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École des Ponts ParisTech and INRIA, France

Stochastic Sampling and Accelerated Time Dynamics on Multidimensional
Surfaces, IPAM, october 17 2017

Joint work with
Gersende Fort (CNRS, IMT Toulouse)
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Motivation (1/4)

Goal:

Explore the support of a distribution π dλ with density π w.r.t. the Lebesgue
measure λ on D ⊆ Rd

and/or compute integrals w.r.t. π∫
D
f(x) π(x)dλ(x)

when π is highly metastable, d is large.

Solution: based on Importance Sampling (IS)

Sample X1, · · · , Xn, · · ·
i.i.d.∼ π̃ dλ

Define the IS approximation∫
D
f πdλ ≈ 1

n

n∑
k=1

π(Xk)

π̃(Xk)︸ ︷︷ ︸
importance ratio

f(Xk).
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Motivation (2/4) - How to choose π̃ ?

Define a partition of the support D in I strata

D =

I⋃
i=1

Di Di ∩ Dj = ∅ for i 6= j

A family of auxiliary distribution based on a local biasing
For all probability θ = (θ(1), · · · , θ(I)) on {1, 2, . . . , I} with θ(i) > 0,∀i, let

πθ(x)
def
=

(
I∑
i=1

θ?(i)

θ(i)

)−1 I∑
i=1

π(x)

θ(i)
1IDi(x),

where

θ?(i)
def
=

∫
Di
πdλ

If Di = ξ−1([ai, ai+1)) with ξ : Rd → R a collective variable (reaction
coordinate) and a1 < a2 < . . . < aI+1 then log θ?(i) is the free-energy (up to
an additive constant)

Key property: πθ?(Di) = 1/I – all the strata have the same weight: efficient to
tackle multimodality ! but θ? is unknown.
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Motivation - Adaptive Importance Sampling (3/4)

An iterative algorithm which

Will learn on the fly the weight vector θ? though a Stochastic Approximation
algorithm

θn+1 = θn + γn+1H(θn, Xn+1)

where H is chosen so that θ? is the unique solution of∫
H(θ, x) πθ(x) dλ(x) = 0.

from draws Xn+1 ∼ Pθn(Xn, ·) where Pθ(x, ·) is a kernel with invariant
distribution πθ (e.g. a Metropolis-Hastings kernel)

If convergence is established, this yields

an estimator of the free energy: limn θn = θ?.

an approximation of the target distribution π - computed on the fly/online∫
f πdλ = lim

n

I

n

n∑
k=1

f(Xk)

(
I∑
i=1

θk(i)1IDi(Xk)

)
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Motivation - Choice of the field H(θ, x) (4/4)

A family of algorithms: Wang Landau, Self Healing Umbrella Sampling (SHUS),
Well-Tempered Metadynamics, SHUSgρ

on the form

1 Given a new draw Xn+1 ∼ Pθn(Xn, ·) with inv. dist. πθn
2 Update a counter of the visits to a stratum

Cn+1(i) = Cn(i) + (· · ·)2 1IDi(Xn+1) i = 1, · · · , I

3 Normalize the counter to obtain a probability measure on {1, 2, . . . , I}

θn+1(i) =
Cn+1(i)∑I
j=1 Cn+1(j)

= θn(i) + γn+1 · · ·+O(γ2n+1) i = 1, · · · , I

Fundamental: if Xn+1 ∈ Di

Cn+1(i) > Cn(i), Cn+1(j) = Cn(j), j 6= i

=⇒ πθn+1(Di) < πθn(Di), πθn+1(Dj) > πθn(Dj), j 6= i.
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Wang-Landau (WL) update
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a WL based algorithm - algorithm (1/3)

(adapted from) the Wang-Landau algorithm (Wang and Landau, 2001)

Input:

- initial values: a point X0 ∈ D and a counter C0 ∈ (R?+)I

- a positive (deterministic) stepsize sequence {γn, n ≥ 0}

For n = 0, 1, · · ·
- Normalize the counter

θn(i) =
Cn(i)∑I
j=1 Cn(j)

, ∀i = 1, · · · , I

- Draw a new point: Xn+1 ∼ Pθn(Xn, ·) kernel with inv. dist. πθn
- Update the counter of the visited stratum

Cn+1(i) = Cn(i) + γn+1 Cn(i) 1IDi(Xn+1), ∀i = 1, · · · , I
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a WL based algorithm - convergence results (2/3)

θn+1(i) = θn(i) + γn+1

Hi(θn,Xn+1)︷ ︸︸ ︷
θn(i)

1IDi (Xn+1)−
I∑
j=1

θn(j)1IDj (Xn+1)

+γ2n+1Ow.p.1.(1).

∫
Rd
H(θ, x)πθ(x)dx = (

I∑
i=1

θ?(i)/θ(i))
−1(θ? − θ)

Under conditions on
- the strata and the target: 0 < infD π ≤ supD π <∞.
- the kernels Pθ : satisfied by Metropolis-Hastings kernels, with proposal
q(x, y)dλ(y) such that q(x, y) = q(y, x) and inf(x,y)∈D2 q(x, y) > 0.
- the stepsize sequence γn:

∑
n γn = +∞,

∑
n γ

2
n <∞

it is proved asymptotic results (Fort, J., Kuhn, Lelièvre, Stoltz, 2015a)

1 The a.s. convergence of the sequence θn to θ?.
2 The ”convergence” of the samples {X1, · · · , Xn, · · · }∫

f πdλ = lim
n

I

n

n∑
k=1

f(Xk)

(
I∑
i=1

θk(i)1IDi(Xk)

)
a.s.

↪→ bad Efficiency Factor
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a WL based algorithm - convergence results (3/3)

and role of the stepsize sequence (Fort, J., Kuhn, Lelièvre, Stoltz, 2015b) in the transient phase
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Figure : Left: level curves of the target density. Right: typical trajectory for β = 15
when γn = γ?/n

0.6 with α = 0.6 and γ? = 1.

The density depends on a parameter β: large values of β increases the
metastability phenomenon.
We choose γn = γ?/n

α α ∈ (1/2, 1]

lnT(α<1) = C(α, γ?) +
1

1− α
lnβ lnT(α=1) = C(γ?) +

µ0

1 + γ?
β

↪→ ”self tuned” step size γn
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An Adaptive Importance Sampling Algorithm with

- self-tuned stepsize sequence

- partial biasing to improve the IS step

SHUSgρ
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A new algorithm

Self-tuned and Partially biasing algorithm (F., Jourdain, Leliévre, Stoltz (2016))

Input:

- initial values: a point X0 ∈ D and a counter C0 ∈ (R?+)I

- a biasing function ρ : (0, 1)→ R∗+ and a stepsize function g : R∗+ → R∗+,

Set πρ(θ)(x)
def
=
(∑I

i=1
θ?(i)
ρ(θ(i))

)−1 ∑I
i=1

π(x)
ρ(θ(i))1IDi(x).

For n = 0, 1, · · ·
- Normalize the counter θn(i) = Cn(i)/

∑I
j=1 Cn(j), ∀i = 1, · · · , I

- Draw a new point: Xn+1 ∼ Pρ(θn)(Xn, ·) kernel with inv. dist. πρ(θn)

- Update the counter of the visited stratum ∀i = 1, · · · , I

Cn+1(i) = Cn(i) +
γ

g
(∑I

j=1 Cn(j)
)

︸ ︷︷ ︸
stepsize γn+1

 I∑
j=1

Cn(j)

 ρ (θn(i))

︸ ︷︷ ︸
=Cn(i) if ρ(t)≡t

1IDi(Xn+1),
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The intuition for this new update rule of Cn

The samples Xn
i.i.d.∼ π;

I A counter of the visits to each stratum

Cn+1(i) = Cn(i) + γ1IDi(Xn+1) = C0(i) + γ

n+1∑
k=1

1IDi(Xk) ⇒ Cn+1(i) ∼ γn θ?(i)

= Cn(i) +
γ∑I

j=1 Cn(j)︸ ︷︷ ︸
γn+1=

γ

nγ+
∑I
j=1

C0(j)

 I∑
j=1

Cn(j)

 1IDi(Xn+1)

I The estimate of θ?

θn+1(i) = θn(i) + γn+1

(
1IDi(Xn+1)− θn(i)

I∑
j=1

1IDj (Xn+1)

)
+O(γ2

n+1)

I For approximation of integrals∫
fπdλ ≈ 1

n

n∑
k=1

f(Xk)
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Assumptions

1 On the target density : supD π <∞ and min1≤i≤I θ?(i) > 0

2 On the kernels Pθ : satisfied by Metropolis-Hastings kernels, with proposal
q(x, y)dλ(y) such that q(x, y) = q(y, x) and inf(x,y)∈D2 q(x, y) > 0

3 On the function ρ −→ satisfied with ρ(t) = max(t0, t)
a with t0, a ∈ [0, 1).

See (Dama, Hocky, Sun, Voth, 2015) and (McCarty, Valsson, Tiwary, Parrinello, 2015) for motivations to choose
t0 > 0.

4 On the function g, chosen of the form

g(s) =

{
(ln(1 + s))α/(1−α) with α ∈ (1/2, 1)

sµ with µ > 0→ corresponds to α = 1
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Convergence results (1/2)

By using sufficient conditions for convergence of Adaptive MCMC samplers Fort,

Moulines, Priouret (2012) and convergence of Stochastic Approximation algo with controlled
Markovian dynamics Andrieu, Moulines, Priouret (2005)

I On the random sequence γn almost-surely,

lim
n
γnn

α = (1− α)α γ1−α

 I∑
j=1

θ?(j)

ρ(θ?(j))

 a.s.

I On the weight sequence θn almost-surely,

lim
n
θn = θ?

I On the Importance Sampling step almost-surely,

lim
n

1

n

n∑
k=1

 I∑
j=1

θk−1(j)

ρ(θk−1(j))

 f(Xk)

 I∑
j=1

ρ(θk−1(j))1IDj (Xk)

 =

∫
f πdλ
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Convergence results (2/2)

We wrote the results in the case

ρ(t) = max(t0, t)
a with t0, a ∈ [0, 1)

g(s) =

{
(ln(1 + s))α/(1−α) with α ∈ (1/2, 1)

sµ with µ > 0→ corresponds to α = 1

Applies to a discrete version of the Well-Tempered metadynamics algorithm (Barducci,

Bussi and Parrinello (2008)) where ρ(t) = ta g(s) = s1−a with a ∈ (0, 1), γn = O(1/n)
The ”partial biasing” and ”self-tuned stepsize” parameters are one to one.

Convergence also holds in the case ρ(t) = t and g as above (Fort, J., Lelièvre, Stoltz, 2016).
Additional assumption infD π > 0 needed to prove recurrence lim sup

n→∞
min

1≤i≤I
θn(i) > 0.

Indeed when θn(i) small and Xn+1 ∈ Di, the increase of the counter

Cn+1(i+ 1)− Cn(i) ∝ ρ(θn(i)) is smaller than when ρ(t) = ta with a < 1.

Applies to the Self Healing Umbrella Sampling algorithm (Marsili et al. 2006) where
g(s) = s and ρ(t) = t ”no partial biasing”.
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Elements of proof

We prove cv of the Generalized Wang-Landau algorithm where for n ∈ N,

Cn+1(i) = Cn(i)

(
1 + γn+1

ρ(θn(i))

θn(i)
1IDi(Xn+1)

)
= Cn(i) + γn+1

( I∑
j=1

Cn(j)

)
ρ(θn(i))1IDi(Xn+1),

γn+1 is a positive random variable only depending on
(C0, X0, C1, X1, . . . , Cn, Xn) (the past of the algorithm),
(γn)n is non increasing,

∑
n γn =∞,

∑
n γ

2
n <∞ and supn

γn
γn+I−1

<∞,

and then check that these hypotheses are satisfied by (γn+1 = γ

g(
∑I
j=1 Cn(j))

)n∈N.

θn+1(i) =
Cn(i)∑I
j=1 Cn(j)

×
1 + γn+1

ρ(θn(i))
θn(i)

1IDi(Xn+1)

1 + γn+1

∑I
j=1 ρ(θn(j))1IDj (Xn+1)

= θn(i) + γn+1

ρ(θn(i))1IDi(Xn+1)− θn(i)

I∑
j=1

ρ(θn(j))1IDj (Xn+1)


︸ ︷︷ ︸

Hi(θn,Xn+1)

+O(γ2n+1).
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Convergence of the Generalized Wang-Landau algorithm

h(θ) :=

∫
Rd
H(θ, x)πρ(θ)(x)dλ(x) =

( I∑
j=1

θ?(j)

ρ(θ(j))

)−1
(θ? − θ).

By considering a subsequence of (min1≤i≤I θn(i))n along well-chosen
stopping times (Tk)k≥1 such that XTk is in the stratum with smallest weight
θTk−1

(.), we check the recurrence of the algorithm : there is a compact

subset K of the open subset Θ = {θ ∈ (R∗+)I :
∑I
i=1 θ(i) = 1} of RI such

that (θn)n is infinitely often in K ⇔ lim supn→∞min1≤i≤I θn(i) > 0.

Introduce the Lyapunov function U(θ) =
∑T
i=1 θ?(i) ln(θ?(i)/θ(i)) given by

the relative entropy (Kullback-Leibler divergence) of the probability measure

θ on {1, . . . , I} w.r.t. θ?. Since ∂θ(i)U(θ) = − θ?(i)θ(i) ,

 I∑
j=1

θ?(j)

ρ(θ(j))

∇U.h(θ) = −
I∑
i=1

θ2?(i)

θ(i)
+

=1=
∑I
i=1(2θ?(i)−θ(i))︷ ︸︸ ︷
I∑
i=1

θ?(i)

= −
I∑
i=1

θ(i)

(
θ?(i)

θ(i)
− 1

)2

≤ 0.
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Convergence of the Generalized Wang-Landau algorithm

Rewrite
θn+1 = θn + γn+1h(θn) + γn+1Rn+1

and check using results by Fort, Moulines, Priouret (2012) on the dependence on θ of πθ
and the solution Fθ to the Poisson equation Fθ − Pρ(θ)Fθ = H(., θ)− h(θ)

that limn→∞ supk≥n

∣∣∣∑k
j=n γjRj

∣∣∣ = 0.

With ∇U.h ≤ 0, L := {θ ∈ Θ : ∇U.h(θ) = 0} = {θ?} and using Andrieu, Moulines,

Priouret (2005), deduce stability : lim infn→∞min1≤i≤I θn(i) > 0 and a.s.
convergence of (U(θn))n to the image {0} of L by U .
By the Pinsker-Csiszar-Kullback inequality,

I∑
i=1

|θn(i)− θ?(i)| ≤
√

2U(θn) −→n→∞ 0.
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Is there a gain
in such a self-tuned and partially biasing algorithm ?
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Figure : Left: level curves of the potential. Right: target density.

Make the metastability larger by increasing β.
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Case ρ(t) = ta for a ∈ [0, 1)

g(s) = (ln(1 + s))α/(1−α) for α ∈ (1/2, 1) ⇒ γn = Owp1(1/nα)
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Figure : Left: Exit times for α = 0.8. Right: Exit times for α = 0.6.

Start from the left mode, measure the exit time T i.e. time to reach Xn,1 > 1

T ↑ when β ↑
for fixed β and a: T ↓ when α ↓.
for fixed β and α: T ↓ when a ↑.
Linear fit with a slope indep of a: lnT = c+ (1− α)−1 lnβ
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Comparison to the Well-Tempered Metadynamics
g(s) = s1−a

(⇒ γn = O(1/n)) and ρ(t) = ta for a ∈ (0, 1)
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Exit time T

Linear fit: lnT = c+ 2.43(1− a)β

For fixed β: T ↓ when a ↑
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Efficiency Factor (EF) g(s) = ln(1 + s))α/(1−α), α ∈ (1/2, 1), ρ(t) = ta, a ∈ [0, 1)
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Figure : Efficiency factors EF(a) for various values of β.

EF (n) =

(
n−1

∑n
k=1

∑I
i=1 θ

a
?(i)1IDi(Xk)

)2
n−1

∑n
k=1

(∑I
i=1 θ

a
?(i)1IDi(Xk)

)2 ∈ [0, 1], (Xk)k i.i.d. ∼ πθa?

lim
n→∞

EF (n) =

( I∑
i=1

θ1−a? (i)

)−1( I∑
i=1

θ1+a? (i)

)−1
↑ when a ↓ for fixed β.

22 / 23



Conclusion

A convergent algorithm

which estimates the free energy of π by a Stochastic Approximation
algorithm, where the stepsize sequence {γn, n ≥ 0} is tuned on the fly

which provides an approximation of π by a set of weighted points with a
controlled discrepancy of the weights.

which requires two design parameters (α, a) to be fixed by the user

a stepsize parameter α ∈ (1/2, 1], γn = O(n−α) as n→∞,
a biasing parameter a ∈ [0, 1].
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