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String Method and Minimum Energy Paths

String method [E, Ren, Vanden-Eijnden, 2002] and nudged elastic band
[Henkelman, Jénsson, 2000] find minimum energy paths (MEPS).

Minimum Energy Path: Path ¢ between local minima of potential V' with
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Why Minimum Energy Paths?

1. Relevant saddle point for transition state theory (TST) approximation
of reaction rate is contained in MEP.

Saddle of Index One: x € RY with VV/(x) = 0 and

)\1<0<)\2§--~§/\d.

spectrum of D2V/(x)

2. "Most probable reaction path for overdamped Langevin at low
temperature” is an MEP, under certain conditions.
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Simplified and Improved String Method

[E,Ren,Vanden-Eijnden, 2007]

Step 1: Evolve by Gradient Descent
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After evolution, string is closer to saddle,

but nodes are unevenly spaced.

Step 2: Reparametrize

-/

Reparametrization respaces nodes.



String Method: Terminology

A String x € RIM+1D)xd of M 1 1 Images x; € R

minimum minimum
X0
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Numerical Flow Map Sa;:

Let Sa+ be a numerical integrator for gradient descent, e.g. Euler's method:
Sarxi = x; — AtV \/(X,‘).

Note: We let Sa; operate on strings as well as on images.



String Method: Interpolant

Linear Interpolant Z(«, x):

Given x e RIMHDxd gnd qg =0 < a1 < - < apy = 1, let
Z(a, x) : [0,1] — R

be the linear interpolant of {(a, x;)}M,.
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Note: Could use other interpolants, we choose linear for simplicity.



String Method: Reparametrization

Arc Length: Given x € RIM+1)xd define £(x) € RM*1 by

Ykl = xiall

= =4 )
2 k=1 llxi = xial]

Reparametrization: R : RIMT1)xd _, R(M+1)xd py,

li(x)

Rx; = Z({(x), x) (/\I/z)
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Simplified and |mpr0ved SM [E.Ren,Vanden-Eijnden, 2007]

Evolve: Parameters:
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Gradient Descent Dynamics on Curves (GDDC)

Flow for Gradient Descent: ¢, : R? — R defined by
;(x) = z(t) where Z'(s) = —VV(z(s)) and z(0) = x.
That is, ®+(x) is the trajectory of gradient descent starting from x.
Gradient Descent Dynamics on Curves:
Given path 7o : [0,1] — R define a path ~; by
V(@) = ®t(vo(a)) for a € [0, 1].

Note: MEPs are stationary points of GDDC, considered as a dynamics on
curves.



Convergence of GDDC

Theorem [Cameron, Kohn, Vanden-Eijnden, 2011]: Suppose V has finitely
many critical points, each of index < 1. Under mild technical conditions,
any trajectory of GDDC converges (in Hausdorff distance) to a MEP.

If there are saddles of index > 2, may not converge to single MEP:
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figure from [Cameron, Kohn, Vanden-Eijnden, 2011]

Here, the initial curve evolves under GDDC to fill a 2d region.



Numerical Analysis: Objectives

m A Priori Existence and Convergence:

Given an MEP, show that SM converges to a path near the MEP, at
least for x¥ sufficiently close to MEP and for h, At sufficiently small.

Show that as h, At tend to zero, limit of SM converges to MEP.

m A Posteriori Existence:

Given a converged state of SM, show that there is an MEP nearby.

m Here, we address only the a priori part of the analysis.



Numerical Analysis: Assumptions
m Exactly two stable minima my, m> and one saddle p of index one.
m Stable manifold W*(p) of p separates basins of attraction of my, my.

Note: W*(p) = {x € RY : im0 ®¢(x) = p}.

MEP=W"(p) — W=(p)

7\'

m For now, also assume Sa; = ®ay, i.e. ignore time discretization error.




Numerical Analysis: Stability

m [Cameron, Kohn, Vanden-Eijnden, 2011] = trajectories of GDDC
converge in dy to MEP under our assumptions.

m We need stronger stability properties to prove SM converges:
1. Uniform stability of MEP under GDDC

2. Asymptotic stability of MEP with uniform convergence

m Uniform & asymptotic stability
= Lyapunov function for MEP under GDDC
= error bounded in long time limit



Numerical Analysis: Measures of Distance

One-Sided Distance

d(G, B) = maxgeg minpegl|g — b|

Here, d(G, B) is small,
but d(B, G) is large.

Hausdorff Distance

di(G, B) = max{d(G, B), d(B, G)}

Here, dy(G, B) is small.



Numerical Analysis: Asymptotic Stability

Definitions:
m B C R?: a bounded set containing MEP
m C(my, mo, B): set of continuous paths 7 : [0,1] — B from my to my.

Asymptotic Stability with Uniform Convergence on B:

For every € > 0, there exists T (e, B) > 0 so that

dn(Pe(y), MEP) < ¢ for all t > T(e, B) and v € C(my, my, B).

curves y with T T -=--—- o _ _ ____----"7
d(v, MEP) <¢
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Numerical Analysis: Asymptotic Stability

Definitions:
m B C R?: a bounded set containing MEP
m C(my, mo, B): set of continuous paths 7 : [0,1] — B from my to my.

Asymptotic Stability with Uniform Convergence on B:

For every € > 0, there exists T (e, B) > 0 so that

dn(Pe(y), MEP) < ¢ for all t > T(e, B) and v € C(my, my, B).

curves y with " T ==-_____---------
d(y,MEP) < ¢ After time T (e, B), all curves are within € of MEP




Numerical Analysis: Uniform Stability

Uniform Stability:

For every € > 0 there exists a 9 > 0 so that

dn (v, MEP) < § implies dy(®+(y), MEP) < ¢ for all t > 0.




Numerical Analysis: Uniform Stability

Uniform Stability:

For every € > 0 there exists a 9 > 0 so that

dn (v, MEP) < § implies dy(®+(y), MEP) < ¢ for all t > 0.

curves 7y with
d(v, MEP) <¢



Numerical Analysis: Uniform Stability

Uniform Stability:

For every € > 0 there exists a 9 > 0 so that

dn (v, MEP) < § implies dy(®+(y), MEP) < ¢ for all t > 0.
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Numerical Analysis: Uniform Stability

Uniform Stability:

For every € > 0 there exists a 9 > 0 so that

dn (v, MEP) < § implies dy(®+(y), MEP) < ¢ for all t > 0.

curve at t =0
Phs “-- within 6 of MEP --T 7=

curves y with curves y with
d(v, MEP) < d(v, MEP) <¢



Numerical Analysis: Uniform Stability

Uniform Stability:

For every € > 0 there exists a 9 > 0 so that

dn (v, MEP) < § implies dy(®+(y), MEP) < ¢ for all t > 0.
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Why Uniform and Asymptotic Stability?

[Kloeden, Lorenz, 1986] = uniformly asymptotically stable sets are
preserved under time discretization, e.g.

Lorenz attractor, figure from wikipedia

Theorem [Stuart, Humphries, 1996]: If a set A is uniformly asymptotically
stable for an ODE, then for any one step discretization Sa;, there exists a
set Aa: which is uniformly asymptotically stable for Sa; such that

li A A =0.
AlthOdH( yAat) =0



Numerical Analysis: Lyapunov Function

Theorem [BvK, Luskin, 2017-+]: Under our assumptions the MEP is
uniformly stable, and it is asymptotically stable with uniform convergence
on B for any bounded B O MEP.

Modifying the proof of a similar result from [Yoshizawa, 1964] yields . ..

Theorem [BvK, Luskin, 2017-+]: There exists a Lyapunov function
: C(my, ma, B) — [0, 00) for the MEP such that

W(MEP) =0
W (®:(v)) < exp(—ct)W(~) for some ¢ > 0
IW(y) = Wn)l < du(y,n)

There exists a strictly increasing, continuous « : [0, 00) — [0, 00) with
a(0) = 0 so that a(dn(y, MEP)) < W(v) < du(vy, MEP).

pwpn e 3



Numerical Analysis: Spatial Discretization Error |
Bound on Spacing: For x" € RIM+t1)xd the p'th iterate of SM,
max|[x — x| < K exp(AtL)h,

where L is a Lipschitz constant for VV.
total length of Zx

Why? Because max;||Rx; — Rx;_1|| < M1 x ZHX,' —xi—1]| < h:

1

gray arcs between blue images
have length M3 |Ix; — xi—1||




Numerical Analysis: Spatial Discretization Error I

Notation: Zx is linear interpolant of x € RIM+1xd " ynderstood as curve.

Spatial Discretization Error: For any x € R(M+1)xd

2
du(SatZx, IZSa:x) < CAt <max]x,- — x,-_1> .

Reparametrization Error: For any x € R(M+1)xd

max;l|x; — xj—1]]

dn(Zx,ZRx) < 5




Numerical Analysis: Spatial Discretization Error I

Notation: Zx is linear interpolant of x € RIM+1xd " ynderstood as curve.

Spatial Discretization Error: For any x € RIM+1)xd

2
du(SatZx, IZSa:x) < CAt <max|x,~ — x,-_1> .

Reparametrization Error: For any x € R(M+1)xd

max;l|x; — xj—1]]

dn(Zx,ZRx) < 5

Reparametrization Frequency:

Evolve at least for time Atmin := Iong) between reparametrizations.



Convergence of String Method

“Trajectories of SM converge to a small neighborhood surrounding
MEP; size of neighborhood shrinks as h tends to zero.”

curves -y with T T e e e - -T curves 7y with
d(y, MEP) < e(h) d(v,MEP) < nry

Theorem [BvK, Luskin, 2017-+]: There exist hg > 0, rp > 0, Np > 0, and
a function e : (0, hg) — (0, 00) with limp_ e(h) = 0 such that if
dn(Zx°, MEP) < ro and h < hg, then

dn(Zx", MEP) < e(h) for all n > Np.



Do Stronger Results Hold?

Run SM on Miiller-Brown potential, At = 0.0001, reparametrize every 10
time steps, plot results immediately after reparametrization.

SM for Miiller-Brown, time=0.000
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Do Stronger Results Hold?
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Do Stronger Results Hold?

Run SM on Miiller-Brown potential, At = 0.0001, reparametrize every 10
time steps, plot results immediately after reparametrization.
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Do Stronger Results Hold?

Run SM on Miiller-Brown potential, At = 0.0001, reparametrize every 10
time steps, plot results immediately after reparametrization.
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Do Stronger Results Hold?

Run SM on Miiller-Brown potential, At = 0.0001, reparametrize every 10
time steps, plot results immediately after reparametrization.

SM for Miiller-Brown, time=0.010
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Do Stronger Results Hold?

Run SM on Miiller-Brown potential, At = 0.0001, reparametrize every 10
time steps, plot results immediately after reparametrization.

SM for Miiller-Brown, time=0.050
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Do Stronger Results Hold?

Run SM on Miiller-Brown potential, At = 0.0001, reparametrize every 10
time steps, plot results immediately after reparametrization.

SM for Miiller-Brown, time=0.100
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Do Stronger Results Hold?

Here, appears that SM converges to single fixed point:
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Conclusions

Main Result [BvK, Luskin, 2017+]:

Using ideas from theory of dynamical systems, we prove convergence of
simplified and improved SM to a neighborhood of MEP whose size is o(1)
in h, under certain assumptions on V.

Questions Not Addressed:

Does SM have a fixed point if reparametrization is performed after a fixed
number of time steps?

Can one reparametrize after every time step, whether or not spacing of
images is uneven?

Convergence of nudged elastic band, finite-temperature SM, SM in
collective variables, variants of SM based on optimization, etc.



