Weighted ensemble sampling and optimization

David Aristoff

Colorado State University

October 2017

D. Aristoff (Colorado State University)

October 2017 1 / 41

WE (Huber, Kim 1996) is a statistically exact technique for path sampling.

Basic algorithm.

Resample from paths or path endpoints to get "good" spatial sampling. Then assign weights so that the resulting statistical distribution is exact.

"Good" sampling usually obtained by binning – keeping a user-determined number of replicas per bin.

<ロ> (日) (日) (日) (日) (日)

Figure: Visualization of WE. Blue = stochastic trajectory, red = resampling times.

・ロト ・ 日 ト ・ 日 ト ・ 日

Current usage

- Software: https://westpa.github.io/westpa/publications.html Zwier, Adelman, Kaus, Pratt, Wong, Rego, Suárez, Lettieri, Wang, Grabe, Zuckerman, Chong
- Package is described in J. Chem. Theory Comput., 11: 800-809 (2015)
- $\bullet\,$ Currently ~ 30 related publications, most after year 2010

- We derive a new replica allocation strategy for WE (D. Aristoff, ESAIM: M2AN 2017)
- It is a variance-reduction strategy that is optimal in some sense
- The strategy requires a coarse/cheap model to implement in practice

<ロ> (日) (日) (日) (日) (日)

- We derive a new replica allocation strategy for WE (D. Aristoff, ESAIM: M2AN 2017)
- It is a variance-reduction strategy that is optimal in some sense
- The strategy requires a coarse/cheap model to implement in practice

- It works on toy models. Will it work on real problems?
- Close connection to SMC work of Del Moral, Garnier and others

Assumption.

 $(X_p)_{p=0,1,...}$ is a Markov chain: its future behavior depends only on the present.

Example.

 (Y_t) is stochastic MD, and (X_p) is obtained from (Y_t) along a time sequence, e.g.

- $X_p = Y_{p\Delta t}$, where Δt is a fixed time step/resampling time
- $X_p = Y_{\tau_p}$ where τ_p is the *p*th crossing time of some "milestones"

Figure: Blue curve = (Y_t) , red dots = (X_p) . E.g. $X_p = Y_{p\Delta t}$, or...

◆□ > ◆□ > ◆臣 > ◆臣 >

Figure: $X_p = Y_{\tau_p}$, where τ_p is *p*th crossing of a "milestone."

◆□ > ◆□ > ◆臣 > ◆臣 >

Sampling rules

Rules.

- Each replica always has a positive probability to survive
- weight of child = (weight of parent)/ $\mathbb{E}(\# \text{ of children})$
- Children evolve independently according to the law of (X_p)

Parents have a random # of children. Total weight not conserved (but it is on average).

Figure: Red dots: replicas of (X_p) . Above dots: # of times replica is resampled.

・ロト ・日 ・ ・ ヨト ・ ヨ

Figure: Red dots: replicas of (X_p) . Above dots: (possible) weights of replicas.

・ロト ・ 日 ・ ・ 回 ・ ・

What is the expected weight of its child (set to 0 if the replica is killed)?

Problem.

For a function f and final time n, minimize variance in computing $\mathbb{E}(f(X_n))$.

- *n* can be large (stationary regime) Or small (transient regime)
- Important case: f is large in regions of low probability for X_n

Problem.

For a function f and final time n, minimize variance in computing $\mathbb{E}(f(X_n))$.

• Example: (X_p) is a time discretization of MD, modified so that when it reaches a product set P it immediately goes back to a reactant set R.

If f=1 on P and 0 elsewhere, and Δt is the time step, then (Hill relation)

MFPT from R to $P \approx$

$$\underbrace{\frac{\Delta t}{\mathbb{E}(f(X_n))}}_{n \text{ large}}$$

イロト イポト イヨト イヨト

small denominator \implies variance reduction important!

Selection value function

Problem.

For a function f and final time n, minimize variance in computing $\mathbb{E}(f(X_n))$.

- Basic idea: we want more replicas in important regions of state space
- Fundamental question: what regions are important, and at which times?

Selection value function.

Let $v_p(x)$ = value of selecting a replica at x (a point in state space) at time $0 \le p \le n$.

We will use v_p to decide how to make selections at time p.

The selection value v_p is derived using Doob decomposition:

$$Var(f(X_n)) = Var(initial condition) + \sum_{p=0}^{n-1} \underbrace{Var(selection and mutation at step p)}_{v_p \text{ is obtained by minimizing this, subject to the constraint: target #of replicas = N}.$$

Explicit formula:

$$v_p(x)^2 = \underbrace{\operatorname{Var}^x(g_{p+1}(X_1))}$$

where $g_p(x) = \mathbb{E}^x(f(X_{n-p})).$

<ロ> (日) (日) (日) (日) (日)

variance associated to starting a replica at point x at time p

Important simplification: v_p obtained by minimizing only the *p*th term in variance.

The selection value v_p is derived using Doob decomposition:

 $Var(f(X_n)) = Var(initial condition)$

$$+\sum_{p=0}^{n-1} \underbrace{\operatorname{Var}(\text{selection and mutation at step } p)}_{v_p \text{ is obtained by minimizing this, subject to the constraint: target $\#$ of replicas = N}$$

Explicit formula:

$$v_p(x)^2 =$$
 Var^x(g_{p+1}(X₁))

variance associated to starting a replica at point x at time p

where
$$g_p(x) = \mathbb{E}^x(f(X_{n-p})).$$

・ロン ・四 と ・ ヨ と ・ ヨ と

(Mathematical sketch: Let $M_p = \mathbb{E}^{\eta_p}(f(X_{n-p}))$ where $\eta_p = \sum_{j=1}^M \omega^j \delta_{\xi^j}$ with ξ^1, \ldots, ξ^M and $\omega^1, \ldots, \omega^M$ the points/weights at time p. Then we get v_p by minimizing $\mathbb{E}\left[(M_{p+1} - M_p)^2 | \mathcal{F}_p\right]$ subject to the constraint that the expected total # of children = N. Here \mathcal{F}_p = information from the WE process up to time p.)

Optimal strategy.

Suppose ξ^1, \ldots, ξ^M are the replicas at time *p*, with weights $\omega^1, \ldots, \omega^M$. Then

Target # of children of
$$\xi^j := \frac{N v_p(\xi^j) \omega^j}{\sum_{j=1}^M v_p(\xi^j) \omega^j}$$
 (1)

where N =target total # of replicas.

If the RHS of (1) is noninteger, the # of children of ξ^j is random with mean the target number, and minimal variance. (So if the target # = t, then # of children is $\lfloor t \rfloor$ or $\lceil t \rceil$).

Understanding the optimal strategy

Let X and Y be random variables and $\alpha, \beta > 0$. Suppose we want to estimate $\mathbb{E}[\alpha X + \beta Y]$ with N total samples of X and Y and minimal variance.

Let X_1, \ldots, X_R and Y_1, \ldots, Y_S be the (independent) samples of X and Y, with R + S = N. To minimize variance, we want to choose R and S that minimize

$$\operatorname{Var}\left(\frac{\alpha}{R}\sum_{k=1}^{R}X_{k}+\frac{\beta}{S}\sum_{k=1}^{S}Y_{k}\right)=\frac{\operatorname{Var}(X)\alpha^{2}}{R}+\frac{\operatorname{Var}(Y)\beta^{2}}{S}$$

A Lagrange multiplier calculation shows

$$R = \frac{N\operatorname{Std}(X)\alpha}{\operatorname{Std}(X)\alpha + \operatorname{Std}(Y)\beta}, \qquad S = \frac{N\operatorname{Std}(Y)\beta}{\operatorname{Std}(X)\alpha + \operatorname{Std}(Y)\beta}.$$

Comparison with standard nonlinear filtering/SMC

Toy model: $X_{p+1} = X_p + \xi_p$, where the ξ_p are iid standard Gaussians Problem: Minimize variance in computing $\mathbb{P}(X_n > a)$ when a = n = 20

At time p, let ξ^1, \ldots, ξ^M be the replicas, w/ weights $\omega^1, \ldots, \omega^M$ and parents $\hat{\xi}^1, \ldots, \hat{\xi}^M$.

WE:

• Target # of children of ξ^j

$$= p_j := \frac{N v_p(\xi^j) \omega^j}{\sum_{j=1}^M v_p(\xi^j) \omega^j}$$

children of ξ^j is Bernoulli in $\{\lfloor p_j \rfloor, \lceil p_j \rceil\}$

 v_p minimizes pth term of Doob decomposition of finite N variance SMC:

• Target # of children of ξ^j

$$= q_j := \frac{NG(\xi^j, \hat{\xi}^j)}{\sum_{j=1}^M G(\xi^j, \hat{\xi}^j)}$$

of children is $Multinomial(N, q_1, \ldots, q_M)$

 G(x, y) = e^{α(x-y)} is ansatz function, α optimized using N → ∞ variance

Figure: Estimate of $\mathbb{P}(X_n > a)$ using WE and SMC. (10⁴ trials for each value of N.)

・ロト ・回ト ・ヨト ・ヨ

Understanding the selection value function

Figure: Consider (X_p) a time discretization of overdamped Langevin dynamics (with the pictured potential and added source/sink). Let f = 1 on P and 0 otherwise.

Evolution of $v_p(x)$, $p = 300, \ldots, 500$, for (X_p) with n = 500 (click for animation):

イロン イロン イヨン イヨン

Evolution of $v_p(x)$, $p = 460, \ldots, 500$, for (X_p) with n = 500 (click for animation):

イロン イロン イヨン イヨン

Features of v_p

- When $p \ll n$, v_p is nearly constant.
- When $p \approx n$, v_p is large in regions important for computing f.
- When 0 ≪ p < n, v_p has large values in regions of "high variance" (these regions depend on p and are usually regions around energy/entropy barriers).
- As $p \rightarrow n$, the selection "pushes" sampling towards relevant regions.

・ロト ・回ト ・ヨト ・ヨト

Estimating v_p with a coarse model

No free lunch.

In problems of interest v_p is not exactly computable. We propose estimating v_p with a MSM, and then tailoring the resampling strategy to the same MSM...

- The basic idea is to use a MSM to guide sampling in an (almost) optimal way.
- Note: sampling is always unbiased, no matter what the choice of MSM is!
- However, useful variance reduction may not be obtained with a bad MSM.

Estimating v_p with a coarse model

No free lunch.

In problems of interest v_p is not exactly computable. We propose estimating v_p with a MSM, and then tailoring the resampling strategy to the same MSM.

- A MSM isn't essential: any sufficiently good cheap/coarse model will do.
- We only assume we have a MSM for definiteness/simplicity.

Approxiate selection value function.

Use a MSM on states r = 1, ..., R to approximate v_p . More precisely set

$$\hat{v}_p(r)=\sqrt{ ext{rth entry of }P(P^{n-p-1}u)^2-(P^{n-p}u)^2}$$

where $P_{rs} \approx \mathbb{P}(X_1 \text{ in state } s | X_0 \text{ in state } r)$, and $u(r) \approx f|_{\text{state } r}$ (and entrywise squaring).

If the MSM is good, then we can expect $\hat{v}_p(r) \approx v_p(x)$ for x in state r.

Adapting resampling strategy to the MSM

Sampling assumption: all children in the same state have equal weight:

Sampling tailored to MSM.

Suppose that at time p, a replica ξ^j with weight ω^j is in state r. Then we define

$$ext{ Farget } \# ext{ of children of } \xi^j = extsf{N}_{ extsf{p}}(r) rac{\omega^j}{\omega(r)},$$

with $N_p(r) =$ target # of replicas in state r, $\omega(r) =$ total weight in state r. Thus

weight of children of
$$\xi^j = \frac{\omega(r)}{N_p(r)}$$
.

The last formula above is obtained using assumption (weight of child) = (weight of parent)/ $\mathbb{E}(\# \text{ of children})$

MSM-guided replica allocation

Replica allocation function.

If N = target total # of replicas, and $0 < \tilde{N} < N/R$, set

$$N_{\rho}(r) = \underbrace{(N - \tilde{N}R) rac{\hat{v}_{\rho}(r)\omega(r)}{\sum_{r=1}^{R} \hat{v}_{\rho}(r)\omega(r)} + \tilde{N}}_{r=1}$$
 .

target number of replicas in state r at time p

The \tilde{N} ensures positive survival probability. (Compare with equation (1))

This is now a *practical* strategy for allocating replicas in state space.

Example.

Computing $\mathbb{E}(f(X_n))$ when *n* is large (stationary regime):

- Using the MSM, we may start at p = 0 "close" to the stationary regime
- Then pick a time *n* for relaxation to stationarity (hard to do in general)
- The MSM may also be used to optimize replica allocation in the relaxation.

Toy problem: discrete energy landscape mimicking a potential $V(x) = \sin\left(\frac{6\pi x}{90}\right)$.

Figure: Distribution of replicas at final time n = 30 for different strategies.

Toy problem: discrete energy landscape mimicking a potential $V(x) = \sin\left(\frac{6\pi x}{90}\right)$.

Figure: Estimation of $\mathbb{E}(f(X_n))$ for various relaxation times, and sample variance.

Toy problem: discrete energy landscape mimicking a potential $V(x) = \sin\left(\frac{6\pi x}{q_0}\right)$.

Figure: $\hat{v}_{p}(r)$ at the initial and penultimate times. (30 equally sized states define the MSM.)

Practical questions for future work:

- How good does the MSM have to be for a useful variance reduction?
- How much gain can we get in "real" problems (e.g. estimating MFPTs)?

Theoretical questions for future work:

- How does the sequential optimal strategy compare to a globally optimal one?
- What is the asymptotic variance for the sequentially optimal strategy?
- How does this compare to SMC/Gibbs-Boltzmann based selection?

Thanks to M. Rousset, D. Zuckerman, T. Lelièvre, P. Plecháč, , G. Simpson, and T. Wang for enlightening discussions.

・ロト ・回ト ・ヨト ・ヨト