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Materials Engineering: A narrow introduction

‘ Examples of “Aluminum” ‘

Application [N

. Conductivity Low cost Castable 229
Properties Shapeable Strong

Alloy Al + Mg Al + Mg,Mn Al +Si,Cu 277

How do we tailor materials for new technologies?

Key

How can we do this quickly?



Computational Materials Engineering
.41

Goal: Accelerate design of materials
Method: Replace experiments with computers

Many Established Tools:

- Density Functional Theory
- Phase Field
- Finite Element Analysis

- Computational Thermodynamics

Emerging Field: Data-driven Models

Predictive
. Machine Learning oy = [ (x) Model

FEA Image: http://www.icams.de/content/research/index.html

Materials
Data




ML + Materials = “Materials Informatics”
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Materials Informatics Workflow
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Materials Informatics Challenges

I 2
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Question: How to simplify
using ML in MISE?

Need: High-quality data ‘

Part 1: Automated Crystal Part 2: General-Purpose
Structure Solution Representations for Materials

Part 3: Design of New Materials




- Part 1: Automated Structure Solution

Acknowledgements: Kyle Michel



Why is this important?

9 |
One Reason: High-Throughput DFT

‘Automated calculation of properties ‘

Input:

fid] mEEEp o Ay
Structures @
of known

mvwf ‘
mVAHf

Output:
Large collection
of materials data

materials




Why is this important?

One Reason: High-Throughput DFT
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Any HT search is limited by the availability
of high-quality crystallographic data!

Problem: Structures unknown for many materials



Crystal Structure Databases

FIZ Karlsruhe

©1csp

Inorganic Crystal Powder Diffraction File
Structure Database

)" .
by (DL

- ’ >
e INTERNATIONAL CENTRE FOR DIFFRACTION DaTA

Collection of the crystal Database of Powder X-Ray
structures of compounds Diffraction patterns
Total entries: 148818 Total entries: 384613

Missing atoms: 13705 (~¥9%)! Without structure: 113164

103 — 10° of materials not included in HT DFT Databases!

Proposed Solution: Solve them with FPASS




First-Principles-Assisted Structure Solution

- Peak
Indexing

20

What is FPASS?

Pm3m

Structure
Solution

Simple: Single-step method to solve structure

Accurate: Uses both energy and diffraction pattern match

Fast: Constrains search with known symmetry

Problem: We had not used FPASS for new solutions
- Can we trust it in an automated scheme?

- Can we automate it?

Meredig and Wolverton. Nature Materials. (2013)




FPASS Uses a Genetic Algorithm

Start End
. No
. Create Initial
Su m Of tWO ran kS . Population
Evaluate Has Best Structure | yeag
- Pattern match Performance Changed in N
of Candidates Generations?
- DFT energy
Assemble New Collect the Best
Generation Candidates
Combine
Repealt to Randomly Alter Candidates to Randomly
Create New - - Select Two |
. Structure Form New .
Generation Candidates
Structure
Mutation Crossover Selection

8a 8b 8a 8b
- -

‘ By maintaining Wyckoff sites, we preserve symmetry




Solving Na,Pb, Structures

| Our starting point: Abstract from 1957 l

Phase Ideal formula Space group @y (A) ¢y (A) Pb atom positions
I Na,Pb,( ?) R3m 5-54 23:15 6 (c): 0,0,z; ...; z=0-07
IT NayPb, P6,/mme 5:47% 3041 4 (e): 0,0,2z; ...; 2= 005
+ (f): bz .. 2=030
I Na ,Pb, P6y/mime 551 40-39 2 (&): 0,0,%;0,0,%
4 (f): L %,2; ...; z=005
4 (f): 3, %,2; ...; z=013

‘ Only missing feature: Na positions f“di"ﬂting a true cell with ag = J3.a, ¢} = ¢,

@ o
’egﬁ .
; 9 e, o . T
'Qr/ Na positions with FPASS
o |.©
o? P < 151
°7] 5° New structure improve %2'0 N
0: o . 0 20 40 60 80 100
0% computed Na-Pb diagram Pb (at%)
. o0
P | Computed T=0K Phase Diagram

Ward, Michel, Wolverton. Acta Crystal. A17 (2015), 542




Can we trust automated FPASS?

Test Cases: Strukturbericht
Common structures
~100 compounds

Variety symmetries, Hexagonal
compositions, sizes

Tetragonal Cubic

Orthorhombic
onoclinic

Can we solve them? 18
L>J.‘15—
70 . . . c 12}
_ 6o %’_ ol
50t 6
2 WEY g e
> 30t 0 B I T 1
CILJ 20} 0 10 20 30 40 50 60
Y- 10} Number of Atoms
0

0 20 40 60 80 100
Success Rate (%)



New Solutions

Ward, Michel, Wolverton, in review



Summary
184

Goal: Reduce the number of unsolved compounds

Method: First-Principles-Assisted Structure Solution
1. Created automated implementation

2. Validated against ~100 structures

—0.05¢

3. Solved 13 crystal structures =

—-0.15¢

AH; (eV/atom

—0.20

0 20 40 60 80 100

Result: Improved accuracy of HT-databases Pb (at%)

Ward, Michel, Wolverton. Physical Review Materials, in review




Part 2: General-Purpose ML

Methods for Materials



Materials Informatics Workflow

N\
> Represent

How can one create problem-independent representations?




What is a representation?

Set of quantitative attributes that describe a material

Property = f(Attributes)
7

LIF NaPb Na,O Representation of material

j | / Ex: Attributes = g(xy, Xge, --.)
—t—— ——0—> 1y,

What does a representation need?
— —!—0—0—> |AX| Completeness: Differentiate materials
/‘ ] ] Efficiency: Quick to compute
Accuracy: Capture important effects

NaPb  Na,O LiF Diversity: Many possible properties

How do we create “general-purpose” representations?



Variety of Types of Materials Data

‘ How to differentiate materials? ‘

Zr Al,Zr .
Available Phase - Crystal -
Information A Diagram e/ Structure
Glass-
Example Dilute # .
: : F
Properties AH,,;y Eutectics Z[)?Iqiltl;g AHf Oy

Need: A suite of general-purpose representations




Focus #1: Composition

Property = f (Composition)

Property Attributes | Reference ____

Crystal Structure VE, AX, n, An, 13 Kong et al., 2012

Band Gap AX,Z, T.,R, n, Srinivasan & Rajan, 2013

Formation Energy AX, Z, ng 51416 TOW, col Meredig et al., 2014

Melting Point Z,mn,rev X .. Seko et al., 2014

AHg: Rocksalt — Wurtzsite IP, EA, r,, T Ghiringhelli et al., 2015
Observations:

e Different properties, different attributes
* All based on elemental property statistics
Our Strategy: Create set that includes all of these and more



General-Use Attributes
24 b

Elemental Property Stats.: Mean T, Range Z, ...

6 Statistics: Mean, variance, max, min, range, mode
22 Elemental Properties: Z, EN, Row, Column, Radius, ...

Stoichiometric: # Components, ||xz||,
Electronic Structure Based: Fraction p Electrons, ...

lonicity: Can form lonic, % lonic Character, ...

Ref: Ward et al. npj Comp. Mat., (2016) 28




Simple Example: Is it a Metal?

25 |
Task: Given composition, E;, > 07?
Training Set Dataset: 3000 entries from the OQMD

Simple ML Model: Accuracy 84.1%
100 . . , > 86
80} 1

€5

lonic
Compound?
Y No
Average Qﬂnm etal (EB%D‘/ es \{ Metal (84%) )

Game: palestrina.northwestern.edu/metal-detection/

<

00 | No Metal (92

40 |

Accuracy (%)

20

0

User Me  Model




Application to the OQMD

Dataset: 240000 DFT Calculations (OQMD.org)

ML (eV)

5-4-3-2-10 1 2 01 2 3 45 6 7 8 20 40 60 80 100

DFT (eV/atom) DFT (eV) DFT (A° /atom)
R: 0.944 R: 0.924 R: 0.993
MAE: 80.5 meV/atom MAE: 0.21 eV MAE: 0.452 A3/atom

Ref: Ward et al. npj Comp. Mat., (2016) 28




Predicting Glass Forming Ability

Iy 2

Application: Metallic Glasses L%l;l&%}-m

Phase Diagrams and

Goal: Predict glass-forming ability KJ:’.ZLE.’.‘.’.;’:{.‘,:SS

Alloys

(,cmdnscd

Dataset: Landolt-Bornstein

1 6836 experimental measurements
o 295 ternary systems

o Binary property: [Can Form Glass] | [Cannot Form]

Model: Random Forest
o 90% accurate in 10-fold cross-validation

Ref: Ward et al. npj Comp. Mat., (2016) 28




Predicting Glass-Forming Ability
281
Test: Remove Al-Ni-Zr data from training data, try to predict

Ni Ni 1.0

X No glass
e Glass

0.9

40.6
‘9000 - . 10.5
o000 0 o® RN P
o006 g% xex x x '
Zr Al —0.0

Same representation, very different material.

Ref: Ward et al. npj Comp. Mat., (2016) 28




Focus #2: Crystal Structure
-2 4

Our Approach:

Voronoi-tessellation-based
attributes

Atomic Characteristics:

1. Element identity

2. Coordination number
5. Bond length

4. Cell size

Atomic Characteristics + Descriptive Statistics = 275 Attributes

Ref: Ward et al. PRB. (2017) 024104



Learning Rate Comparison

30 0
Dataset: 32k DFT AHf from the OQMD

Test: Remove 1000, train on N remaining
PRDF
Coulomb Matrix

This Work

MAE (meV/atom)

Chemical Accuracy (1 kcal/mol)
Cross-validation is great, but does not model real use

10

100 100 '”162 | | '”163 T 164 108
Training Set Size
CM: Faber et al. Int J Quantum Chemisty. 2015; PRDF: Schutt et al. PRB. (2014)




Application: The Prototype Search

Common Method: Prototype Search
1. Select a crystal structure

>, Evaluate all possibilities with DFT

3. Select only stable ones %
Challenge: Computational cost
Possible Solution: Guide with ML

Ref: Ward et al. PRB. (2017) 024104



Ranking Candidate Materials

Training Set: 32k entries from OQMD

Test: Select top 100 entries from test set
100

B This Work HEE PRDF EEEH CM

o
o

o))
o

N
o

Number Found

N
o

lImenite L1 B2

Ranks entries better than existing methods,
good choice for accelerating combinatorial searches




Future Steps: Open Benchmarks

Challenge: Which method is best for a certain dataset?

Our proposal: Develop a set of benchmark challenges Jiming Chen
(UIUC)

Approach: Host data, models using MDF and WholeTale

Current Progress: Compared several composition-based models

Methods

Ward Deml Meredig delong
2016 2016 2014 2016

Full
m WholeTale.org 0QMD 0.161 0.180 0.214 0.187

2
\ " 4 5 Deml
C
g 2016 0.170 0.160 0.144 0.176
MATERIALS Meredig
DATA 2014 0.072 0.140 0.087 0.091

FACILITY



Summary
-394

Collect m Represent

Composition-Based Attributes Crystal Structure Attributes

Nl 1.0 100

\- This Work EEEE PRDF CM‘

o

~l
Number Found
ey o o]
(] o (o]

N
(=]

0 :
IImenite L1, B2
Prototype

How do I use this to

find a new material?

5
-5-4-3-2-10 1 2

DFT (eV/atom)



- Part 3: Using ML To Find Materials

Acknowledgments:
Liguidmetal: S. O’Keeffe, J. Stevik, G. Jelbert
NU: M. Aykol, K. Kim, J. He



Example Design Problems
364

Designhing Metallic Glasses Alloys
1. Optimizing commercial alloys
2. Locating new glasses with sputtering

Discovering Quaternary Heuslers



Application: Bulk Metallic Glasses

Metals with Amorphous Structures
? o)

v
2% No Dislocations -> High oy /
Glass Transition -> Net Shape Casting :

- >
- No Grain Boundaries -> Low Hysteresis T

Applications: Surgical tools, flight control surfaces, ...

Source: liquidmetal.com .7

i/
Source: Wikipedia.org



Problems with BMGs

38 |
Main Problem: Metastability of glassy phase

Few Alloy Systems Known to Form Glasses
<2% possible ternaries in Landolt-Bérnstein handbook
Small Critical Casting Thicknesses

Dmax

Typical thickness < 10 mm
Small Time/Temperature Processing Window

AT,

BMGs may crystallize during processing

Design Issue: Lack of Composition -> Properties Links
Our Proposed Solution: Data analytics
Goal: Optimize D, 4, and AT,




Materials Informatics Workflow

Total (71 BMG X f(CompOSlthn)

ATE

“General Purpose” Attributes
+ Cluster Packing Models

m + DFT AHf from OQMD
m 6315 entries m Random Forest

>916 entries PP Random Forest +
Additive Regression
- 621 entries AT, &




Task #1: Tuning Known Alloys

110 — . ,
100 |LM105-Optl: Zrss o Tiz ¢Cuas oNiz 5Ali2 5
90 | LM105-Opt2: Zr7.¢Tis ¢Cugs 5Nijy 5Aly5.0
of el

S eof " /LM105-Opt3: Zryr o Tiz. 0 Ctizg o Nirs 0ALn o
s0f |[LM601: Zrs; ¢Cuse.oNiso. 0Alg. o : \
a0} / LM105-Opt4: Zrgo o Tis 0Cuiz. 5Niyg.0Alr 5
.l LM105: Zl“52.5Ti5.oCu17.9Ni14.6A110.0
20 ‘ ' ' '

0 2 4 6 8 10 12 14 16 18



Tuned Alloys: Pareto Analysis

Predicted alloys have superior properties
120 . —y ' '

I—

® LM105
B LM60l

SLCT (mm)

Results: Improved design space



Task #2: Discovering New Alloys
64249

Search Space: Ternary alloys of 53 elements

26 million ternary alloys

945k alloys: L, distance > 30at%

290k alloys: P(Glass) > 95%
57k alloys: AT, > 66 K

‘38k alloys: D g > 1 mm ‘

Run Time: ~ 2 days



Chosen System: Cu-Hf-[ Mg, Ti]

max 64 K
Cusg gHfgs 5Ti14.5
3.0
48
120 132
11.0 116
Ti Cu — 0.0 — 0
D i
max 6.4 mm
Cuss s Hfg7 sMga7 o Cuys s Hfs6 0Mgi0.5 64 K
4.8
48
13.2 "
4132
41.6 : 16

Mg Cu =00 Mg cu 0



Cu-Hf-[Ti/Mg]: Current results

«— A mm —

Sample crystallized and/or shattered
during injection molding

- CugHf,Tiyc could be formed with
copper mold casting*

Mg ignited during arc melting

Lessons Learned:
* Integrate data from target process
* Screen based on processing technique

*Inoue et al. Acta Mat. (2001), 2645



Example #2: Finding New Glasses
_45 |

Goal: Find new sputtering glasses

Step 1: Include processing information

Co Co Ding, et al. Nat. Mat. (2014)
' 1.0

o o
(o0] (o)
= True)

o
~
Likelihood (GFA

Tune for

Sputtering

=
o

o
U

Zr o0 0.25 0.5 0.75 0.25 0.5 0.75 10 V

Log-loss: 2.068 | | Log-loss: 1.750

Step 2: Scan 2.4M alloys (~5 min) -> Selected Co-V-Zr



Comparison to Experiment

o o =
(00] O o
= True)

o
~
Likelihood (GFA

=
o

o

Zr oo 0.25 0.5 0.75 10 V

Log-loss: 1.750

Decent agreement. ML model “Zr-lean”, but close enough for success




Repeat, with Improved Model

Original
Model

True)

Predictions

P(GFA

Initial Add Improved
Model Co-V-Zr Accuracy



Example #2: Finding Compounds

Goal: Find more Quaternary Heuslers (QHs)

Why quaternary Heuslers?

y 2 ) 5‘“‘ v o 3 2
He et al. PRL. (2016), 046602 Jung et al. MMTA. (2003), 1221
...50 a 4" degree of freedom could be better?

Problem: ~3M possible combinations
Solution: Guide search with ML

Ref: Kim et al., in preparation



Materials Informatics Workflow

Input: Crystal structure o0
% Random Forest

Output: Stability
Training Data: OQMD Voronoi-Tessellation

OQI\/|D @
AH; Method

Entries: 410981

96160 QHs 275 attributes




Step 1: Select Training Set, Validate

-5s0f
Training data: All data available, or only similar materials?

Small amount of QHs available:

Select as much data as possible QH (90K)
== TH (180K)+ QH -

= = 0QMD (230K) + TH + QH
g ‘ More QH data: All equivalent
Q
— 0.10 i
<
= 0.05 |
0.00 : ' '
2 3 4 5
10 10 10 10

Number of QH compounds

Bottom Line: Training on all available data is advantageous




Step 2: Find New Heuslers

= 3,000,000
Quaternary Heusler
compounds (QHs)

Machine-Learning

ML success rate:
55 /909 (6%)

2,278
. . Predicted to be Nearly Alrea:léml-::mown
Original search: Stable y

353 / 96189 (0.3%) l

[ ]

‘ ML search >10x faster than original search ‘

-

55 909 (303 compositions)
New, stable QHs. Contain no Rare Earths




Summary

Automated Crystal Structure Solution

v Validated FPASS method, created automatic framework
v" Solved 13 crystal structures

General-Purpose Representations
Using Composition: DFT AHg, Eg, V; Glass-forming ability
Using Crystal Structure: 2x better than existing approaches

Example applications:
Improved AT, of 2 commercial BMGs alloys
Discovered many new metallic glasses
Found dozens of new quaternary Heuslers

Open Source Software: Magpie, Matminer
http://bitbucket.org/wolverton/magpie
http://github.com/hackingmaterials/matminer



http://bitbucket.org/wolverton/magpie
http://github.com/hackingmaterials/matminer
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