IPAM Workshop ELWS 2

UCLA, Oct 16-20, 2017

Atomistic Modeling of Thermally Activated Processes for Crystal Dislocations

Oct 16, 2017

Wei Cai, Xiaohan Zhang, William Kuykendall*

Department of Mechanical Engineering, Stanford University

* Present address: Sandia National Laboratories, Livermore, CA

Funding Support

Department of Energy, Basic Energy Sciences, DE-SC0010412

Samsung Semiconductor Inc, USA

Outline

1. Dislocation Nucleation in FCC Cu

Importance of Activation Entropy

2. Dislocation Nucleation in DC Si

Importance of Surface Morphology

3. Cross Slip in FCC Ni

Multiple Stress Components

Dislocations Responsible for Plastic Deformation

Thermally Activated Dislocation Processes

Plastic Deformation of Metals

Homogeneous Dislocation Nucleation Rate

Nucleation of *partial* dislocation under pure shear stress σ_{xy}

Goal: nucleation rate $J^{\text{NUC}}(\sigma, T)$ When the (finite T) ideal strength is reached, the crystal collapses by homogenous nucleation of dislocations

Shear stress-strain curves from MD

Minimum Energy Path from String Method

Nucleation Rate from Classical Nucleation Theory

Becker-Döring Theory, Ann. Phys. (N.Y.) 24, 719 (1935)

$$J^{\text{NUC}} = v_0 \exp\left(-\frac{F_c(\gamma, T)}{k_B T}\right) \qquad \text{where } F_c(\gamma, T) \qquad \begin{array}{l} \text{Activation (Helmholtz)} \\ \text{free energy at shear strain } \gamma \\ v_0 = f_c^+ \Gamma & f_c^+: \text{ nucleus fluctuation rate} \\ \Gamma: & \text{Zeldovich factor (related to curvature of F(n) curve)} \end{array}$$
Transition State Theory (TST)

$$I^{TST} = v_0 \exp\left(-\frac{F_c(\gamma, T)}{k_B T}\right) = v_0 \exp\left(\frac{S_c(\gamma)}{k_B}\right) \exp\left(-\frac{E_c(\gamma)}{k_B T}\right) \qquad F_c = E_c - TS_c$$
where $v_0 = \frac{k_B T}{h} \approx 10^{13} \text{s}^{-1}$ at $T = 300 \text{K}$
Harmonic Transition State Theory (HTST)

$$I^{HIST} = \frac{\prod_{i=1}^{N} v_i^m}{\prod_{i=1}^{N-1} v_i^a} \exp\left(-\frac{E_c(\gamma)}{k_B T}\right) \approx v_D \exp\left(-\frac{E_c(\gamma)}{k_B T}\right)$$
activated state where $v_D \approx 10^{13} \text{s}^{-1}$ (Debye frequency)

Umbrella Sampling (Monte Carlo) for Free Energy Barrier

$$U^{new}(\{r_i\}) = U^{EAM}(\{r_i\}) + K \cdot (n(\{r_i\}) - \overline{n})^2$$

original potential

bias potential

p. 8/32

Order parameter: $n({\mathbf{r}_i})$ is the number of atoms enclosed by the dislocation loop

- 1. For each atom *i*, if $\max_{j} (|\mathbf{r}_{ij} \mathbf{r}_{ij}^{0}|) > d_{c}$ atom *i* is labeled as "slipped"
- 2. "Slipped" atoms closer to each other than r_c are grouped into one cluster.
- 3. $n({r_i})$ is the number of atoms in the largest cluster

Similar order parameter used in Zuo, Ngan, Zheng, PRL, 94, 095501 (2005)

IPAM 2017

Activation Helmholtz Free Energy $F_{c}(\gamma, T)$

IPAM 2017

Testing Becker-Döring Theory for Dislocation Nucleation

Origin of Activation Entropy $S_c(\gamma)$

Thermal expansion (anharmonic effect) Increasing Temperature:

- atoms separated further
- interaction becomes weaker
- crystal is easier to shear

T = 0 K but hydrostatically strained to match thermal expansion at 300 K (Cu CTE: $\alpha = 16.5 \times 10^{-6} \text{ K}^{-1}$)

> Ryu, Kang, Cai, PNAS, 108, 5174 (2011); J Mater Res 26, 2335 (2011)

Outline

1. Dislocation Nucleation in FCC Cu

Importance of Activation Entropy

2. Dislocation Nucleation in DC Si

Importance of Surface Morphology

3. Cross Slip in FCC Ni

Multiple Stress Components

IPAM 2017

Dislocation Nucleation on SiGe/Si Film during Annealing

Maximum misfit (normal) strain x = 1 (between Ge and Si) : 4%, shear strain 2% misfit (normal) strain at x = 0.5 (between Si_{0.5}Ge_{0.5} and Si) : 2%, shear strain 1%

Dislocation nucleation from Si under applied compression as a model

Previous Predictions Require Too High Strain

Energy Barrier for Nucleation from Surface Pit

Finite Temperature MD Predicts a Different Mechanism

CONTRACTOR OF CONTRACTOR

Findings:

- 1. Dislocation encloses a stacking fault !
- 2. So it cannot be shuffle-set perfect dislocation
- 3. It is not a glide-set partial dislocation either
- 4. It is a dislocation complex spanning one glide-set plane + two shuffle-set planes

Shuffle-Glide Complex Has Even Lower Energy Barrier

Stillinger-Weber (SW) potential

Effect of Interatomic Potential

SW: solid lines MEAM: dashed lines

- MEAM predicts higher energy barrier than SW
- Shuffle-glide complex still has lower barrier than other dislocations
- $\mathsf{MD} \leftarrow \mathsf{HEP} \text{ consistent}$
- Inconsistency between
 MD/MEP and Expt
 probably due to surface
 irregularity and/or new
 dislocation types

Outline

- 1. Dislocation Nucleation in FCC Cu Importance of Activation Entropy
- 2. Dislocation Nucleation in DC Si

Importance of Surface Morphology

3. Cross Slip in FCC Ni

Multiple Stress Components

Proposed Mechanisms of 'Homogeneous' Cross Slip

Friedel-Escaig (FE)

- 1. Constriction forms on glide plane
- 2. Re-dissociates on cross-slip plane

Favorable at high T, low stress

Fleischer

- 1. No constriction
- 2. 3D stacking fault structure

Favorable at low T, high stress

Which stress component?

IPAM 2017

Review by Puschl, Prog. Mater. Sci. 47, 415 (2002)

MD Simulation of 'Homogeneous' Cross Slip

T = 550 K

$$\sigma_{yz}$$
 = 800 MPa,
 σ_{zz} =-1944 MPa, σ_{yy} =1944 MPa,
 σ_{xz} =1062 MPa

MD simulation (by MD++) Dislocation extracted by Ovito/DXA

Various Stress Components

Escaig stress

Schmid stress

Various Stress Components

IPAM 2017

Effects of Multiple Stress Components

Simulation Cell Set-up

30[1 -1 0] × 30[1 1 1] × 20[-1 -1 2], 345600 atoms

PBC along x, z; free surface along y **IPAM 2017**

Ni EAM potential 'vnih' used by S. Rao et al. Philos. Mag. A 79, 1167 (1999) γ_{SF} (119 mJ/m²) in good agreement with expt (125-128 mJ/m²) p. 25/32

Converged minimum energy paths

Atomistic Data: E_b for FE Mechanism

p. 28/32

Express energy barrier function analytically

Are MEP results consistent with MD?

Cross slip rate

$$I^{CS} = A \frac{l}{l_0} \exp\left(-\frac{E_b(\sigma)}{k_B T}\right)$$

Kubin et al. Solid State Phenomena 1992

Frequency prefactor

$$v(l) = A \frac{l}{l_0}$$

~ vibrational frequency of dislocation line << Debye frequency $v_D \sim 10^{13} \text{ s}^{-1}$

MD simulations:

20 runs, 25 ps each run, at T = 450 K, l = 15 nm $\sigma_{yz} = 0.8$ GPa, $\sigma_{zz} = -1.944$ GPa, $\sigma_{yy} = 1.944$ GPa, $\sigma_{xz} = 1.062$ GPa

 $\tau^* = 2.64 \text{ GPa}, E_b(\tau^*) = 0.52 \text{ eV}, k_BT = 0.0388 \text{ eV}, exp(E_b/k_BT) \sim 1.5 \times 10^{-6}$ (cross slip not expected to occur under this stress at MD time scale)

Yet ~ 40% of MD runs show cross slip $\rightarrow I^{cs} \sim 1.6 \times 10^{10} \text{ s}^{-1}$

Frequency prefactor $A l/l_0 \sim 10^{16} \text{ s}^{-1} \gg v_D$

IPAM 2017

Cross slip: Are MEP results consistent with MD?

William Kuykendall, PhD Thesis, Stanford University, 2015

Summary

• Dislocation Nucleation in FCC Cu

activation entropy needed to bring consistency between MD $\leftarrow \rightarrow$ MEP

Dislocation Nucleation in DC Si

surface features/ new dislocation may bring consistency between experiment $\leftarrow \rightarrow$ MD/MEP

• Dislocation Cross Slip in FCC Ni

activation entropy needed again to bring consistency between $MD \leftarrow \rightarrow MEP$ (?)

