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Weighted ensemble (WE)

WE (Huber, Kim 1996) is a statistically exact technique for path sampling.

Basic algorithm.

Resample from paths or path endpoints to get “good” spatial sampling.
Then assign weights so that the resulting statistical distribution is exact.

“Good” sampling usually obtained by binning – keeping a user-determined number of replicas per bin.
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Figure: Visualization of WE. Blue = stochastic trajectory, red = resampling times.
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Current usage

Software: https://westpa.github.io/westpa/publications.html

Zwier, Adelman, Kaus, Pratt, Wong, Rego, Suárez, Lettieri, Wang, Grabe, Zuckerman, Chong

Package is described in J. Chem. Theory Comput., 11: 800-809 (2015)

Currently ∼ 30 related publications, most after year 2010
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1 minute summary

We derive a new replica allocation strategy for WE (D. Aristoff, ESAIM: M2AN 2017)

It is a variance-reduction strategy that is optimal in some sense

The strategy requires a coarse/cheap model to implement in practice

It works on toy models. Will it work on real problems?

Close connection to SMC work of Del Moral, Garnier and others
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Setting

Assumption.

(Xp)p=0,1,... is a Markov chain: its future behavior depends only on the present.

Example.

(Yt) is stochastic MD, and (Xp) is obtained from (Yt) along a time sequence, e.g.

Xp = Yp∆t , where ∆t is a fixed time step/resampling time

Xp = Yτp where τp is the pth crossing time of some “milestones”
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Figure: Blue curve = (Yt), red dots = (Xp). E.g. Xp = Yp∆t , or...
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Figure: Xp = Yτp , where τp is pth crossing of a “milestone.”
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Sampling rules

Rules.

Each replica always has a positive probability to survive

weight of child = (weight of parent)/E(# of children)

Children evolve independently according to the law of (Xp)

Parents have a random # of children. Total weight not conserved (but it is on average).

D. Aristoff (Colorado State University) October 2017 9 / 41



p! 1 p + 1p time

state space

0

3

0

3

2

2

independent
evolution

Figure: Red dots: replicas of (Xp). Above dots: # of times replica is resampled.

D. Aristoff (Colorado State University) October 2017 10 / 41



p! 1 p + 1p time

1

1
2

1
6

1
6

state space

1
2

1
6

Figure: Red dots: replicas of (Xp). Above dots: (possible) weights of replicas.
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Figure: Suppose the circled replica has 1 child w.p. q, and none otherwise.
What is the expected weight of its child (set to 0 if the replica is killed)?
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Figure: Suppose the circled replica has 1 child w.p. q, and none otherwise.

Its child’s weight =

{
1/2
q
, parent survives

0, else
, so E(child’s weight) = 1

2q
q + 0(1− q) = 1

2
.
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Variance reduction

Problem.

For a function f and final time n, minimize variance in computing E(f (Xn)).

n can be large (stationary regime) or small (transient regime)

Important case: f is large in regions of low probability for Xn
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Variance reduction

Problem.

For a function f and final time n, minimize variance in computing E(f (Xn)).

Example: (Xp) is a time discretization of MD, modified so that when it
reaches a product set P it immediately goes back to a reactant set R.

If f = 1 on P and 0 elsewhere, and ∆t is the time step, then (Hill relation)

MFPT from R to P ≈ ∆t

E(f (Xn))
,︸ ︷︷ ︸

small denominator =⇒ variance reduction important!

n large

D. Aristoff (Colorado State University) October 2017 15 / 41



Selection value function

Problem.

For a function f and final time n, minimize variance in computing E(f (Xn)).

Basic idea: we want more replicas in important regions of state space

Fundamental question: what regions are important, and at which times?

Selection value function.

Let vp(x) = value of selecting a replica at x (a point in state space) at time 0 ≤ p ≤ n.

We will use vp to decide how to make selections at time p.
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The selection value vp is derived using Doob decomposition:

Var(f (Xn)) = Var(initial condition)

+
n−1∑
p=0

Var(selection and mutation at step p)︸ ︷︷ ︸
vp is obtained by minimizing this, subject
to the constraint: target #of replicas = N

.

Explicit formula:

vp(x)2 = Varx(gp+1(X1))︸ ︷︷ ︸
variance associated to starting
a replica at point x at time p

where gp(x) = Ex(f (Xn−p)).

Important simplification: vp obtained by minimizing only the pth term in variance.
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Explicit formula:

vp(x)2 = Varx(gp+1(X1))︸ ︷︷ ︸
variance associated to starting
a replica at point x at time p

where gp(x) = Ex(f (Xn−p)).

(Mathematical sketch: Let Mp = Eηp (f (Xn−p)) where ηp =
∑M

j=1 ω
jδ

ξj with ξ1, . . . , ξM and ω1, . . . , ωM

the points/weights at time p. Then we get vp by minimizing E
[

(Mp+1 −Mp)2
∣∣Fp

]
subject to the constraint

that the expected total # of children = N. Here Fp = information from the WE process up to time p.)
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Selection mechanism

Optimal strategy.

Suppose ξ1, . . . , ξM are the replicas at time p, with weights ω1, . . . , ωM . Then

Target # of children of ξj :=
Nvp(ξj)ωj∑M
j=1 vp(ξj)ωj

(1)

where N = target total # of replicas.

If the RHS of (1) is noninteger, the # of children of ξj is random with mean the
target number, and minimal variance. (So if the target # = t, then # of children is btc or dte).
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Understanding the optimal strategy

Let X and Y be random variables and α, β > 0. Suppose we want to estimate
E[αX + βY ] with N total samples of X and Y and minimal variance.

Let X1, . . . ,XR and Y1, . . . ,YS be the (independent) samples of X and Y , with
R + S = N. To minimize variance, we want to choose R and S that minimize

Var

(
α

R

R∑
k=1

Xk +
β

S

S∑
k=1

Yk

)
=

Var(X )α2

R
+

Var(Y )β2

S
.

A Lagrange multiplier calculation shows

R =
N Std(X )α

Std(X )α + Std(Y )β
, S =

N Std(Y )β

Std(X )α + Std(Y )β
.
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Comparison with standard nonlinear filtering/SMC

Toy model: Xp+1 = Xp + ξp, where the ξp are iid standard Gaussians

Problem: Minimize variance in computing P(Xn > a) when a = n = 20

At time p, let ξ1, . . . , ξM be the replicas, w/ weights ω1, . . . , ωM and parents ξ̂1, . . . , ξ̂M .

WE:

Target # of children of ξj

= pj :=
Nvp(ξj)ωj∑M
j=1 vp(ξj)ωj

# children of ξj is Bernoulli in {bpjc, dpje}

vp minimizes pth term of Doob
decomposition of finite N variance

SMC:

Target # of children of ξj

= qj :=
NG(ξj , ξ̂j)∑M
j=1 G(ξj , ξ̂j)

# of children is Multinomial(N, q1, . . . , qM )

G(x , y) = eα(x−y) is ansatz function,
α optimized using N →∞ variance
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Figure: Estimate of P(Xn > a) using WE and SMC. (104 trials for each value of N.)

D. Aristoff (Colorado State University) October 2017 22 / 41



Understanding the selection value function

P (sink)R (source)

Figure: Consider (Xp) a time discretization of overdamped Langevin dynamics
(with the pictured potential and added source/sink). Let f = 1 on P and 0 otherwise.

D. Aristoff (Colorado State University) October 2017 23 / 41



Evolution of vp(x), p = 300, . . . , 500, for (Xp) with n = 500 (click for animation):
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Evolution of vp(x), p = 460, . . . , 500, for (Xp) with n = 500 (click for animation):
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Features of vp

When p � n, vp is nearly constant.

When p ≈ n, vp is large in regions important for computing f .

When 0� p < n, vp has large values in regions of “high variance”
(these regions depend on p and are usually regions around energy/entropy barriers).

As p → n, the selection “pushes” sampling towards relevant regions.
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Estimating vp with a coarse model

No free lunch.

In problems of interest vp is not exactly computable. We propose estimating vp
with a MSM, and then tailoring the resampling strategy to the same MSM...

The basic idea is to use a MSM to guide sampling in an (almost) optimal way.

Note: sampling is always unbiased, no matter what the choice of MSM is!

However, useful variance reduction may not be obtained with a bad MSM.
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Estimating vp with a coarse model

No free lunch.

In problems of interest vp is not exactly computable. We propose estimating vp
with a MSM, and then tailoring the resampling strategy to the same MSM.

A MSM isn’t essential: any sufficiently good cheap/coarse model will do.

We only assume we have a MSM for definiteness/simplicity.
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Estimating vp with a MSM

Approxiate selection value function.

Use a MSM on states r = 1, . . . ,R to approximate vp. More precisely set

v̂p(r) =
√

rth entry of P(Pn−p−1u)2 − (Pn−pu)2

where Prs ≈ P(X1 in state s|X0 in state r), and u(r) ≈ f |state r (and entrywise squaring).

If the MSM is good, then we can expect v̂p(r) ≈ vp(x) for x in state r .
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Adapting resampling strategy to the MSM

Sampling assumption: all children in the same state have equal weight:

Sampling tailored to MSM.

Suppose that at time p, a replica ξj with weight ωj is in state r . Then we define

Target # of children of ξj = Np(r)
ωj

ω(r)
,

with Np(r) = target # of replicas in state r , ω(r) = total weight in state r . Thus

weight of children of ξj =
ω(r)

Np(r)
.

The last formula above is obtained using assumption (weight of child) = (weight of parent)/E(# of children)
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MSM-guided replica allocation

Replica allocation function.

If N = target total # of replicas, and 0 < Ñ < N/R, set

Np(r) = (N − ÑR)
v̂p(r)ω(r)∑R
r=1 v̂p(r)ω(r)

+ Ñ︸ ︷︷ ︸
target number of replicas in state r at time p

.

The Ñ ensures positive survival probability. (Compare with equation (1))

This is now a practical strategy for allocating replicas in state space.
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Application

Example.

Computing E(f (Xn)) when n is large (stationary regime):

Using the MSM, we may start at p = 0 “close” to the stationary regime

Then pick a time n for relaxation to stationarity (hard to do in general)

The MSM may also be used to optimize replica allocation in the relaxation.
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Toy problem: discrete energy landscape mimicking a potential V (x) = sin
(

6πx
90

)
.
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Figure: Distribution of replicas at final time n = 30 for different strategies.
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Toy problem: discrete energy landscape mimicking a potential V (x) = sin
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Figure: Estimation of E(f (Xn)) for various relaxation times, and sample variance.
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Figure: v̂p(r) at the initial and penultimate times. (30 equally sized states define the MSM.)
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Future work

Practical questions for future work:

How good does the MSM have to be for a useful variance reduction?

How much gain can we get in “real” problems (e.g. estimating MFPTs)?

Theoretical questions for future work:

How does the sequential optimal strategy compare to a globally optimal one?

What is the asymptotic variance for the sequentially optimal strategy?

How does this compare to SMC/Gibbs-Boltzmann based selection?
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