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HIERARCHY IN PHYSICAL SYSTEMS

study case 1

study case 2

assembling of microscopic constituents impacts mesoscopic features



Müller-Plathe, CHEMPHYSCHEM (2002), 3, 754

QM/MM

MOLECULAR DYNAMICS (MD)

RXN-DIFFUSION

Need approaches to bridge microscopic and mesoscopic regimes



(courtesy of Cecilia Clementi)

coarse-graining in structural space

BIOMOLECULES AND COARSE-GRAINING

Instead of distilling information from complex data, use data 
to make system intrinsically simpler

High dimensionality Sampling Interpretation



COARSE GRAINING IN  A NUTSHELL

all atom coarse grained

groups of atomic 
degrees of freedom…

…lumped into one set 
of effective degrees of 

freedom (‘bead’)

effective interactions 
have to be computed 

too(courtesy of Fernando Yrazu)

• Physical intuition or principles usually guide the choices

• Model needs to retain ‘important’ features

• Increasing interest in data-driven, automatic procedures

decimating degrees of freedom into effective ones
Coarse-Graining (CG)



Saunders, Annu. Rev. Biophys. (2013) 42, 73

RESOLUTION IS KEY

high resolution, properties are 
preserved by different CG sites

low resolution, ultra CG
many atoms/residues are grouped 

into a single CG bead



…effective degrees
of freedom 

…effective 
Hamiltonian

identify groups of atoms moving
together in the dynamics

project the all atom Hamiltonian 
onto reduced space

+

THE CG INGREDIENTS

H (x1, · · · ,xN )
��! H (⇠1, · · · , ⇠M )(x1, · · · ,xN )

��! (⇠1, · · · , ⇠M )

H⇠i

(M < N)

CG MODEL

=

CG thermodynamics CG dynamics

are these the actual low 
resolution description of the FG 

properties?



Noid, J. Chem. Phys (2013), 139, 090901
Saunders and Voth, Ann. Rev. Biophys. (2013), 42, 73

COARSE GRAINING PHILOSOPHIES

MARTINI, AWESM,…

MultiScale CG, 
maximum entropy, 

Boltzmann inversion,…

Gō models, 
statistical potentials,…Coarse-grained Model

Fine - grained Model

mesoscopic 
observations

Problem is formidable and can be tackled from alternative points of view



Natural protein energy landscape resembles a rugged funnel

frustration, kinetic traps
in the funnel envelope

Hp: native structures are mostly 
favored over all others

Brooks et al., Science. 
293, 612 (2001)

Leopold et al., PNAS 
USA. 89, 8721 (1992)

STRUCTURE - BASED MODELS: PREQUEL



STRUCTURE - BASED MODELS: ZEROTH ORDER

Theoretical justification in principle of minimal frustration:

proteins have evolved their ability to fold by minimizing frustration

smooth, funneled landscape
(ideal gas)

H
Go

= �
X

native

✏

native contacts

✏

✏

• Das et al., PNAS (2005), 102, 14569
• Hyeon et al., PNAS (2007), 104, 2175
• Koga et al., PNAS (2006), 103, 5367

….

Despite simplicity, many successful studies:

Clementi, Curr. Opin. Struct. Biol. (2008),18,10

one CG bead per residue

Clementi, Nymeyer & Onuchic (JMB 2000)



frustration

STRUCTURE - BASED MODELS: CORRECTIONS

Beyond zeroth order:

heterogeneity

This is necessary to account for compact non native states or misfolded structures

✏ij

✏ij

�ij

H
SBM

= H
Go

+
X

native

�✏
ij

+
X

non�native

�
ij

+ · · ·

native contacts
flavors 

non native contacts

Effect of non-native interactions on protein folding
              Clementi & Plotkin (Protein Science 2004)

  Quantification of structural frustration 
     Chavez, Onuchic, & Clementi (JACS 2004)

  Balance between energetic and entropic contributions 
         Das, Matysiak & Clementi (PNAS 2005)
  Role of protein topology in modulating non-native frustration 
         Kluber, Burt, Clementi (2017, submitted)

Performance improving upon incorporating 
experimental data (more later)



MARTINI FORCE FIELD

Marrink et al., J. Phys. Chem. B (2004) 108, 750
Monticelli   et al., JCTC (2008) 4, 819

• four-to-one mapping
• four main types of interaction 

sites, different levels
• integrated in GROMACS

CG representation of a WALP23 
peptide in a double lipid layer

FG representation of the amino acids. Different 
colors represent different particle types

non bonded potential

bonded potential



AWSEM FORCE FIELD

Davtyan et al., J. Chem. Phys. B (2012), 116, 8494

AWSEM (Associative memory Water Mediated Structure and Energy Model)

Successful at performing de novo 
protein structure prediction

local structure
bias

hydrogen 
bonds

burial 
preference

tertiary contact 
interactions

backbone 
structure

both knowledge and physics based approaches, with a bioinformatically justified term which 
correspond to memories of proteins structures with similar sequences

Parameters optimization by energy
landscape theory



Noid, J. Chem. Phys (2013), 139, 090901
Saunders and Voth, Ann. Rev. Biophys. (2013), 42, 73

COARSE GRAINING PHILOSOPHIES

MARTINI, AWESM,…

MultiScale CG, 
maximum entropy, 

Boltzmann inversion,…

Gō models, 
statistical potentials,…Coarse-grained Model

Fine - grained Model

mesoscopic 
observations

Problem is formidable and can be tackled from alternative points of view



Noid, J. Chem. Phys (2013), 139, 090901

CG THERMODYNAMICS

Let 
M : xi ! Xi be the CG mapping. Then CG thermodynamics given (in principle)  

e��W (X) /
Z

dx� (X�M(x)) e��U(x)

integrating on the mapping hyperplane

CG potential of mean force (PMF) 

‘renormalization’ of interactionsreproducing PMF is
one of major CG goals



INVERSION METHODS

Lyubartsev et al, Phys. Rev. E (1995) 52, 3730
Müller-Plathe , Chemphyschem (2002) 3, 734

Soper, Chem. Phys. (1996) 202, 295

r

p(r)

r

�U(r)

p(r) / e��U(r) ) U(r) =
1

�
ln p(r)

e.g., pair correlation 
function effective potential

Boltzmann inversion

(iterative) Boltzmann 
inversion

Monte Carlo

Different formulations

RDF = (any) radial 
distribution function
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+ UFG(Xi)
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@Xk
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j2Sk
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conditional average of local 
atomistic forces, given than 
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configuration
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f1(x)
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Noid et al., J. Chem. Phys. (2008) 128, 244114

FG CG

Assume CG mapping is known (crucial) and cast as follows 

then

MULTISCALE COARSE GRAINING (MS-CG)

free energy 
mapping



Introduce a set of vectors
Define functional

�2[G] =
1

3N
h

NX

k=1

|
X

q2Sk

⌘kjfj(x)�Gk(M(x))|2i�

It can be proved that
�2[G] � �2[F] = �2[�@U(XN )

@X
] CG force from PMF

amenable to a systematic variational optimization (see QM also)

Noid et al., J. Chem. Phys. (2008) 128, 244114
Ritz variational principle

G1(X
N ) = �rU1(X

N )

· · ·

Gp(X
N ) = �rUp(X

N )
Gq =

NDX

i=1

�DGD(XN )

G(XN ) = (G1, · · · ,GND ) (X
N )

effective atomistic force value taken by vectors

basis functions

optimization of linear
combinations

U⇤(XN ) =
X

i

�⇤
iUi(X

N )

variational PMF

+ =



CHALLENGES



MAPPING AND REPRESENTATIONS

M

x1, · · · ,xn X1, · · · ,XN

Definition of 
CG beads

structural modularity
(e.g., amino acids, nucleotides)

dynamical proximity
(e.g., quasi-rigid domains)

Noid et al., J. Chem. Phys. (2008) 128, 244114



regions in state space that 
keep their geometric 

integrity, allowing
very little transport in and out 

of themselves (i.e. 
atmospheric vortices)

Qstates 

each atom has its 
own trajectory

Q̂ ⇡ Q

approximate 
Q 

Q̂|qi = �|qi

diagonalize 

each cluster is a group of 
heavy atoms

clustering  

DYNAMICAL PROXIMITY

coherent states

(⇠1, · · · ⇠M )

effective degrees of freedom
Banisch & Koltai (2017) Chaos 27, 035804

states 

Space Time Diffusion Map



Boninsegna, Banisch, Clementi (2017) submitted
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COHERENT DOMAINS IN FIP35 KINETICS

S3D (Structural and State Space Decomposition) algorithm:

1. Kinetic model using Markov State Model analysis
2. Find state-specific coherent domains using SPTDMap

• state - dependent resolutions/decompositions
• interstate transitions as  clusters’ splitting and merging
• clusters’ hierarchy

coherent states
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MINIMAL ASSEMBLY UNITS

notes-on-the-staff 
representation

heterogeneity of 
minimal units

Boninsegna, Banisch, Clementi (2017) submitted

Panchenko et al, PNAS 330 
(1996), 341

dynamical 
building blocks

multi scale characterization minimal assembly units as Lego logs



TOWARDS A RIGOROUS CG MAPPING

Minimal assembly blocks are then optimal 
candidates for coarse grained beads

We know the ‘beads’, but actual mapping:
M : xi ! Xi still missing

Boninsegna, Banisch, Clementi (2017) submitted

Could use the same suggested in MS-CG?



COARSE GRAINED DYNAMICS



COARSE GRAINED DYNAMICS

Mori - Zwanzig projection theory

Approximating PMF does not guarantee that dynamical features are also reproduced

Degrees of freedom to be integrated out upon CG exert friction on those 
to be retained in the CG model

Of course compromise is needed, otherwise computational speedup due to degrees of f
freedom decimation is lost

Legal & Lelièvre, Nonlinearity (2010)

CG and FG dynamics may be 
different!

Intuitively:

dxt = �rV (x)dt+
p

2��1
�dBt dzt = �A0(z)dt+

p
2��1�zdBt



MS-CG beads

‘ghost’ particles (m,!, �)

FI(x) = �rIV (RN ) + �FI(x)

FG force on 
atoms in set I

mean force on 
bead I

fluctuation
force

MS-CG shows that:

Introduce ad hoc fictional particles which reproduces ‘missing’ FG fluctuations

Zwanzig, J. Stat. Phys. (1973)
Davtyan  et al., J. Chem. Pays. (2015)

AN EXAMPLE: DYNAMICAL FORCE MATCHING

neglected in Newtonian 
simulation!

Parametrization of ‘ghosts’ is based on atomistic 
information only

oscillators Langevin 
forcesinteractions



• Collect all positions and ‘velocities’
• Define a function database, i.e. space of polynomials

• Linear combinations of these functions with appropriate coefficients are going to 
approximate the components of the dynamic constraints f

• Coefficients                             are found by solving the linear regression

• Coefficient sparsity is imposed on-the-fly, i.e. each entry is a sparse vector
• The machine-learned dynamics is then obtained by

Q: How do original and machine learned dynamics compare?

SINDy algorithm Brunton et al. (2016), PNAS



Adapt this to high dimensional stochastic complex dynamics to coarse grain 
on-the-fly?

Brunton et al. (2016), PNAS



INCORPORATE EXPERIMENTAL DATA
IN DESIGNING COARSE GRAINED MODELS



STRATEGY

Pitera & Chodera, JCTC (2012)
Boomsma, Plos. Comput. Biol. (2014)

CG model

experimental data
(NMR, FRET, …)

maximum entropy
maximum likelihood
inverse stat mech

….

FG model

combine simulations 
with experiments

atomistic simulation as target

compare FG and CG 
predictions for exp 

data

optimized
CG model

NO YES

Ca, CaCb, 
Chen et al., (2017) submitted

DMC
Matysiak et al., J. Mol. Biol.

(2006), 363, 297

MS-CG
Dannenhoffer-Lafage et al., 

JCTC (2016) 12, 2144



model quality factor

max likelihood

GC Hamiltonian: H
CG

= H
bond

+
X

contacts

K
c

V
q

(r
ij

, r0, ✏q) heterogeneous &
non-native interactions

Chen et al., (2017) submitted



FRET data: distribution of distance is 
reproduced upon optimization!

ODEM MODELS

Chen et al., (2017) submitted



OUTLOOK & PERSPECTIVES

Noid et al., J. Chem. Phys. (2008) 128, 244114
Clementi, Curr. Opin. Struct. Biol. (2008),18,10

• CG is inevitable and a formidable problem
e.g. CG degree of freedom, Hamiltonian, FG consistency

• ‘Ultimate CG’ would combine exp and theory
• Optimality, approximation control

• State dependent CG beads 
• ‘Parallel tempering’ CG simulations with on-the fly adapted resolution

….

• Thought provoking:
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MULTISCALE CHALLENGE:
PARADIGMATIC EXAMPLE

Saunders, Annu. Rev. Biophys. (2013) 42, 73

acting subunit actin filament cytoskeleton network

complex interactions

many degrees of freedom
multi scale coupling



Dynamics

Function 
(e.g., enzymes, misfolding 

diseases) 

BIOMOLECULES:
STRUCTURE, FUNCTION AND EQUILIBRIUM

(courtesy of Dr. Wenwei Zheng)

• observables (exp. data)
• structure - function 
• predictions

dynamical model
(Hamiltonian, eqs of 

motion) equilibrium trajectory
(Boltzmann ensemble)

h· · · i� = h· · · it

BUT landscape is metastable, complex, frustrated
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order parameter

where the dynamics spends most time

Collective motions ‘Big picture’

Rare events

native state



SAMPLE ATOMISTIC HAMILTONIAN

bonded terms

non bonded terms

(courtesy of Cecilia Clementi)Clementi, Nymeyer & Onuchic (JMB 2000)



MODULARITY

model

model

C↵

C↵C�

PROTEINS

NUCLEID ACIDS



PRINCIPLE OF MAXIMUM ENTROPY

Link between Shannon’s information theory and stat. mech.

Q: what is the probability distribution which best represents 
the state of knowledge after observing a set of quantity?

S(p) = �
nX

i

p(xi) ln p(xi)

observations (constraints)

Solve constrained optimization to get:

X

k

p(xk)f(xk) = Fk

p(x
k

) =
1

Z

e

�
P

j �jfj(xk) Z =
X

k

e�
P

j �jfj(xk)

Enforcing averages on MD distribution is equivalent to introducing a biasing potential

p(x) =
1

Z

e

��U(x)�
P

k �kfk(x) observable

X

k

p(xk) = 1

entropy

CG potential
Boomsma, Plos. Comput. Biol. (2014), 10, e1003406

Jaynes, Proc. IEEE (1982) 70, 939



• Start	from	an	initial	guess	for	the	parameters,				 (0th order	model)
Run	MD	with			

• Experimental	measurements	: ,	uncertainties														

• Estimate	maximum	likelihood	equilibrium	distribution				 from	MSM

• Compute	value	of		observable	 from	MSM	as:	

• Measure	“goodness”							of	the	model:

• Upon	infinitesimal	parameter	change equilibrium	
distribution	change	is:

• Compute	expression	of as	a	function	of		

• Pick	 to	maximize	 Justin Chen & Cecilia Clementi, 2017 (in preparation)

OBSERVABLE-driven DESIGN OF EFFECTIVE 
MOLECULAR MODELS (ODEM)

Chen, Pinamonti and Clementi, (2017) submitted 


