
Los Alamos
LA-UR-17-29482

Local Hyperdynamics

Arthur F. Voter
Theoretical Division

Los Alamos National Laboratory
Los Alamos, NM, USA

Stochastic Sampling and Accelerated Time 
Dynamics on Multidimensional Surfaces

IPAM/UCLA
October 16-20, 2017

Acknowledgments:
Danny Perez (LANL, T-1), Soo Young Kim (former LANL postdoc) 

Steve Plimpton (SNL), Dipanjan Ray (LANL postdoc), Tim Germann (LANL, T-1)
DOE/BES, DOE Exascale Computing Project, Los Alamos LDRD



Los Alamos
LA-UR-17-29482

Local Hyperdynamics

Arthur F. Voter
Theoretical Division

Los Alamos National Laboratory
Los Alamos, NM, USA

Stochastic Sampling and Accelerated Time 
Dynamics on Multidimensional Surfaces

IPAM/UCLA
October 16-20, 2017

Acknowledgments:
Danny Perez (LANL, T-1), Soo Young Kim (former LANL postdoc) 

Steve Plimpton (SNL), Dipanjan Ray (LANL postdoc), Tim Germann (LANL, T-1)
DOE/BES, DOE Exascale Computing Project, Los Alamos LDRD



Los Alamos
LA-UR-17-29482

We have some atomistic system.

Using molecular dynamics (MD), we can run a few microseconds.

How do we accurately predict the evolution on longer time scales?

Usually, this long-time evolution involves infrequent events.

The time-scale challenge
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Hyperdynamics
Assumptions:

- infrequent events
- transition state theory (no recrossings) 

AFV, J. Chem. Phys. 106, 4665 (1997)

Procedure:
- design bias potential DV (zero at dividing surfaces; causes no recrossings)
- run thermostatted (Langevin) trajectory on the biased surface (V+DV)
- accumulate hypertime as

thyper= SDtMDexp[DV(R(t))/kBT]
Result:

- state-to-state sequence correct (relative escape rates are preserved)
- time converges on correct value in long-time limit (vanishing relative error)

V+DV

V
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The boost factor

The boost factor (the hypertime divided by the MD time) is 
the average value of exp[+bDV] on the biased potential:

A
B

C
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Miron and Fichthorn, J. Chem. Phys. 119, 6210 (2003)

Bias is based on bond distortions; shuts off completely when 
the relative distortion e of any “bond” exceeds a pre-chosen 
critical value q (e.g., q=0.3).

Simple and inexpensive to evaluate.

Probably the best existing bias potential.

Bond boost bias potential
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Miron and Fichthorn, J. Chem. Phys. 119, 6210 (2003)

Bias is based on bond distortions; shuts off completely when 
the relative distortion e of any “bond” exceeds a pre-chosen 
critical value q (e.g., q=0.3).

Simple and inexpensive to evaluate.

Probably the best existing bias potential.

Simplified version (“simple bond boost”): DV depends purely 
on the coordinate (emax) of the most-distorted bond (Perez et 
al 2009).  

Bond boost bias potential
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Simplified bond-boost bias potential
DV depends purely on coordinate (emax) of most-distorted bond. 
At most, one bond at a time has any bias force.

current minimum 
defines {rij

min} values
trajectory point
eij = (rij-rij

min)/rij
min

(relative distortions)
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Simplified bond-boost bias potential

emax

0 q-q

DV depends purely on coordinate (emax) of most-distorted bond. 
At most, one bond at a time has any bias force.

current minimum 
defines {rij

min} values
trajectory point

DV

eij = (rij-rij
min)/rij

min

(relative distortions)

DV(emax) = DVmax[1-(emax/q)2]
DVmax
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Simplified bond-boost bias potential
DV depends purely on coordinate (emax) of most-distorted bond. 
At most, one bond at a time has any bias force.

current minimum 
defines {rij

min} values
trajectory point
eij = (rij-rij

min)/rij
min

(relative distortions)

emax

0 q-q

DV
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Simplified bond-boost bias potential
DV depends purely on coordinate (emax) of most-distorted bond. 
At most, one bond at a time has any bias force.

current minimum 
defines {rij

min} values
trajectory point
eij = (rij-rij

min)/rij
min

(relative distortions)

emax

0 q-q

DV
DV(emax) = DVmax[1-(emax/q)2]
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Simple bond-boost bias example

Cu adatom on Cu(100) surface

Hop barrier = 0.53 eV
DVmax = 0.4  eV

T(K) hop time boost factor   
300 K 27 µs          3.1x104

200 K 0.8 s           1.1x108
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Local hyperdynamics for large systems
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Hyperdynamics on large systems

Whenever system is near a dividing surface, DV must be zero.
For a 4x larger system, the trajectory is near a dividing surface 
~4x more often, causing a lower overall boost factor.
For very large systems, the boost decays to unity – i.e., there is 
no speedup, no matter what form of bias potential is used.

system size

bo
os

t
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Hyperdynamics on large systems

Whenever system is near a dividing surface, DV must be zero.
For a 4x larger system, the trajectory is near a dividing surface 
~4x more often, causing a lower overall boost factor.
For very large systems, the boost decays to unity – i.e., there is 
no speedup, no matter what form of bias potential is used.

system size

bo
os

t

All the AMD methods 
in their primitive form 
show poor scaling with 
system size
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Local Hyperdynamics
S.Y. Kim, D. Perez, and AFV, J. Chem. Phys. 139, 144110 (2013).

Modified formulation of hyperdynamics that gives constant boost for 
arbitrarily large systems.

Key concept: Most systems we are interested in are intrinsically local in 
their behavior.  A transition, or near-transition, in one region of system 
should not have any significant effect on atoms that are far away.
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Local Hyperdynamics
S.Y. Kim, D. Perez, and AFV, J. Chem. Phys. 139, 144110 (2013).

Modified formulation of hyperdynamics that gives constant boost for 
arbitrarily large systems.

Key concept: Most systems we are interested in are intrinsically local in 
their behavior.  A transition, or near-transition, in one region of system 
should not have any significant effect on atoms that are far away.
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Local hyperdynamics - procedure

Each bond (i) has its own local domain (I).
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Local hyperdynamics - procedure

Each bond (i) has its own local domain (I).

D
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Local hyperdynamics - procedure

Each bond (i) has its own local domain (I).

Each domain has its own bias energy DVI=CIDVbias(RI(t)) and boost factor BI
based on the geometry RI within the domain (exactly like a global 
hyperdynamics in that domain).
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Each domain has its own bias energy DVI=CIDVbias(RI(t)) and boost factor BI
based on the geometry RI within the domain (exactly like a global 
hyperdynamics in that domain).

The bias energy in domain I is used to determine the force only on bond i.  
E.g., with a simple bond-boost bias there is a force on a bond if and only if 
it is the most distorted bond in its own domain.
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Local hyperdynamics - procedure

Each bond (i) has its own local domain (I).

Each domain has its own bias energy DVI=CIDVbias(RI(t)) and boost factor BI
based on the geometry RI within the domain (exactly like a global 
hyperdynamics in that domain).

The bias energy in domain I is used to determine the force only on bond i.  
E.g., with a simple bond-boost bias there is a force on a bond if and only if 
it is the most distorted bond in its own domain.

A domain-bias multiplier (CI) is adjusted for each domain to make its 
average boost <BI> match the target boost factor Btarget.
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The boostostat
Instead of pre-adjusting the {CI} values for the current state, we apply a 
“boostostat” to gently but constantly push on these {CI} values during the 
simulation to move the boost for each domain towards the correct target boost.

For each domain I at each MD step: 

CI(t+Dt) =  CI(t) – aBDtMD[BI(t) - Btarget]/Btarget

where   aB = boostostat coupling strength    (~109 - 1010 s-1)

time (10-10 s)

aB ( s-1) =

109, 1010, 1011

108
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Note – this is not conservative dynamics

The force on bond i (the center of domain I) is taken to be

fi=-∂DVI/∂xi .

However, the force on nearby bond j is given by

fj=-∂DVJ/∂xj ,

so this is not conservative dynamics.

bond i

domain I
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local hyperdynamics

Bulk Ag
(homogeneous system)Bo

os
t F

ac
to

r

Number of atoms

Local hyperdynamics – boost scaling
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Boostostat coupling strength aB (s-1)

To
ta

l e
sc
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te

 (s
-1
) Ag(100) strip system, Btarget=100

Accuracy of the rates for a test system

Individual rates also extremely accurate.
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T=500K,  Btarget=100, aB=2X1010, range D=10 Å

Local hyperdynamics test on strip system 

Boostostat coef aB (s-1)

hop

exchange

side hop

+ = local hyper
x = direct MD

process type

(final state with
follow-on event) 
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Test on more complex Ag/Ag(100) system

• Defective Ag surface: adatom, adatom dimer, 
vacancy

• 434 atoms, 218 moving

• T=325K, gLangevin = 5x1011 s-1

• Locality radius D=10 Å          

• On-the-fly boostostatting,  aB=2x1010 s-1   

• Btarget=100

• Coefficients {CI} reset locally to 0.2 eV after 
each transition, and system replaced in initial 
state (as if a transition brought it to this 
state). Boostostatting and MD never paused.

• About 25 thermally relevant transitions. Rates 
vary over three orders of magnitude.
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Local Hyperdynamics - Ag(100) tests

vacancy
hops

adatom hops 
dimer hops exchanges and  

multi-atom events

+ = local hyperdynamics
x = global hyperdynamics

Target boost=100
T=325K

(Results 
do not 
change 
with 
system 
size.) 

Near perfect agreement 
with exact results
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Local Hyperdynamics - Ag(100) tests

vacancy
hops

adatom hops 
dimer hops exchanges and  

multi-atom events

+ = local hyperdynamics
x = global hyperdynamics

Target boost=100
T=325K

(Results 
do not 
change 
with 
system 
size.) 

Near perfect agreement 
with exact results
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Parallel implementation
Local hyperdynamics coded into LAMMPS by Steve Plimpton

Interrupt dynamics regularly, perform full minimization, 
check for transitions, redefine bonds and domains as 
necessary.

Details:
Run 100 time steps (4 fs) of MD with local HD bias

- bias all bonds which are max strain within Dcut region 
- apply boostostat to maintain target boost

Extra operations for HD:
- 2nd neighbor list out to Dcut
- double loops over atoms and big neighbor list 
- communicate to acquire bond-strain info for ghost atoms 

Quench to check if event has occurred
- if yes: re-form bond list, preserving bond CI’s 

For cheap EAM, about 2x more expensive than regular MD
- half is quench & event search every 100 steps 
- half is comp/comm to find max-strain bonds 
- this 2x shrinks for more expensive potentials 
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Pt/Pt(100) – 1 million atoms for 1 millisecond

Steve Plimpton

4% adatom coverage, random initial placement
T=400K, 1 million atoms total, top 4 layers free
Target boost = 4000  (gives <CIVmax>= ~0.4 eV)
24 hrs on 128 Broadwell nodes (4096 cores, 300 atoms/core) 
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Pt/Pt(100)

8-adatom chain
at 20 µs
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Pt/Pt(100) favors exchange over hop 

hop 1.25 eV
exchange 0.64 eV
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Pt/Pt(100) 

individual events in first microsecond or so
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Pt/Pt(100) system – computational scaling
4% adatom coverage, random initial placement 
T=400K, Btarget = 4000  

Steve Plimpton
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Pt/Pt(100) system – computational scaling
4% adatom coverage, random initial placement 
T=400K, Btarget = 4000  

Steve Plimpton

For this system 
with rigid bottom 
layers, LHD scaling 
same as MD, plus 
~2x overhead
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Local hyperdynamics – could it be exact?

We can show that local hyperdynamics should give increasingly accurate results 
as the local bias range D is increased, for any proper form of bias potential.
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as the local bias range D is increased, for any proper form of bias potential.

For the simple bond-boost bias potential:

We can show that for a homogeneous system (all bonds the same) the force 
“errors” arising from the non-conservative dynamics “cancel” (as discussed next).

For a non-homogeneous system, it is not clear whether there could be exact 
cancellation.
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Local hyperdynamics – could it be exact?

We can show that local hyperdynamics should give increasingly accurate results 
as the local bias range D is increased, for any proper form of bias potential.

For the simple bond-boost bias potential:

We can show that for a homogeneous system (all bonds the same) the force 
“errors” arising from the non-conservative dynamics “cancel” (as discussed next).

For a non-homogeneous system, it is not clear whether there could be exact 
cancellation.

Yet, every test we have done shows very high accuracy, making us suspect there 
may be something more general that can be derived about this kind of dynamics.
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Assume D>2L, where L = the intrinsic locality range.

DL
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Assume D>2L, where L = the intrinsic locality range.

L is defined by the decay of correlation between 
bond distortions:

<eiej> = ~0  if  rij>L

DL
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Normal (global) hyperdynamics, SBB bias 

There is a discontinuity in the bias force whenever the identity of the most-distorted 
bond changes.  Moreover, it can turn on (or off) abruptly due to the change in 
length of a bond that is far away.

In normal hyperdynamics, we find this has essentially no effect on the quality of the 
dynamics (the observed kinetic temperature, the boost, the rate,...)

t

t+dt
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The force mismatch terms

The force on bond j, which is based on domain J

fj=-∂DVJ/∂xj

is different than the force that bond i (domain I) thinks that bond j will have 

fj(I)=-∂DVI/∂xj.

The nature of this force mismatch (“error”) depends on the “I crescent” and 
the “J crescent”.

domain I 
(centered 
on bond i)

domain J

J crescentI crescent
i j

(NOTE: here a dot is a bond)
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The force mismatch terms
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The domain crescent cases when CI=CJ
(for simple bond boost bias)

Bond j is the most distorted bond in domain I+J
à exact (fj(I)=fj) = -CJ∂DVbias(RJ(t))/∂xj

Some other bond k in I∧J is the most distorted in domain I+J
à exact (fj(I)=fj=0)

Bond j is the most distorted in domain I, but there is an even more 
distorted bond in the J crescent (that j sees but i does not see)  

à “error” (fj(I)≠0, fj=0)

Bond j is the most distorted in domain J, but there is an even more 
distorted one in the I crescent (that i sees but j does not see)

à “error” (fj(I)=0, fj≠0)

The most distorted bond in domain I is in the I crescent and most 
distorted bond in domain J is in the J crescent

à exact (fj(I)=fj=0)

case

1

2

3

4

5

I J

j



Los Alamos
LA-UR-17-29482

The domain crescent cases when CI=CJ
(for simple bond boost bias)

Bond j is the most distorted bond in domain I+J
à exact (fj(I)=fj) = -CJ∂DVbias(RJ(t))/∂xj

Some other bond k in I∧J is the most distorted in domain I+J
à exact (fj(I)=fj=0)

Bond j is the most distorted in domain I, but there is an even more 
distorted bond in the J crescent (that j sees but i does not see)  

à “error” (fj(I)≠0, fj=0)

Bond j is the most distorted in domain J, but there is an even more 
distorted one in the I crescent (that i sees but j does not see)

à “error” (fj(I)=0, fj≠0)

The most distorted bond in domain I is in the I crescent and most 
distorted bond in domain J is in the J crescent

à exact (fj(I)=fj=0)

case

1

2

3

4

5

I J

j

If I-crescent and J-crescent are statistically equivalent,
then CI = CJ, and “error” 3 and “error” 4 balance in a time average.
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The core argument – time reordering
Assume D > 2L and rij<L.  Then all bonds in both crescents are more than a 
distance L away from both bond i and bond j.   Thus, crescent bonds do not 
interact directly with i or j.

Large bond distortions come and go in the I crescent, dictating, from a large 
distance away, what bond i thinks the force on bond j should be.  Meanwhile, 
the actual force on bond j is dictated by the (distant) bonds in crescent J.

Because the bonds in crescent J are identical to the bonds in crescent I 
(assumed homogeneous system), the bond-length fluctuations in crescent J 
that can shut down bond j are identical to the bond-length fluctuations in 
crescent I, other than a random reordering in time.
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The core argument – time reordering
Assume D > 2L and rij<L.  Then all bonds in both crescents are more than a 
distance L away from both bond i and bond j.   Thus, crescent bonds do not 
interact directly with i or j.

Large bond distortions come and go in the I crescent, dictating, from a large 
distance away, what bond i thinks the force on bond j should be.  Meanwhile, 
the actual force on bond j is dictated by the (distant) bonds in crescent J.

Because the bonds in crescent J are identical to the bonds in crescent I 
(assumed homogeneous system), the bond-length fluctuations in crescent J 
that can shut down bond j are identical to the bond-length fluctuations in 
crescent I, other than a random reordering in time.

A force-expectation discrepancy can arise only when there is no force on bond 
i. Thus, the abrupt turning-on and turning-off of the force on bond j, which 
also happens in regular hyperdynamics (though less often), will still give 
appropriate Langevin evolution of bond j from the point of view of bond i, 
whether or not the sequence is reordered in time.  Bond i has no way of telling 
the difference. Locally, then, for all j bonds within a range D/2 of bond i, the 
evolution is equivalent to true Langevin evolution on V+DV, and should give 
the same boost factor for that region as a global bias on domain I would give.   
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Probing for accuracy problems in local hyper

We have tested various inhomogeneous systems and find the results are still 
very accurate.

The errors we do see are so small that they might be caused by setting the 
range D too small, or setting the target boost too high, or the integrator time 
step too long.  It is hard to rule out the possibility that LHD is “exact” (for 
D>2L), or accurate to high order.
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Probing for accuracy problems in local hyper

We have tested various inhomogeneous systems and find the results are still 
very accurate.

The errors we do see are so small that they might be caused by setting the 
range D too small, or setting the target boost too high, or the integrator time 
step too long.  It is hard to rule out the possibility that LHD is “exact” (for 
D>2L), or accurate to high order.

We have found that it is difficult to even create a test case that can clearly 
distinguish right from wrong (e.g., to use in developing a more accurate 
variation on local hyperdynamics).
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Behavior when locality range is underestimated

D=10Å 

D=5Å 

D=3.5Å Ag/Ag(100)

Long-range mechanisms too large for D go faster
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D = 5 Å

Safely “self correcting” if D is too small 

LHD run using D=5Å
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D=10 (shown)
D=5
D=3.5

D = 5 Å

Safely “self correcting” if D is too small 

LHD run using D=5Å

This event shows up 
sooner than it should 
have.
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D=10 (shown)
D=5
D=3.5

D = 5 Å

Safely “self correcting” if D is too small 

LHD run using D=5Å

This event shows up 
sooner than it should 
have.

But evolution so far 
(not counting this 
event) is correct.
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D=10 (shown)
D=5
D=3.5

D = 10 Å

D = 5 Å

Safely “self correcting” if D is too small 

LHD run using D=5Å

This event shows up 
sooner than it should 
have.

But evolution so far 
(not counting this 
event) is correct.

Just discard this 
event, increase D, 
and continue running.



Los Alamos
LA-UR-17-29482

Conclusions – Local Hyperdynamics
A local formulation of hyperdynamics is scalable, with constant 
boost, to arbitrarily large systems, provided the lowest barrier in 
system does not decrease with increasing system size.

Parallel implementation (now in LAMMPS) looks very promising.

We understand why should be correct for homogeneous systems.

We are surprised how accurate it is for every system we have tried, 
homogeneous or not.  Perhaps the inhomogeneous case can be 
shown to be correct as well…

A remaining issue:  adjusting Btarget on fly if lower barriers show up.

S.Y. Kim, D. Perez, and AFV, J. Chem. Phys. 139, 144110 (2013).


