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Materials Engineering: A narrow introduction
3

Conductivity
Low cost
Shapeable 

Castable
Strong

Alloy Al + Mg Al + Mg,Mn Al + Si,Cu

How do we tailor materials for new technologies?

Application 

Key
Properties 

???

???

Examples of “Aluminum”

How can we do this quickly?



Computational Materials Engineering

FEA Image: http://www.icams.de/content/research/index.html
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Goal: Accelerate design of materials

Method: Replace experiments with computers

Many Established Tools:

• Density Functional Theory

• Phase Field 

• Finite Element Analysis

• Computational Thermodynamics

Emerging Field: Data-driven Models

Machine Learning 𝜎𝑌 = 𝑓(𝑥)
Materials 

Data
Predictive

Model



Meredig et al. PRB (2014), 094104 Ghiringhelli et al. PRL (2015), 105503

Chatterjee et al. MS&T (2007), 819

Retained γ

Seko et al. PRB (2014), 054303 Srinivasan, Rajan. Materials (2013), 279

Crystal Structure

Fischer et al. Nat. Mat. (2006), 641

Eg

ΔH ΔH

Tm

ML + Materials = “Materials Informatics”
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Question: How can I do this, 
but for many more properties?



Materials Informatics Workflow
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Collect Process Represent Learn

𝒁𝑨 𝒁𝑩 𝚫𝐇𝐟

3 4 -1.0

3 5 -0.5

Δ𝐻𝑓 = 𝑓 𝑍𝐴, 𝑍𝐵

Δ𝐻𝑓 = −1.0

Δ𝐻𝑓 = −0.5

Ԧ𝑋 Ԧ𝑦



Collect Process Represent Learn

Materials Informatics Challenges
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Question: How to simplify
using ML in MSE?

Part 1: Automated Crystal 
Structure Solution

Part 2: General-Purpose
Representations for Materials

Part 3: Design of New Materials

Need: High-quality data



Acknowledgements: Kyle Michel

Part 1: Automated Structure Solution8



Why is this important?
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One Reason: High-Throughput DFT

DFT

DFT

DFT

𝑉, Δ𝐻𝑓, …

𝑉, Δ𝐻𝑓, …

𝑉, Δ𝐻𝑓, …

Input:
Structures
of known
materials

Automated calculation of properties

Output:
Large collection 
of materials data



Why is this important?
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One Reason: High-Throughput DFT

Any HT search is limited by the availability 
of high-quality crystallographic data!

Problem: Structures unknown for many materials

DFT

DFT

DFT

𝑉, Δ𝐻𝑓, …

𝑉, Δ𝐻𝑓, …

𝑉, Δ𝐻𝑓, …

Input:
Structures
of known
materials

Automated calculation of properties

Output:
Large collection 
of materials data

Meredig et al. PRB (2014)

Kirklin et al. PCCP (2014)



Crystal Structure Databases

Inorganic Crystal 
Structure Database

Collection of the crystal 
structures of compounds

Total entries: 148818

Missing atoms: 13705 (~9%)!

Powder Diffraction File

Database of Powder X-Ray 
Diffraction patterns

Total entries: 384613

Without structure: 113164
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103 – 105 of materials not included in HT DFT Databases!

Proposed Solution: Solve them with FPASS



First-Principles-Assisted Structure Solution 

Meredig and Wolverton. Nature Materials. (2013)
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What is FPASS?

Simple: Single-step method to solve structure

Accurate: Uses both energy and diffraction pattern match

Fast: Constrains search with known symmetry

Problem: We had not used FPASS for new solutions
- Can we trust it in an automated scheme?

- Can we automate it?

I

2Θ

𝑃𝑚ത3𝑚

Peak 
Indexing

Structure 
Solution

FPASS



FPASS Uses a Genetic Algorithm
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8a 8b

8a 4c 4d

8a 8b

8a 8b

8a 4c

8a

4d

4c 4d

By maintaining Wyckoff sites, we preserve symmetry

Sum of two ranks:
- Pattern match
- DFT energy



Solving NaxPby Structures 

Ward, Michel, Wolverton. Acta Crystal. A17 (2015), 542
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Our starting point: Abstract from 1957

Found lowest 𝐸
Na positions with FPASS

Only missing feature: Na positions

New structure improve 
computed Na-Pb diagram

Computed T=0K Phase Diagram

Can we automate this?



Can we trust automated FPASS?

Test Cases: Strukturbericht
• Common structures
• ~100 compounds
• Variety symmetries, 

compositions, sizes

Can we solve them? 
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Yes!



New Solutions

Ward, Michel, Wolverton, in review
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Ba2CdTeO6 CaCoSO Al3CePt Ke(FeSe)2

LiSbO3 NaTm(MoO4)2 Sr2TaZnO6 Tb2O2CN2 Al3FeGe2Y3

Pb2ZnTeO6

And there are more on the way!



Summary

Ward, Michel, Wolverton. Physical Review Materials, in review
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Goal: Reduce the number of unsolved compounds 

Method: First-Principles-Assisted Structure Solution

1. Created automated implementation

2. Validated against ~100 structures

3. Solved 13 crystal structures

Result: Improved accuracy of HT-databases



Part 2: General-Purpose ML 
Methods for Materials

19



Materials Informatics Workflow
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Collect Process Represent Learn

𝒁𝑨 𝒁𝑩 𝚫𝐇𝐟

3 4 -1.0

3 5 -0.5

Δ𝐻𝑓 = 𝑓 𝑍𝐴, 𝑍𝐵

Δ𝐻𝑓 = −1.0

Δ𝐻𝑓 = −0.5

Ԧ𝑋 Ԧ𝑦

How can one create problem-independent representations?



What is a representation?
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𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 = 𝒇 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠

Representation of material
Ex: Attributes = g(𝑥𝐻 , 𝑥𝐻𝑒 , …)

What does a representation need?
Completeness: Differentiate materials
Efficiency: Quick to compute
Accuracy: Capture important effects
Diversity: Many possible properties

|ΔΧ|

NaPb

LiF

LiF

Set of quantitative attributes that describe a material

𝑥Na

NaPb

Na2O

Na2O

How do we create “general-purpose” representations?



Variety of Types of Materials Data
22

Available
Information

Element
Phase

Diagram
Composition

Crystal 
Structure

μ-
Structure

Example
Properties

Dilute
Δ𝐻𝑚𝑖𝑥

# 
Eutectics

Glass-
Forming 
Ability

Δ𝐻𝑓 𝜎𝑌

Zr Al,Zr Al4Zr Al

Zr

How to differentiate materials?

Fe

Need: A suite of general-purpose representations



Focus #1: Composition
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Property = 𝑓 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

Property Attributes Reference

Crystal Structure VE, ΔX, nav, Δnws
1/3 Kong et al., 2012

Band Gap ΔX, Z, Tm, R, nav Srinivasan & Rajan, 2013

Formation Energy ΔX, Z, ns|p|d|f, row, col Meredig et al., 2014

Melting Point Z, m, n, rcov, I, X, … Seko et al., 2014

Δ𝐻𝑓: Rocksalt – Wurtzsite IP, EA, rs, rp, … Ghiringhelli et al., 2015

Observations: 
• Different properties, different attributes
• All based on elemental property statistics
Our Strategy: Create set that includes all of these and more



General-Use Attributes

Ref: Ward et al. npj Comp. Mat., (2016) 28
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Elemental Property Stats.: Mean Tm, Range Z, …
6 Statistics: Mean, variance, max, min, range, mode

22 Elemental Properties: Z, EN, Row, Column, Radius, …

Stoichiometric: # Components, 𝑥𝑍 𝑝

Electronic Structure Based: Fraction p Electrons, …

Ionicity: Can form Ionic, % Ionic Character, …



Simple Example: Is it a Metal?

Game: palestrina.northwestern.edu/metal-detection/
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Task: Given composition, 𝐸𝑔 > 0?

Training Set Dataset: 3000 entries from the OQMD

Simple ML Model: Accuracy 84.1%



Application to the OQMD

Ref: Ward et al. npj Comp. Mat., (2016) 28
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Eg𝚫𝐇𝐟 V

Dataset: 240000 DFT Calculations (OQMD.org)

R: 0.993
MAE: 0.452 Å3/atom

R: 0.924
MAE: 0.21 eV

R: 0.944
MAE: 80.5 meV/atom



Predicting Glass Forming Ability

Ref: Ward et al. npj Comp. Mat., (2016) 28
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Application: Metallic Glasses

Goal: Predict glass-forming ability

Dataset: Landolt-Börnstein
 6836 experimental measurements

 295 ternary systems

 Binary property: [Can Form Glass] | [Cannot Form]

Model: Random Forest
 90% accurate in 10-fold cross-validation



Predicting Glass-Forming Ability
28

Ref: Ward et al. npj Comp. Mat., (2016) 28

Measured Predicted

Same representation, very different material.

Test: Remove Al-Ni-Zr data from training data, try to predict

X No glass
● Glass



Focus #2: Crystal Structure

Ref: Ward et al. PRB. (2017) 024104
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Our Approach: 

Voronoi-tessellation-based 
attributes

Atomic Characteristics:

1. Element identity

2. Coordination number

3. Bond length

4. Cell size

…

Atomic Characteristics + Descriptive Statistics = 275 Attributes 



Learning Rate Comparison
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Dataset: 32k DFT Δ𝐻𝑓 from the OQMD

Test: Remove 1000, train on N remaining

CM: Faber et al. Int J Quantum Chemisty. 2015; PRDF: Schutt et al. PRB. (2014)

Cross-validation is great, but does not model real use



Application: The Prototype Search

Ref: Ward et al. PRB. (2017) 024104
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Common Method: Prototype Search

1. Select a crystal structure

2. Evaluate all possibilities with DFT

3. Select only stable ones

Challenge: Computational cost

Possible Solution: Guide with ML
DFT



Ranking Candidate Materials

Ref: Ward et al. PRB. (2017) 024104
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Training Set: 32k entries from OQMD

Test: Select top 100 entries from test set

Ranks entries better than existing methods,
good choice for accelerating combinatorial searches



Future Steps: Open Benchmarks
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Challenge: Which method is best for a certain dataset?

Our proposal: Develop a set of benchmark challenges

Approach: Host data, models using MDF and WholeTale

Current Progress: Compared several composition-based models

Ward 
2016

Deml 
2016

Meredig 
2014

deJong
2016

Full 
OQMD

0.161 0.180 0.214 0.187

Deml 
2016

0.170 0.160 0.144 0.176

Meredig 
2014

0.072 0.140 0.087 0.091

Methods

Jiming Chen 

(UIUC)

D
at

as
e

tsWholeTale.org



Summary
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Collect Process Represent Learn

Composition-Based Attributes Crystal Structure Attributes

How do I use this to 
find a new material?



Acknowledgments: 

Liquidmetal: S. O’Keeffe, J. Stevik, G. Jelbert

NU: M. Aykol, K. Kim, J. He

Part 3: Using ML To Find Materials35



Example Design Problems
36

Designing Metallic Glasses Alloys

1. Optimizing commercial alloys

2. Locating new glasses with sputtering

Discovering Quaternary Heuslers



Application: Bulk Metallic Glasses
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Metals with Amorphous Structures

No Dislocations -> High 𝜎𝑌

Glass Transition -> Net Shape Casting

No Grain Boundaries -> Low Hysteresis

Applications: Surgical tools, flight control surfaces, …

?
V

T

Tg

Source: Wikipedia.org

Source: liquidmetal.com

What are the tradeoffs?



Problems with BMGs
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Main Problem: Metastability of glassy phase

Few Alloy Systems Known to Form Glasses

<2% possible ternaries in Landolt-Börnstein handbook

Small Critical Casting Thicknesses

Typical thickness < 10 mm

Small Time/Temperature Processing Window

BMGs may crystallize during processing

Design Issue: Lack of Composition -> Properties Links

Our Proposed Solution: Data analytics

Goal: Optimize 𝐷𝑚𝑎𝑥 and ΔTx

GFA

𝑫𝒎𝒂𝒙

𝚫𝐓𝐱



Materials Informatics Workflow
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Collect Process Represent Learn

GFA

𝑫𝒎𝒂𝒙

𝚫𝐓𝐱

6315 entries

5916 entries

621 entries

Ԧ𝑋 = 𝑓(𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)

GFA

𝑫𝒎𝒂𝒙

𝚫𝐓𝐱

Random Forest

Random Forest +
Additive Regression

“General Purpose” Attributes
+ Cluster Packing Models
+ DFT Δ𝐻𝑓 from OQMD



Task #1: Tuning Known Alloys
40



Tuned Alloys: Pareto Analysis
41

Predicted alloys have superior properties

Results: Improved design space



Task #2: Discovering New Alloys

Search Space: Ternary alloys of 53 elements

Run Time: ~ 2 days
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26 million ternary alloys

290k alloys: 𝑃(𝐺𝑙𝑎𝑠𝑠) > 95%

57k alloys: Δ𝑇𝑥 > 66 K

38k alloys: 𝐷𝑚𝑎𝑥 > 1 mm

945k alloys: 𝐿1 distance > 30at%



Chosen System: Cu-Hf-[Mg,Ti]
43

C
u

-H
f-

Ti
C

u
-H

f-
M

g



Cu-Hf-[Ti/Mg]: Current results

*Inoue et al. Acta Mat. (2001), 2645
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C
u

-H
f-

Ti
C

u
-H

f-
M

g

~4 mm

Sample crystallized and/or shattered 
during injection molding

- Cu60Hf25Ti15 could be formed with 
copper mold casting*

Mg ignited during arc melting 

Lessons Learned:
• Integrate data from target process
• Screen based on processing technique



Example #2: Finding New Glasses
45

Goal: Find new sputtering glasses

Step 1: Include processing information

Step 2: Scan 2.4M alloys (~5 min) -> Selected Co-V-Zr

Tune for 
Sputtering

Ding, et al. Nat. Mat. (2014)



Comparison to Experiment
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Decent agreement. ML model “Zr-lean”, but close enough for success



Repeat, with Improved Model
47

Before Co-V-Zr After Co-V-Zr

Initial 
Model 

Add 
Co-V-Zr

Improved 
Accuracy

Original
Model

HiTp
Data

Updated
Model



Example #2: Finding Compounds
48

Goal: Find more Quaternary Heuslers (QHs)

Why quaternary Heuslers?

Ternary Heuslers have great properties,

…so a 4th degree of freedom could be better?

Problem: ~3M possible combinations

Solution: Guide search with ML

DFT
He et al. PRL. (2016), 046602 Jung et al. MMTA. (2003), 1221

Ref: Kim et al., in preparation



Materials Informatics Workflow
49

Collect Process Represent Learn

Training Data: OQMD

Entries: 410981
96160 QHs

Random Forest

Voronoi-Tessellation 
Method 

275 attributes

Input: Crystal structure
Output: Stability

Δ𝐻𝑓



Step 1: Select Training Set, Validate 
50

Training data: All data available, or only similar materials?

Small amount of QHs available:
Select as much data as possible

More QH data: All equivalent

Bottom Line: Training on all available data is advantageous



Step 2: Find New Heuslers
51

ML success rate:
55 / 909 (6%)

Original search:
353 / 96189 (0.3%)

ML search >10x faster than original search



Summary
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Automated Crystal Structure Solution
✓ Validated FPASS method, created automatic framework

✓ Solved 13 crystal structures

General-Purpose Representations
Using Composition: DFT Δ𝐻𝑓, 𝐸𝑔, 𝑉; Glass-forming ability

Using Crystal Structure: 2x better than existing approaches

Example applications:
✓ Improved Δ𝑇𝑥 of 2 commercial BMGs alloys

✓ Discovered many new metallic glasses

✓ Found dozens of new quaternary Heuslers

Open Source Software: Magpie, Matminer
http://bitbucket.org/wolverton/magpie

http://github.com/hackingmaterials/matminer

http://bitbucket.org/wolverton/magpie
http://github.com/hackingmaterials/matminer
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