://theory.cm.utexas.edu/eon/

e Adaptive KMC

e Parallel replica method

¢ Hyperdynamics using bond boost method
¢ Molecular dynamics

e Saddle search: NEB, Dimer, Lanczos

¢ Minimization: LBFGS, FIRE, CG

e Use vasp, lammps for energy and force

S. T. Chill et al., Model. Simul. Mater. Sci. Eng. 22, 055002 (2014)



Surface Segregation Tendency in Pd-Au

Random Pd@Au
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Pd-Au Monte Carlo simulations

201 atoms In total
122 Pd | 79 Au

MC at 600K

Au surface segregation
occur preferentially at corner
and edges



Results of AKMC

Fastest path: eliminate processes jumping back and forth between states.

AKMC temperature: 600K
MDSS: 2000K



Results of AKMC

Simulated time ~60 ms, ~15000 unique states, ~85000 transitions
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Au surface segregation process 1

1-2: edge Pd push downward leading to Au surface segregation and generation of Pd adaatom and surface vacancy.

2-3 and 3-4: Pd diffusion along edge
4-5 and 5-6: exchange process on 100 surface;Au adatom generation

6-7: 3-atom linear chain diffuse along the edge to fill the vacancy



Au surface segregation process 2
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1-2: 3-atom linear chain diffusion along the edge; generation of Pd adaatom and surface vacancy.
2-3 and 3-4: Pd adatom diffusion via exchange

4-5: vacancy diffusion along edge via a Pd dimer hop

5-6: Pd adatom push downward leading to Au segregation
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1-2: Pd atom push into facet; generation of Au adatom and surface vacancy

2-3 and 3-4: Au adatom hopping
7-8: Pd adatom push Au atom to fill the vacancy

4-5: formation of a 4-atom chain at 100 facet.
5-6: 4-atom chain decay to form a Pd adatom

6-7: vacancy diffusion



Kinetic trapping
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Challenges

Energy (eV)
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Thank you !



