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Overview
• Motivation for first-principles based statistical mechanics

• Background of classical Monte Carlo (MC) methods

– Metropolis sampling

– Wang-Landau (WL) sampling

• Limitations of the original first principles based WL sampling

• Strategies to improve and speed-up:

1. Parallelization: 
Replica-Exchange Wang-Landau sampling (REWL)

2. Improved algorithm:
Histogram-free multicanonical sampling



Motivation for first-principles based statistical mechanics
• Study finite temperature, equilibrium properties of materials from first principles

• Bridging length and time scales of computer simulations

• Goal: sample energy landscapes thoroughly to construct phase diagrams

Quantum many-body 
methods

• quantum chemistry 

methods

• quantum Monte Carlo

Powerful for 0K 
properties

Density 
Functional 

Theory (DFT)

Classical methods
(Stat. mech., 

Newtonian mech.)
• Monte Carlo

• molecular dynamics

Powerful for finite temp. 
properties

Larger length 

and time scales

More accurate,

Computationally 

more intensive

model 

Hamiltonians

empirical 

potentials

energy 

functionals

(EXC) �
ab initio 

molecular dynamics 

Can we do the 
same here for MC?
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Equilibrium statistical mechanics at a glance
Canonical ensemble:
• System with a heat bath at fixed temperature (T), number of particles (N), volume (V)

• Partition function: Canonical distribution:

• Thermodynamic observables:

– Average energy:

– Specific heat:

– Free energy:

Z(T ) = e−E/kBT

all states
∑ ≡ g(E)e−E/kBT

E
∑ P(E,T ) = 1

Z(T )
g(E)e−E/kBT



Metropolis sampling: Monte Carlo with canonical ensemble

1. Generate a new configuration

2. Calculate the change in energy, ΔE
3. Accept with probability:

4. Calculate and accumulate physical observables of interest

5. Repeat steps 1-3 until a desired number of steps have been performed

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, J. Chem. Phys. 21, 1087 (1953)

…

Energy and physical observables are accumulated to calculate the ensemble averages 

E1, M1 E2, M2 E3, M3

P(E→ E +ΔE) =min 1,e−ΔE/kBT{ }

A Markov chain that obeys canonical distribution at temperature T
(enabled by Boltzmann factor in acceptance + detailed balance)
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• Generates a canonical distribution P(E) at temperature T   (ideally)

• Known problem: critical slowing down near phase transition temperature

τ ~V 2 exp(cLd−1),   V = Ld
~V2P(E)

E

~ exp(cLd-1)

Solutions: replica exchange; generalized ensemble independent of T

L : characterizes system size

d : dimension

• Difficult to overcome energy barrier à trapped in metastable states

• Problem with sampling low temperature behavior

Critical slowing down of Metropolis sampling

Round trip time between the two peaks:



Wang-Landau sampling: MC with generalized ensemble

F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001); Phys. Rev. E 64, 056101 (2001)

• An iterative Monte Carlo method to estimate density of states in energy, g(E)

• A random walk in energy space - sampling weight modified “on-the-fly”

Histogram H(E), density of states g(E),      modification factor f

1. Initialize: H(E) = 0, g(E) = 1, f0 = e1

2. Generate a trial configuration, accept with probability:

3. Update g(E) ® g(E) * f , H(E) ® H(E) + 1
4. Repeat steps 2-3 until the histogram is “flat”; reset H(E) = 0, fi+1 = fi 

½

5. Repeat steps 2-4 until  f = ffinal ~ exp(10-8)

à Final density of states, g(E)

Physical observables are calculated for all temperatures from a single simulation
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How Wang-Landau sampling works?

Animation Courtesy: D. P. Landau

E = −J σ i
<ij>
∑ σ j

Pedagogical example:

F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001); Phys. Rev. E 64, 056101 (2001)



Wang-Landau sampling vs Metropolis algorithm

*Error bars smaller than the size of data points are not shown.

Hydrophobic-Polar model 36mer, eSH = eSP = (1/12) eHH (weakly attractive surface)

Adsorption

Hydrophobic core

formation

Flattening

Y. W. Li, T. Wüst and D. P. Landau, Comput. Phys. Commun. 182, 1896-1899 (2011); Phys. Rev. E 87, 012706 (2013)

T. Wüst, Y. W. Li and D. P. Landau, J. Stat. Phys. 144, 638 (2011) 



• Scaling limited by single “image” of the external package

• Using multiple MC walkers naïvely results in inaccurate low temperature statistics

• Bottleneck that hinders massive scaling for future machines

Problem with previous parallel Wang-Landau scheme

J. Yin and D. P. Landau, 

Comput. Phys. Commun. 183, 

1568-1573 (2012)Monte Carlo steps Energy (kJ / mol / molecule)

“time series”: footprints of walkers density of states g(E)



Serial:

Parallel:
E

g(E)

Parallel, scalable MC simulations:
(Replica-Exchange Wang-Landau sampling, REWL)

T. Vogel, Y. W. Li, T. Wüst and D. P. Landau, Phys. Rev. Lett. 110, 210603 (2013); Phys. Rev. E 90, 023302 (2014)



2.  Ordinary Wang-Landau procedure within a window

g(E)
E

g(E)
E

g(E)
E

g(E)
E

g(E)

1.  Split phase space into several smaller, overlapping windows

E

Parallel, scalable MC simulations:
(Replica-Exchange Wang-Landau sampling, REWL)

T. Vogel, Y. W. Li, T. Wüst and D. P. Landau, Phys. Rev. Lett. 110, 210603 (2013); Phys. Rev. E 90, 023302 (2014)



2.  Ordinary Wang-Landau procedure within a window

1.  Split phase space into several smaller, overlapping windows

g(E)
E

E

X

Y

Probability of exchanging configurations X and Y:

P(X↔Y ) =min 1,
gi (EX )gj (EY )
gi (EY )gj (EX )

"

#
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gi(E)

gj(E)

3.  Replica-exchange between neighboring windows at intervals

g(E)

Parallel, scalable MC simulations:
(Replica-Exchange Wang-Landau sampling, REWL)

T. Vogel, Y. W. Li, T. Wüst and D. P. Landau, Phys. Rev. Lett. 110, 210603 (2013); Phys. Rev. E 90, 023302 (2014)



Energy out of range

à no exchange

2.  Ordinary Wang-Landau procedure within a window

1.  Split phase space into several smaller, overlapping windows

3.  Replica-exchange between neighboring windows at intervals

Parallel, scalable MC simulations:
(Replica-Exchange Wang-Landau sampling, REWL)

g(E)
E

E
g(E)

E

E
g(E)

g(E)
E

g(E)

T. Vogel, Y. W. Li, T. Wüst and D. P. Landau, Phys. Rev. Lett. 110, 210603 (2013); Phys. Rev. E 90, 023302 (2014)



g(E) for HP 67mer adsorption: not accessible by serial WL sampling

Robustness in determining g(E)

h = 9

m = 1

o = 75%

N serial ~ 1011

N parallel ~ 1010

9 processors
speed up ≈ 20 !

T. Vogel, Y. W. Li, T. Wüst and D. P. Landau, Phys. Rev. Lett. 110, 210603 (2013); Phys. Rev. E 90, 023302 (2014)



Excellent strong and weak scaling
2D 10-state Potts model

8 3 5

9 7 2

1 7 10

Lipid bilayer model

300× 300

100× 100

80× 80

64× 64

32× 32

h = 717
300× 300

h = 317
200× 200

h = 77
100× 100

E = −J δσ iσ j
<ij>
∑speed up

linear speed-up

T. Vogel, Y. W. Li, T. Wüst and D. P. Landau, Phys. Rev. Lett. 110, 210603 (2013); Phys. Rev. E 90, 023302 (2014)



Applications of WL-DFT on Materials Science OWL
Study of ferroelectric phase transition
(with S. F. Yuk, V. R. Cooper et al.)

• Transition temperature TC depends on XC 

functionals and finite size effects

• Parametrize Landau-Ginsburg model with 

PBEsol and vdW-DF-C09 for a 1×1×1	
PbTiO3 unit cell

(preliminary results)

Caloric materials Consortium (CaloriCool)
(with K. Odbadrakh et al.)

• To establish DFT-based caloric materials 

discovery framework

• Calculate caloric properties and relevant 

phase transformation data

• Sample magnetic states of FeRh with 

respect to thermal lattice expansion, 

structural excitations, etc.

• Theoretical predictions from OWL will 

provide data for informatics-based data 

mining and verification against existing 

data

Work in progress…
S.F. Yuk, K.C. Pitike, S.M. Nakhmanson, M. Eisenbach, Y. W. Li and V. R. Cooper, Scientific Reports 7, 43482 (2017)
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Motivation 1: Need for alternative representations of the 
simulated density of states

• For systems with continuous observables (such as the spin systems), the 

discreteness introduced by binning causes an artificial source of error for 

histogram methods

à Is it possible to avoid binning?

• Provided some physical insights of the analytical form of the density of states 

of a system, can one obtain the coefficients directly through computer 

simulations?



Motivation 2: Need for improved Monte Carlo efficiency
From performing first-principles based statistical mechanics using LSMS

Back to basic:

Is there a systematic way to reduce computational effort to 

achieve the same results?

LSMS:
Locally Self-consistent 

Multiple Scattering, a linear 

scaling, KKR density 

functional theory (DFT) 

method

WL-LSMS:
An ORNL application 

(Gordon Bell winner 2009) 

that combines WL and 

LSMS for studying Curie T 

of iron clusters

M. Eisenbach et. al., SC’09: 

Proceedings of the Conference on High 

Performance Computing, Networking, 

Storage and Analysis, ACM (2009).

• Exploited all possible parallelization techniques

– multiple MC random walkers to scale up 

– domain decomposition by LSMS / DFT code

– GPU / accelerators for compute-intensive linear algebra

• Yet, computational cost is still unaffordable
– ab initio energy evaluation is expensive

(e.g. LSMS generates 1.5 energies/sec on full Titan @ ORNL, 

including GPUs, for 1024 iron atoms)

– reliable, one-dimensional phase space construction is also 

expensive (at least 106 – 108 MC steps)

= 1 Titan week …!



Histogram-free multicanonical sampling

1. Assume an analytical form for the density of states and the correction:

ϕi(E): a chosen basis set

The number of terms, N, and the coefficients {ci} (and hence {gi} ) are to be found iteratively

2. Initial guess: g0(E) = 1

3. Generate a series of k energies as data set D = {E1, E2, E3, …, Ek}, with acceptance probability:

4. At intervals, use D to find the correction ln c(E)

5. Update g(E) with correction c(E):                                                     . Discard D . 

6. Repeat steps 3-5 until

,      if accepted
,      otherwise  

new

old

E
E

E
ì

= í
î

• An iterative Monte Carlo method to estimate a basis expansion of the density of states, g(E)

• Determine and modify sampling weight at intervals   (multicanonical sampling)



Representing data without a histogram
• Generate k energy measurements and stored as a data set:

D = {E1, E2, E3, …, Ek},      E1 < … < Ek

• Construct cumulative distribution function, CDF:
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B. A. Berg and R. C. Harris, Comput. Phys. Commun. 179, 443-448 (2009) 
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Representing data without a histogram

• Rewrite CDF with a straight line and remainder R(E):

CDF(E)

-2 -1 1 2

0.2

0.4

0.6

0.8

1.0

50 100 150 200

-0.10

-0.05

0.05

0.10

0.15

Remainder

CDF(E) = E −Emin
Emax −Emin

+ R(E)

Remainder, R(E)

At convergence, a flat histogram is resulted

à a straight line of constant slope for the CDF



Finding correction c(E) from R(E) 
• R(E) is the deviation of the empirical CDF from the uniform distribution

(flat histogram)

• It provides a means of calculating the correction to g(E), 
i.e., the coefficients ci in ln c(E)

• Recall that:

à

• Finally, update ln g(E) à ln g(E) + ln c(E)

CDF(E) = H (E ')dE '
−∞

E
∫ CDF(E) = E −Emin

Emax −Emin
+ R(E)

H (E) = dCDF(E)
dE

=
1

Emax −Emin
+
dR(E)
dE

ln c(E)

Y. W. Li and M. Eisenbach, in Proceedings of the Platform for Advanced Scientific Computing Conference (PASC '17). Association for Computing Machinery

(ACM), New York, NY, USA, Article 10, 7 pages (2017).



Approximating remainder R(E) 

• Expand R(E) into a series of orthonormal basis set:

• The coefficients ri are then found by:

where N is some constants dependent on choice of basis set

• Start from N = 0. Perform a statistical test to obtain the probability p that the 

empirical remainder comes from R(E).

• If not, N à N+1. Repeat until p reaches a predefined value, say, 0.5.

Y. W. Li and M. Eisenbach, in Proceedings of the Platform for Advanced Scientific Computing Conference (PASC '17). Association for Computing Machinery

(ACM), New York, NY, USA, Article 10, 7 pages (2017).



Test case: numerical integration by Wang-Landau sampling[1]

• A “model” with continuous 

“phase space”

• A stringent test with exact 

answer available

Attention: 
This scheme is NOT meant to be an 

efficient numerical integration 

algorithm. For an improved version, 

see [2].

[1] Y. W. Li, T. Wüst, D. P. Landau and H. Q. Lin, Comput. Phys. Commun. 177, 524 (2007)

[2] W. Atisattapong and P. Marupanthorn, Comput. Phys. Commun., in press (2017)



Average # of terms in g(y):

29.6 � 4.3
Exact g(y):

Quality of the density of states:

• much smoother than Wang-Landau 

sampling

• still some low frequency fluctuations

This algorithm, k = 1000
Wang-Landau

1 2 3 4
y

-5.5

-5.0

-4.5

-4.0

-3.5

-3.0

ln g(y)

(comparing only a single run to show statistical noise) 

ln g(y)

y
Computational cost:

• Histogram-free MUCA:

O(105) MC steps

• Wang-Landau sampling:

O(106) MC steps A 10x speed-up!

Integration for 

Y. W. Li and M. Eisenbach, in Proceedings of the Platform for Advanced Scientific Computing Conference (PASC '17). Association for Computing Machinery

(ACM), New York, NY, USA, Article 10, 7 pages (2017).



Integration for 

“Simulation” details:

• D = {E1, E2, E3, …, Ek}, k = 1000

• Basis set to fit the remainder,         : 

Fourier sine series

• Basis set for ln g(E) and ln c(E),           : 
Fourier cosine series

• Statistical fit test:

Kolmogorov-Smirnov test, p = 0.5

(error bars are obtained from 5 independent runs)
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Y. W. Li and M. Eisenbach, in Proceedings of the Platform for Advanced Scientific Computing Conference (PASC '17). Association for Computing Machinery

(ACM), New York, NY, USA, Article 10, 7 pages (2017).



Observations
• Speed-up comes from two new features:

– (major) moving random walkers intentionally to achieve uniform sampling of energy 

space

– (minor) by assuming an analytical form for the density of states / phase space, 

the number of parameters to optimize is reduced from O(100-1000) to O(1-100)

• The >10 times reduction in MC steps is a considerable speedup for expensive 

energy evaluations, e.g. density functional theory calculations

• Generation of data points (energy evaluations) is independent of each other

à readily parallelizable

• Accuracy also depends on basis functions

– … but a good choice is not trivial!

– requires human insights / lots of experiments to select a suitable set of basis functions



Can we better control convergence?

This algorithm, k = 1000
Wang-Landau

1 2 3 4
y

-5.5

-5.0

-4.5

-4.0

-3.5

-3.0

ln g(y)

(comparing only a single run to show statistical noise) 

1. Construct remainder using random permutations 

of basis set (instead of starting from N = 0)

2. Use a milder correction factor:

(error bars are obtained from 5 independent runs)
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Can we better control convergence (quantitatively)?

Desired features:

1. a quantitative measure to tell 

whether the estimated 

analytical form is a good fit to 

the data

2. a quantitative measure to tell 

when to terminate the 

simulation

3. Increasing the number of data 

points should improve the 

answer

Solutions:

1. Before: Kolmogorov-Smirnov test

Now: Define a distance measure

to cut off the number of terms in

analytical fit

2. Kolmogorov-Smirnov test to terminate 

the simulation

3. This is automatically fulfilled when 

overfitting does not occur



Integration for                       
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“Simulation” details:

• D = {E1, E2, E3, …, Ek}, k = 10,000

• Slowly quench the accuracy by 

decreasing dk to dk / 1.5 at each 

iteration

• Statistical fit test condition to 

terminate the simulation:

Kolmogorov-Smirnov test, p = 0.5

(error bars are obtained from 5 independent runs)

Estimated I: 5.34307 � 0.01363



Integration for                       
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(error bars are obtained from 5 independent runs)

Estimated I: 5.33386 � 0.0045

“Simulation” details:

• D = {E1, E2, E3, …, Ek}, k = 100,000

• Slowly quench the accuracy by 

decreasing dk to dk / 1.5 at each 

iteration

• Statistical fit test condition to 

terminate the simulation:

Kolmogorov-Smirnov test, p = 0.5



34 Scalable and efficient multicanonical algorithms for first-principles based Monte Carlo simulations

Summary
• Large-scale Monte Carlo simulations for sampling energy space evenly

• The need to improve quality and efficiency of MC simulations motivated by first-

principles based statistical mechanics

• Two new MC algorithms proposed to address the problems of

– Scalability: Replica-exchange Wang-Landau sampling

– Efficiency: Histogram-free multicanonical sampling

• Application to real physical systems under way…

(goal: capable of obtaining results comparable to experiemental data)

• Improvements on performance and accuracy of the histogram-free multicanonical 

sampling method

Outlook
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