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Biophysical systems are often characterized by 
different timescales, separated by large gaps

Example: helix-coil transition

coil helix

typical timescales:
helix-coil transition  tslow≈ µs
diffusion within a state tfast≈ ns
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Courtesy of Michele Ceriotti

Reaction Coordinates should capture the (rare) 
barrier-crossing events.
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I. Optimal Reaction Coordinates
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Basic Assumptions

Dynamical Model is a Markov process
Xt, t � 0

The process is ergodic if spatial and temporal 
averages coincide:

The process is reversible if there is no 
preferred direction:
Pµ(X0 2 A,Xt 2 B) = Pµ(X0 2 B,Xt 2 A).

Eµ(f(X0, X⌧ , . . . , XL⌧ )) =

= lim
K!1

1

K � L

K�L�1X

k=0

f(Xk⌧ ), . . . , X(k+L)⌧ )
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Basic Assumptions

Dynamical Model is a Markov process
Xt, t � 0

A distribution is stationary if it is invariant 
under the dynamics:

Pµ(Xt 2 A) = µ(A)

For an ergodic process, there is a unique 
stationary distribution.
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Transfer Operators

Transfer Operators describe the evolution of 
probability distributions:
Z

A
[Ttf ] (x)µ(dx) =

Z

S
pt(x,A)f(x)µ(dx).

Here, A is a set,    is a measure, f is a density 
w.r.t.    , and               is the stochastic transition 
function.

µ
pt(x,A)µ

Lasota, Mackey: Chaos, Fractals and Noise, Springer (1993)
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Properties

Semigroup property:

Ts+t = TtTs, s, t � 0.

For reversible processes, the transfer 
operators are self-adjoint on     .L2

µ

If    is stationary, transfer op. are defined on all 
spaces     . Lp

µ

µ

Lasota, Mackey: Chaos, Fractals and Noise, Springer (1993)
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Spectral Decomposition

Using the infinitesimal Generator:

we have the spectral mapping theorem:
e⌧�(L) ⇢ �(T⌧ ) ⇢ e⌧�(L) [ {0} ,

and the spectral decomposition:
T⌧f =

1X

j=1

e�j⌧ hf, jiµ j

Lf = lim
t!0

Ttf � f

t
,

and its spectral components:
L j = �j j

Pazy: Semigroups of linear operators and applications to partial differential 
equations, Springer (1983)
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Slow Processes

In many biophysical applications, we have:
0 = 0 < 1 < . . . < M ⌧ M+1

such that, for ⌧ � 1

M+1

T⌧f ⇡
MX

j=1

e�j⌧ hf, jiµ j

The presence of separated timescales is directly 
linked to the structure of the spectrum.
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Slow Processes

Using the spectral decomposition, we find for 
the auto-correlation function:

Et(f(Xt)f(Xt+⌧ )) = Eµ(f(X0)f(X⌧ ))

= hT⌧f, fiµ

=
1X

j=1

e�j⌧ hf, ji2µ
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Variational Theorem

Variational Theorem for self-adjoint operators:
MX

j=1

e�j⌧ = sup
MX

j=1

hT⌧fj , fjiµ,

= sup
MX

j=1

Et(fj(Xt)fj(Xt+⌧ )),

hfj , fj0iµ = �j,j0.

Dominant eigenfunctions are slowest to de-correlate.
They are optimal descriptors of slow dynamics.

Noé and Nüske, SIAM Multiscale Model. Simul. (2013)
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Galerkin Projection

3.1. THE VARIATIONAL THEOREM

⟨TτgM, gM⟩µ ≤ λM. (3.1.3)

Next, determine a normalized element gM−1 of the orthogonal complement of
gM in D, s.t. ⟨gM−1, ψj⟩µ = 0, j = 1, . . . , M − 2. Again, we can invoke the
Rayleigh principle to find

⟨TτgM−1, gM−1⟩µ ≤ λM−1. (3.1.4)

Repeating this argument another M − 2 times provides an orthonormal basis
g1, . . . , gM of the space D such that

M

∑
m=1

⟨Tτgm, gm⟩µ ≤
M

∑
m=1

λm. (3.1.5)

As the Rayleigh trace is independent of the choice of orthonormal basis for the
subspace D, and the space itself was arbitrary, this proves Eqs. (3.1.1-3.1.2).
Clearly the maximum is attained for the first M eigenfunctions.

In order to find the optimal approximations from within a given N-dimen-
sional subspace D, where N ≥ M, we restrict the Rayleigh trace to the space
D. We need to find M orthonormal linear combinations from the subspace
D such that the Rayleigh trace is maximal. If the space D is spanned by N
linearly independent functions f1, . . . , fN , and a ∈ RN is the coefficient vector
of a function in D, we will call this function fa:

fa =
N

∑
i=1

a(i) fi. (3.1.6)

The restricted optimization problem is solved as described by the following
proposition, see e.g. [49]:

Proposition 3.2. Let D be a space of N linearly independent ansatz functions fi, i =
1, . . . , N. The set of M ≤ N mutually orthonormal functions fam , m = 1, . . . , M
which maximize the Rayleigh trace restricted to D, is given by the first M eigenvectors
of the generalized eigenvalue problem

Cτam = λ̂mC0am, (3.1.7)

where the matrices Cτ, C0 are given by

Cτ(i, j) = ⟨Tτ fi, fj⟩µ (3.1.8)

C0(i, j) = ⟨ fi, fj⟩µ. (3.1.9)

13

Noé and Nüske, SIAM Multiscale Model. Simul. (2013)
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Galerkin Projection

3.2. ESTIMATION FROM DATA

3.2 Estimation from Data

The generalized eigenvalue problem Eq. (3.1.7) requires the computation of
the matrices Cτ, C0, the elements of which contain overlap integrals between
basis functions (and operators) on the state space S. The computation of these
integrals cannot be performed by standard quadrature methods for realistic
systems, because of the high-dimensionality of S, and because of the lack of a
closed-form expression for the transfer operator Tτ or its transition kernel pτ.
However, the matrix entries also correspond to spatial correlations that can be
estimated from a sufficiently long realization of the process. Using the space
Ω∆t with measure P∆t from Eq. (2.1.7), it can be shown that (see appendix C.2
and Ref. [50, appendix B]):

Theorem 3.4. Let τ = L∆t be an integer multiple of the discrete time step. If the
Markov process is initially distributed according to the unique invariant measure µ,
then for P∆t-a.s. all trajectories (Xk∆t)

∞
k=0, we have:

Cτ(i, j) = lim
K→∞

1

K − L

K−L−1

∑
k=0

fi(Xk∆t) fj(X(k+L)∆t), (3.2.1)

C0(i, j) = lim
K→∞

1

K − L

K−L−1

∑
k=0

fi(Xk∆t) fj(Xk∆t). (3.2.2)

Theorem 3.4 is the real strength of the variational formulation from the
previous chapter. The matrices required to solve the eigenvalue problem Eq.
(3.1.7) can be approximated by computing matrices of instantaneous and time-
lagged correlations between the basis functions from a long equilibrium simu-
lation of the process.

3.3 Special Cases: Markov State Models and TICA

We would like to highlight two special cases of the approximation procedure
from Prop. 3.2. The first is obtained by partitioning the state space S into N
disjoint sets Si, i = 1, . . . , N, and choosing the space D as the span of the sets’
indicator functions fi = χSi

. In this case, we find

C0(i, j) =
∫

S
χSi

(x)χSj
(x)µ(dx) (3.3.1)

= δijP(X0 ∈ Si), (3.3.2)

Cτ(i, j) =
∫

Si

p(x, Sj)µ(dx) (3.3.3)

= P(X0 ∈ Si, Xτ ∈ Sj). (3.3.4)

The matrix C0 is a diagonal matrix of the stationary probabilities of all sets Si,
while the matrix Cτ contains the joint probabilities of observing the process in
Si first and in Sj after a time step τ. Multiplying the generalized eigenvalue

problem Eq. (3.1.7) by the inverse of C0 from the left, and recalling Eq. (2.4.5),
we end up with a standard eigenvalue problem of the form

16

By ergodicity of the process:

Noé and Nüske, SIAM Multiscale Model. Simul. (2013)
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MSMs
30 M. Sarich et al.

Fig. 3.2 Scheme: The true continuous dynamics (dashed
line) is projected onto the discrete state space. MSMs ap-
proximate the resulting jump process by a Markov jump
process

Fig. 3.3 Illustration of our approach: The continuous dy-
namics is highly nonlinear and has many scales. It is rep-
resented by the linear propagator T , whose discretiza-
tion yields a finite-dimensional transition matrix that rep-
resents the Markov State Model (MSM). If the discretiza-
tion error is small enough, the Markov chain or jump pro-
cess induced by the MSM is a good approximation of the
dominant timescales of the original continuous dynamics

discrete states. The statistical estimation error in-
volved in this estimation will be discussed in the
subsequent chapters; the rest of the current chap-
ter focuses only on the approximation error due
to discretization of the transfer operator.

Here we consider a discretization of state
space Ω into n sets. In practice, this discretiza-
tion is often a simple partition with sharp bound-
aries, but in some cases it may be desirable to
discretize Ω into fuzzy sets [46]. We can de-
scribe both cases by defining membership func-
tions χi (x) that quantify the probability of point
x to belong to set i [47] which have the property∑n

i=1 χi (x) = 1. We will concentrate on a crisp

partitioning with step functions:

χi (x) = χ
crisp
i (x) =

{
1 x ∈ Si,

0 x /∈ Si.
(3.24)

Here we have used n sets S = {S1, . . . , Sn}
which entirely partition state space (

⋃n
i=1 Si =

Ω) and have no overlap (Si ∩ Sj = ∅ for all
i ≠ j ). A typical example of such a crisp parti-
tioning is a Voronoi tessellation [45], where one
defines n centers x̄i , i = 1 . . . n, and set Si is the
union of all points x ∈ Ω which are closer to x̄i

than to any other center using some distance met-
ric (illustrated in Figs. 3.4b and c). Note that such
a discretization may be restricted to some subset
of the degrees of freedom, e.g. in MD one often
ignores velocities and solvent coordinates when
discretizing.

The stationary probability πi to be in set i is
then given by the full stationary density as:

πi =
∫

x∈Si

dxµ(x),

and the local stationary density µi(x) restricted
to set i (see Fig. 3.4b) is given by

µi(x) =
{

µ(x)
πi

x ∈ Si,

0 x /∈ Si.
(3.25)

These properties are local, i.e. they do not re-
quire information about the full state space.

3.4 Transition Matrix

Together with the discretization, the Markov
model is defined by the row-stochastic transi-
tion probability matrix, T(τ ) ∈ Rn×n, which is
the discrete approximation of the transfer opera-
tor described in Sect. 3.2 via:

Tij (τ ) = ⟨χj , (T (τ ) ◦ χi )⟩µ
⟨χi ,χi⟩µ

(3.26)

Physically, each element Tij (τ ) represents the
time-stationary probability to find the system in
state j at time t + τ given that it was in state i at
time t . By definition of the conditional probabil-
ity, this is equal to:

Count Matrix

❖ From the discretized time 
series, we produce a count 
matrix:!

!

❖ A little more formal:!

!

❖ Normalize to stochastic matrix:

6

C(⌧) = (
X

i ! j)i,j

cij =
1

T � ⌧

T�⌧X

k=1

�i(Xk)�j(Xk+⌧ )

T(⌧) =

✓
cij
ci

◆

ij
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discretize Ω into fuzzy sets [46]. We can de-
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union of all points x ∈ Ω which are closer to x̄i

than to any other center using some distance met-
ric (illustrated in Figs. 3.4b and c). Note that such
a discretization may be restricted to some subset
of the degrees of freedom, e.g. in MD one often
ignores velocities and solvent coordinates when
discretizing.

The stationary probability πi to be in set i is
then given by the full stationary density as:

πi =
∫

x∈Si

dxµ(x),

and the local stationary density µi(x) restricted
to set i (see Fig. 3.4b) is given by

µi(x) =
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πi

x ∈ Si,

0 x /∈ Si.
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These properties are local, i.e. they do not re-
quire information about the full state space.

3.4 Transition Matrix

Together with the discretization, the Markov
model is defined by the row-stochastic transi-
tion probability matrix, T(τ ) ∈ Rn×n, which is
the discrete approximation of the transfer opera-
tor described in Sect. 3.2 via:

Tij (τ ) = ⟨χj , (T (τ ) ◦ χi )⟩µ
⟨χi ,χi⟩µ

(3.26)

Physically, each element Tij (τ ) represents the
time-stationary probability to find the system in
state j at time t + τ given that it was in state i at
time t . By definition of the conditional probabil-
ity, this is equal to:

Markov State Models (MSM):
Apply previous formalism with a 

basis of step functions:

�i(x) =

(
1, x 2 Si

0, else

• Schütte et. al. J. Comput. Phys. (1999)
• Prinz et. al. J. Chem. Phys. (2011)
• Schütte and Sarich, Metastability and Markov State Models in Molecular 

Dynamics: Modeling, Analysis, Algorithmic Approaches, Courant Lecture 
Notes (2013)

• Bowman et. al. (Eds) An Introduction to Markov State Models and Their 
Application to Long Timescale Molecular Simulation, Springer (2014)
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MSMs
Identification of metastable states:

relaxation time scales as a function of some model parameter,
or a visual representation of the kinetic model as a network.
thermo (planned). Discrete state models with multiple ther-

modynamic states. This package is currently developed separately
(https://github.com/markovmodel/thermotools) and will be
integrated in PyEMMA in the near future. It will enable the
analysis of data from biased simulations (e.g., umbrella sampling),

or generalized ensemble simulations (e.g., replica-exchange MD),
and combination of such data with direct MD via MSMs. Will
contain estimators such as WHAM104 and TRAM.97,98,100

mtms (planned). Markov transition models.93 Continuous
state kinetic models with a Markovian kernel, i.e., a means to
compute the transition density p(x,y) or rate density k(x,y)
between two continuous points of state space.

Figure 1. Illustrative Markov state model analysis of a pentapeptide. (a) Projection of a trajectory onto the slow collective coordinates (independent
components, ICs) shows rare transitions between different metastable states. (b) Implied relaxation time scales as a function of the Markov model
lag time τ shows that a lag time τ = 1 ns is suitable. Shown as shaded regions are 95% confidence intervals. (c) A Chapman−Kolmogorov test shows
that the τ = 1 ns model accurately predicts the behavior on longer time scales. (d) The free energy landscape is computed from the MSM as a
function of the two slowest ICs. The metastable states can be visually distinguished as free energy minima. (e) Probability distributions are given for
the four longest living metastable states. The resulting assignment between energy minima and state numbers is shown in panel d. (f) The rate model
is obtained from a hidden Markov model based coarse-graining of the MSM. Rates are given in nanoseconds; 10 structures have been sampled for
each metastable state from the distributions shown in panel c. All subfigures except for the molecular structure images have been generated with
PyEMMA. Molecular structures were rendered with VMD.134

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00743
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

C

Deuflhard and Weber, Linear Algebra and 
its Applications (2005)

Transition Path Theory

p(E) =
∑

i

piδi(E), [4]

where δi(E) = 1 if E occurs in pathway Pi and 0 otherwise. Eq. 4
can only provide the correct probability if the discretization into
conformational states used is fine enough, such that the event E
can be distinguished from the alternative events. In the example
above, the conformational states need to be fine enough such that
there is no state containing states where hairpin 1 is both formed
and not formed (and likewise for hairpin 2). As p(E) is a well-
defined property of a given system, it is independent of the way by
which the folding flux is decomposed into pathways.

Application to the Folding of PinWW
In order to illustrate the utility of our approach for studying folding
mechanisms, the folding dynamics of the PinWW domain (26) is
studied here. A total of 180 MD simulations were started, 100 from
near-native conformations and 80 from different denatured con-
formations and run for 115 ns each at a temperature of 360 K. The
simulations were conducted with the GROMACS program (31)
by using explicit SPC solvent, the GROMOS96 force field (32),
and the reaction field method for computing nonbonded forces.
The simulation setup is described in detail in the SI Appendix. The
simulated structures were aligned onto the native structure and
then clustered finely into 1,734 kinetically connected and well-
populated clusters. A transition matrix T(τ) was constructed by
counting transitions between these clusters at a lag time of τ = 2
ns (see Theory). It was verified that T(τ) is a good model for
the long-time kinetics (details on the Markov model construc-
tion and validation are given in the SI Appendix). All properties
computed from the Markov model are associated with statisti-
cal uncertainty resulting from the fact that only a finite amount
of simulation data has been used to construct the model. These
uncertainties are computed by using a Bayesian inference method

described in ref. 33; the details are given in the SI Appendix. The
Markov model can further be validated by comparison with kinetic
experimental data recorded at the simulation temperature. The
kinetic relaxation curve obtained from tryptophan (Trp) fluores-
cence temperature-jump experiments (26) can be compared with
the relaxation from an off-equilibrium distribution of states (mim-
icking the situation before the T-jump) into the new equilibrium
distribution monitored by a kinetic relaxation curve that is defined
via the Trp solvent-accessible surface area (see SI Appendix for
details). In both the experiment and the model, this kinetic relax-
ation has a fast, nonexponential decay from 1 to about 0.4, pre-
sumably resulting from fast relaxation processes that affect the
Trp configurations, followed by a slow, single-exponential decay
with a timescale of 26 µs in the model (confidence intervals 8–78
µs) whereas a relaxation time of 13.2 µs was computed from the
experimentally determined kinetic parameters given in ref. 26.

In order to study the folding mechanism, a folded set B was
defined to be the set of clusters with average backbone root mean
square difference to the X-ray structure of less than 0.3 nm. The
denatured set A was defined to be the set of all clusters with little
β-structure (having a mean of <3 h-bonds in hairpin 1, which has
6 h-bonds in the native state, and <1 h-bonds in hairpin 2, which
has 3 h-bonds in the native state). Based on these definitions and
the transition matrix T(τ) between the 1,734 clusters, the commit-
tor probabilities and the folding flux were computed as described
in Theory.

In order to obtain a view of the sequence of events that is
unbiased by defining reaction coordinates, the folding pathways
must be considered individually. Therefore, the folding flux was
decomposed into individual pathways (see Theory) and for each
of them the times when hairpin 1 or 2 forms and remains stable
were computed. “Formation” was defined as having 80% of the
average number of hydrogen bonds that are present in the native
state, but variations of this threshold did not change the results

Fig. 3. PinWW folding flux. (Left)
The network of the 70% most rele-
vant folding pathways for PinWW.
The numbers on the left indi-
cate the committor probabilities,
the thickness of the arrow indi-
cates the flux of folding trajecto-
ries between each pair of confor-
mations. For each conformation,
a representative mean structure
is shown in color along with an
overlay of equilibrium-distributed
structures from that conformation
indicating the structural flexibil-
ity (gray cloud). The numbers next
to the arrows give the normal-
ized net flux (large number) and
the 80% confidence-interval lim-
its (small numbers) in percent-
ages. The blue numbers next to
the structures indicate whether the
first/second hairpin has the native
register (0), is register-shifted by
one or two residues (1,2) or is not
formed at all (-). (Lower Right)
Register-shifted trap states that do
not carry significant folding flux
but reduce the folding speed by
nearly a factor of 2.

19014 www.pnas.org / cgi / doi / 10.1073 / pnas.0905466106 Noé et al.

Noé et al. PNAS (2009)

Multi-Ensemble MSMs:

in high-dimensional spaces where binning of all relevant coordi-
nates is not an option.
We first analyze pure US simulations with 150 umbrella windows

used to sample the position of benzamidine between the bound pose
and a prebinding site (Fig. 5A, structures i–iv; details in Appendix).
To detect rare events in the unbiased coordinates, time-lagged

independent component analysis (TICA) (29, 30) was used with
the Cartesian coordinates of residues around the binding site.
The first independent component (IC) is strongly correlated with
the US coordinate. From the remaining ICs, two had timescales
implied by the TICA eigenvalues larger than the trajectory
length, indicating undesirable metastable transitions orthogonal
to the umbrella coordinate. The second IC corresponds to
closing of the binding pocket by the Trp 215 side chain (Fig. 5D,
structures i and iii). The third IC corresponds to an isomerization
of the disulfide bond between Cys 191 and Cys 220. An analysis
using MBAR or WHAM is thus unfeasible or inefficient, as the
global equilibrium assumption is strongly violated.
One strategy to deal with this very common problem is to re-

strain coordinates orthogonal to the umbrella coordinate, to avoid
undesirable degrees of freedom from switching (45). Although this
approach is useful for computing energy differences between end
states, it may change or restrain the transition mechanism and
artificially increase free-energy barriers along the pathway. With
TICA and TRAM, we now have the possibility to allow these or-
thogonal dynamics to happen, and to treat these events explicitly.

The space spanned by the US coordinate and the second IC was
discretized into 100 Voronoi cells with the k-means algorithm (Fig.
5A). This number of states is far smaller than the number of bins
that would be required with a binned estimator such as WHAM or
discrete TRAM. A count matrix ckij was estimated for every um-
brella at a lag time of 11 ns, and the largest strongly connected
component S of the summed count matrix cij =

P
kc

k
ij was de-

termined. The initial set was strongly disconnected, and we there-
fore adaptively started new umbrella simulations in nine rounds, to
improve the connectivity (Appendix). In the complete dataset, some
clusters are still disconnected (red clusters in Fig. 5A).
In particular, these disconnected states include structures in

which the binding site is occluded by a tryptophan side chain, while
benzamidine is still inside, and structures in which the binding site
attempts to close during the exit pathway. TRAM is applied on the
connected subset of states (white clusters in Fig. 5A). The TRAM
results show that the Trp-occluded conformation is a local mini-
mum in the free-energy landscape (Fig. 5C). This is confirmed by
refs. 13 and 61 where the Trp-occluded conformation is shown to
be a metastable conformation of the protein. In contrast, this local
minimum is not found by MBAR, and several disconnected min-
ima are spuriously estimated (boxes in Fig. 5B).
To analyze the full high-dimensional binding mechanism and

estimate unbiased kinetics, we must go beyond US simulations.
We therefore used TRAM to combine the US data with up to
49.1 μs of unbiased MD data (details in Appendix). The unbiased
trajectories started in the unbound state, such that many binding
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Fig. 5. Thermodynamics and kinetics of all-atom protein–ligand bindingmodel for trypsin–benzamidine. (A–C) US simulations. (D and E) MEMMusing both unbiased
and US simulations. (A) Trajectories projected on the space of the umbrella sampling (US) coordinate and the second independent component (IC). The US coordinate
describes a transition from benzamidine bound to Asp-189 to benzamidine located outside the binding pocket on the surface of trypsin. The second IC corresponds to
concerted opening of loop (Trp-215-Gln-221) and flipping of Trp-215. The Voronoi centers of the Markov states are shows as disks. Markov states that are irreversibly
connected to the data set are shown as red disks and are excluded from the MEMM. (B) Potential of mean force (PMF) in the same coordinate space computed with
MBAR; (C) PMF computed with TRAM. Besides a higher barrier along the US coordinate, the TRAM-PMF gives the Trp-occluded conformation a lower free energy
compared with the MBAR result. (D) Coarse-grained kinetic network of the MEMM. Structures (i, ii, iii, and iv) are found in the four quadrants of A. The largest
transition rates (where at least one direction exceeds 1/ms) between these macrostates, the unbound state and two alternatively bound states are shown as arrows.
Units are events per millisecond. (E) Efficiency of TRAM in the estimation of unbinding kinetics compared with an MSM built from the same unbiased data. Shown is
the probability that log koff calculated from a bootstrap sample falls into the interval ½0.5 log kall

off, 2 log kall
off"where kall

off is the TRAM estimate calculated using all data.
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Diffusion Maps
Pick a symmetric, positive kernel k. Define a Markov chain by
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2. Diffusion maps

2.1. Construction of a random walk on the data

Let (X,A,µ) be a measure space. The set X is the data set and µ represents the distribution of the points on X. In
addition to this structure, suppose that we are given a “kernel” k :X × X → R that satisfies:

• k is symmetric: k(x, y) = k(y, x),
• k is positivity preserving: k(x, y) ! 0.

This kernel represents some notion of affinity or similarity between points of X as it describes the relationship
between pairs of points in this set and in this sense, one can think of the data points as being the nodes of a symmetric
graph whose weight function is specified by k. The kernel constitutes our prior definition of the local geometry of X,
and since a given kernel will capture a specific feature of the data set, its choice should be guided by the application that
one has in mind. This is a major difference with global methods like principal component analysis or multidimensional
scaling where all correlations between data points are taken into account. Here, we start from the idea that, in many
applications, high correlation values constitute the only meaningful information on the data set. Later in this paper,
we illustrate this point by defining a one-parameter family of kernels, and we show that the corresponding diffusions
can be used to analyze the geometry, the statistics or some dynamics of the data.

The reader might notice that the conditions on k are somewhat reminiscent of the definition of symmetric diffusion
semi-groups [22]. In fact, to any reversible Markov process, one can associate a symmetric graph, and as we now
explain, the converse is also true: from the graph defined by (X, k), one can construct a reversible Markov chain on X.
The technique is classical in various fields, and is known as the normalized graph Laplacian construction [3]:

set d(x) =
∫

X

k(x, y)dµ(y)

to be a local measure of the volume (or degree in a graph) and define

p(x, y) = k(x, y)

d(x)
.

Although the new kernel p inherits the positivity-preserving property, it is no longer symmetric. However, we have
gained a conservation property:

∫

X

p(x, y)dµ(y) = 1.

This means that p can be viewed as the transition kernel of a Markov chain on X, or, equivalently, the operator P

defined by

Pf (x) =
∫

X

a(x, y)f (y)dµ(y)

preserves constant functions (it is an averaging or diffusion operator).

2.2. Powers of P and multiscale geometric analysis of X

From a data analysis point of view, the reason for studying this Markov chain is that the matrix P contains geomet-
ric information about the data set X. Indeed, the transitions that it defines directly reflect the local geometry defined
by the immediate neighbors of each node in the graph of the data. In other words, p(x, y) represents the probability
of transition in one time step from node x to node y and it is proportional to the edge-weight k(x, y). For t ! 0, the
probability of transition from x to y in t time steps is given by pt(x, y), the kernel of the t th power P t of P . One
of the main ideas of the diffusion framework is that running the chain forward in time, or equivalently, taking larger

R.R. Coifman, S. Lafon / Appl. Comput. Harmon. Anal. 21 (2006) 5–30 7

2. Diffusion maps

2.1. Construction of a random walk on the data

Let (X,A,µ) be a measure space. The set X is the data set and µ represents the distribution of the points on X. In
addition to this structure, suppose that we are given a “kernel” k :X × X → R that satisfies:

• k is symmetric: k(x, y) = k(y, x),
• k is positivity preserving: k(x, y) ! 0.

This kernel represents some notion of affinity or similarity between points of X as it describes the relationship
between pairs of points in this set and in this sense, one can think of the data points as being the nodes of a symmetric
graph whose weight function is specified by k. The kernel constitutes our prior definition of the local geometry of X,
and since a given kernel will capture a specific feature of the data set, its choice should be guided by the application that
one has in mind. This is a major difference with global methods like principal component analysis or multidimensional
scaling where all correlations between data points are taken into account. Here, we start from the idea that, in many
applications, high correlation values constitute the only meaningful information on the data set. Later in this paper,
we illustrate this point by defining a one-parameter family of kernels, and we show that the corresponding diffusions
can be used to analyze the geometry, the statistics or some dynamics of the data.

The reader might notice that the conditions on k are somewhat reminiscent of the definition of symmetric diffusion
semi-groups [22]. In fact, to any reversible Markov process, one can associate a symmetric graph, and as we now
explain, the converse is also true: from the graph defined by (X, k), one can construct a reversible Markov chain on X.
The technique is classical in various fields, and is known as the normalized graph Laplacian construction [3]:

set d(x) =
∫

X

k(x, y)dµ(y)

to be a local measure of the volume (or degree in a graph) and define

p(x, y) = k(x, y)

d(x)
.

Although the new kernel p inherits the positivity-preserving property, it is no longer symmetric. However, we have
gained a conservation property:

∫

X

p(x, y)dµ(y) = 1.

This means that p can be viewed as the transition kernel of a Markov chain on X, or, equivalently, the operator P

defined by

Pf (x) =
∫

X

a(x, y)f (y)dµ(y)

preserves constant functions (it is an averaging or diffusion operator).

2.2. Powers of P and multiscale geometric analysis of X

From a data analysis point of view, the reason for studying this Markov chain is that the matrix P contains geomet-
ric information about the data set X. Indeed, the transitions that it defines directly reflect the local geometry defined
by the immediate neighbors of each node in the graph of the data. In other words, p(x, y) represents the probability
of transition in one time step from node x to node y and it is proportional to the edge-weight k(x, y). For t ! 0, the
probability of transition from x to y in t time steps is given by pt(x, y), the kernel of the t th power P t of P . One
of the main ideas of the diffusion framework is that running the chain forward in time, or equivalently, taking larger

Introduce the diffusion distance:
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t = 64 and t = 1024. The block structure3 of these powers clearly reveals the multiscale structure of the data: at t = 8,
the set appears to be made of 3 distinct clusters. At t = 64, the two closest clusters have merged, and the data set is
made of 2 clusters. Last, at t = 1024, all clusters have merged. Note also that P 1024 appears to be (numerically) of
rank one, as we have the approximate equality p1024(x, y) ≃ π(y) for all x and y. The key idea in this example is that
the very notion of a cluster from a random walk point of view is a region in which the probability of escaping this
region is low. This simple illustration also emphasizes the fact that, in addition to being the time parameter, t plays
the role of a scale parameter.

2.3. Spectral analysis of the Markov chain

We conclude from the previous section that powers of P constitute an object of interest for the study of the
geometric structures of X at various scales. A classical way to describe the powers of an operator is to employ the
language of spectral theory, namely eigenvectors and eigenvalues. Although for general transition matrices of Markov
chains, the existence of a spectral theory is not guaranteed, the random walk that we have constructed exhibits very
particular mathematical properties:

• The Markov chain has a stationary distribution given by

π(y) = d(y)∑
z∈X d(z)

.

If the graph is connected, which we now assume, then the stationary distribution is unique.
• The chain is reversible, i.e., it follows the detailed balance condition:

π(x)p(x, y) = π(y)p(y, x). (1)

• If X is finite and the graph of the data is connected, then the chain is ergodic.4

Equation (1) plays a central role as it opens the door to a spectral analysis of the Markov chain. Under mild addi-
tional assumptions on k described in Appendix A, P has a discrete sequence of eigenvalues {λl}l!0 and eigenfunctions
{ψl}l!0 such that 1 = λ0 > |λ1| ! |λ2| ! · · · and

Pψl = λlψl .

2.4. Diffusion distances and diffusion maps

In this paragraph, we relate the spectral properties of the Markov chain to the geometry of the data set X. As
previously mentioned, the idea of defining a random walk on the data set relies on the following principle: the kernel k

specifies the local geometry of the data and captures some geometric feature of interest. The Markov chain defines
fast and slow directions of propagation, based on the values taken by the kernel, and as one runs the walk forward, the
local geometry information is being propagated and accumulated the same way local transitions of a system (given by
a differential equation) can be integrated in order to obtain a global characterization of this system.

Running the chain forward is equivalent to computing the powers of the operator P . For this computation, we
could, in theory, use the eigenvectors and eigenvalues of P . Instead, we are going to directly employ these objects
in order to characterize the geometry of the data set X.

We start by introducing the family of diffusion distances {Dt }t∈N given by

Dt(x, y)2 "
∥∥pt(x, ·) − pt(y, ·)

∥∥2
L2(X,dµ/π)

=
∫

X

(
pt(x,u) − pt(y,u)

)2 dµ(u)

π(u)
.

3 It might seem that the block structure depends on the specific ordering of the points. However, as we show later, this issue is overcome by the
introduction of the diffusion coordinates. These coordinates automatically organize the data regardless of the ordering.

4 The state space of this Markov chain being finite, the ergodicity follows from the irreducibility and aperiodicity of the random walk. The
irreducibility results from the graph being connected. In addition, since k(x, x) represents the affinity of x with itself, one can reasonably assume
that k(x, y) > 0, which implies that p(x, x) > 0, from which the aperiodicity follows.

By spectral expansion:
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In other words, Dt(x, y) is a functional weighted L2 distance between the two posterior distributions u !→ pt(x,u)

and u !→ pt(y,u). For a fixed value of t , Dt defines a distance on the set X. By definition, the notion of proximity that
it defines reflects the connectivity in the graph of the data. Indeed, Dt(x, y) will be small if there is a large number
of short paths connecting x and y, that is, if there is a large probability of transition from x to y and vice versa. In
addition, as previously noted, t plays the role of a scale parameter. Therefore we underline three main interesting
features of the diffusion distance:

• Since it reflects the connectivity of the data at a given scale, points are closer if they are highly connected in the
graph. Therefore, this distance emphasizes the notion of a cluster.

• The quantity Dt(x, y) involves summing over all paths of length t connecting x to y and y to x. As a consequence,
this number is very robust to noise perturbation, unlike the geodesic distance.

• From a machine learning point of view, the same observation allows us to conclude that this distance is appropriate
for the design of inference algorithms based on the majority of preponderance: this distance takes into account all
evidences relating x and y.

As shown in Appendix A, Dt(x, y) can be computed using the eigenvectors and eigenvalues of P :

Dt(x, y) =
(

∑

l!1

λ2t
l

(
ψl(x) − ψl(y)

)2

) 1
2

.

Note that as ψ0 is constant, we have omitted the term corresponding to l = 0.
Now, as previously mentioned, the eigenvalues λ1,λ2, . . . , tend to 0 and have a modulus strictly less than 1. As a

consequence, the above sum can be computed to a preset accuracy δ > 0 with a finite number of terms: if we define

s(δ, t) = max
{
l ∈ N such that |λl |t > δ|λ1|t

}
,

then, up to relative precision δ, we have

Dt(x, y) =
(

s(δ,t)∑

l=1

λ2t
l

(
ψl (x) − ψl (y)

)2

) 1
2

.

We therefore introduce the family of diffusion maps {Ψt }t∈N given by

Ψt (x) !

⎛

⎜⎜⎜⎝

λt
1ψ1(x)

λt
2ψ2(x)

...

λt
s(δ,t)ψs(δ,t)(x)

⎞

⎟⎟⎟⎠
.

Each component of Ψt (x) is termed diffusion coordinate. The map Ψt :X → Rs(δ,t) embeds the data set into a Euclid-
ean space of s(δ, t) dimensions.

The connection between diffusion maps and diffusion distances can be summarized as follows:

Proposition 1. The diffusion map Ψt embeds the data into the Euclidean space Rs(δ,t) so that in this space, the
Euclidean distance is equal to the diffusion distance (up to relative accuracy δ), or equivalently,

∥∥Ψt (x) − Ψt (y)
∥∥ = Dt(x, y).

Note that using the full eigenvector expansion in the sum above proves that the diffusion distance Dt is a metric
distance on X.

2.5. Parametrization of data and dimensionality reduction

The previous proposition states that the diffusion maps offer a representation of the data as a cloud of points
in a Euclidean space. This representation is characterized by the fact the distance between two points is equal to
the diffusion distance in the original description of the data. Therefore, the mapping Ψt reorganizes the data points
according to their mutual diffusion distances.

In the following space, Euclidean distance equals diffusion dist.
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Coffman et. al. Appl. Comput. Harmon. 
Anal. (2006)
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In the following, we start by explaining the construction of this family of diffusions and then we study each of
the above special cases separately. Let us fix the notation and review some notions related to the heat propagation on
submanifolds. Let M be a compact C∞ submanifold of Rn. The heat diffusion on M is the diffusion process whose
infinitesimal generator is the Laplace–Beltrami operator ! (we adopt the convention that this operator is positive
semi-definite). Let the Neumann heat kernel be denoted e−t!. The operator ! has eigenvalues and eigenfunctions
on M:

!φl = ν2
l φl ,

where φl verifies the Neumann condition ∂φl = 0 at the boundary ∂M . These eigenfunctions form a Hilbert basis of
L2(M, dx). Let

EK = Span{φl , 0 ! l ! K}
be the linear span of the first K + 1 Neumann eigenfunctions. Another expression for the Neumann heat kernel is
given by

e−t! = lim
s→+∞

(
I − !

s

)st

=
∑

l!0

e−tν2
l φl (x)φl (y).

We will assume that the data set X is the entire manifold (as later in this paper we address the question of finite sets
approximating M). Let q(x) be the density of the points on M.

3.1. Construction of a family of diffusions

There are two steps in the algorithm: one first renormalizes the rotation-invariant weight into an anisotropic kernel,
and then one computes the normalized graph Laplacian diffusion from this new graph.

Construction of the family of diffusions

(1) Fix α ∈ R and a rotation-invariant kernel kε(x, y) = h
( ∥x−y∥2

ε

)
.

(2) Let

qε(x) =
∫

X

kε(x, y)q(y)dy

and form the new kernel

k(α)
ε (x, y) = kε(x, y)

q α
ε (x)qα

ε (y)
.

(3) Apply the weighted graph Laplacian normalization to this kernel by setting

d(α)
ε (x) =

∫

X

k(α)
ε (x, y)q(y)dy

and by defining the anisotropic transition kernel

pε,α(x, y) = k
(α)
ε (x, y)

d
(α)
ε (x)

.

Note that, up to a multiplicative factor, the quantity qε(x) is an approximation of the true density q(x). Let Pε,α be
defined by

Pε,αf (x) =
∫

X

pε,α(x, y)f (y)q(y)dy.

Coffman et. al. Appl. Comput. Harmon. 
Anal. (2006)



Feliks Nüske Surrogate ModelsIPAM Tutorials 2017

R.R. Coifman, S. Lafon / Appl. Comput. Harmon. Anal. 21 (2006) 5–30 15

Our main result5 concerns the infinitesimal generator of the corresponding diffusion as ε → 0:

Theorem 2. Let

Lε,α = I − Pε,α

ε

be the infinitesimal generator of the Markov chain. Then for a fixed K > 0, we have on EK

lim
ε→0

Lε,αf = #(f q1−α)

q1−α
− #(q1−α)

q1−α
f.

In other words, the eigenfunctions of Pε,α can be used to approximate those of the following symmetric Schrödinger
operator:

#φ − #(q1−α)

q1−α
φ,

where φ = f q1−α .

The proof is given in Appendix B.

3.2. The case α = 0: normalized graph Laplacian on isotropic weights

Setting α = 0 comes down to computing the normalized graph Laplacian on a graph with isotropic (e.g., Gaussian)
weights. From the previous theorem, the corresponding infinitesimal operator is given by

#φ − #q

q
φ.

Note that when the density q is uniform on M, then the potential term vanishes.6 This is consistent with Belkin’s
result [11] saying that in this situation, the graph Laplacian normalization yields an approximation of the Laplace–
Beltrami operator on M. However our analysis also reveals that in the general case, this no longer holds, and simple
calculations show that the influence of the density term can be quite important.

3.3. The case α = 1
2 : Fokker–Planck diffusion

When α = 1
2 , the asymptotic infinitesimal generator reduces to

#φ − #(
√

q)
√

q
φ.

Let us write q = e−U , then the generator becomes

#φ −
(∥∇U∥2

4
− #U

2

)
φ.

It is shown in [29] that a simple conjugation of this specific Schrödinger operator leads to the forward Fokker–Plank
equation

∂q

∂t
= ∇ · (∇q + q∇U),

where q(x, t) represents the density of points at position x and time t of a dynamical system satisfying the Langevin
equation

5 Without any loss of generality, we assume that function h has a zeroth moment equal to 1 and second moment equal to 2 (see the proof of the
theorem on p. 27).

6 In practice, a perfectly uniform density is difficult to achieve, if possible at all. Therefore this scheme cannot really be used to approximate #

as the slightest nonconstant mode in q is amplified in the factor #q/q .

Diffusion Maps

Coffman et. al. Appl. Comput. Harmon. 
Anal. (2006)

For                , this operator becomes the generator of a 
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How can we define dynamics on the space of 
reaction coordinates?

Assume the process is given by an SDE 

1

1 Introduction

2 Theory: Projected Dynamics

2.1 Setting

In this paper, we consider a continuous-time and -space Markov process xt on a state space Ω attaining
values in Rn. The process is governed by the stochastic differential equation

dxt = b(xt) +
√

2β−1σdBt. (1)

Here, Bt denotes n-dimensional Brownian motion, the function b : Rn !→ Rn is called the drift, β is the
inverse temperature, and for simplicity, we assume that σ is a diagonal matrix independent of x, called the
diffusion. We assume that the drift is a smooth function, and that xt is ergodic and reversible. Ergodicity
implies the existence of a unique invariant measure for xt, which will be denoted by µ, while reversibility
ensures that there is no preferred direction in the system:

P(x0 ∈ A,xt ∈ B) = P(x0 ∈ B, xt ∈ A), (2)

for any measurable subsets A,B ⊂ Ω. We will frequently use the Hilbert space L2
µ of square integrable

functions w.r.t. the measure µ, with scalar product

⟨f, g⟩µ =

ˆ

Rn

f(x)g(x) dµ(x). (3)

The system dynamics are encoded in the semigroup of transfer operators Tt, t ≥ 0. These operators describe
the evolution of probability distributions under the system dynamics. More precisely, if p0 is a density for
the initial distribution of the system

P(x0 ∈ A) =

ˆ

A
p0(x) dµ(x), (4)

then Ttp0 is a density for the distribution at time t:

P(xt ∈ A) =

ˆ

A
[Ttp0] (x) dµ(x). (5)

For all functions f ∈ L2
µ such that the limit

Lf = lim
s→0

1
s
[Tsf − f ] (6)

exists, the action of the operator L is defined by Eq. (6). This operator is called the infinitesimal generator
(or generator) of the process, it is a linear map defined on a dense subspace D(L) of L2

µ. For twice
continuously differentiable functions f ∈ L2

µ, the generator acts as a differential operator:

Lf(x) =
n
∑

i=1

bi(x)
∂f

∂xi
(x) +

1
β

n
∑

i=1

σ2
ii
∂2f

∂x2
i

(x). (7)

For a reversible diffusion process, the generator is self-adjoint on L2
µ and satisfies the equality

⟨Lf, g⟩ = −
1
β

ˆ

Rn

σ2∇f(x)∇g(x) dx (8)

for all f, g ∈ D(L).

Reaction coordinates are represented by smooth mapping:
⇠ : Rn 7! Rm

Then the generator is a differential operator:
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then Ttp0 is a density for the distribution at time t:

P(xt ∈ A) =

ˆ

A
[Ttp0] (x) dµ(x). (5)

For all functions f ∈ L2
µ such that the limit

Lf = lim
s→0

1
s
[Tsf − f ] (6)

exists, the action of the operator L is defined by Eq. (6). This operator is called the infinitesimal generator
(or generator) of the process, it is a linear map defined on a dense subspace D(L) of L2

µ. For twice
continuously differentiable functions f ∈ L2

µ, the generator acts as a differential operator:

Lf(x) =
n
∑

i=1

bi(x)
∂f

∂xi
(x) +

1
β

n
∑

i=1

σ2
ii
∂2f

∂x2
i

(x). (7)

For a reversible diffusion process, the generator is self-adjoint on L2
µ and satisfies the equality

⟨Lf, g⟩ = −
1
β

ˆ

Rn

σ2∇f(x)∇g(x) dx (8)

for all f, g ∈ D(L).
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2.2 Spectral Properties

From Eq. (8), it follows that the generator is non-positive definite, that the constant function is an eigen-
function corresponding to the eigenvalue 0, and that all other eigenfunctions must correspond to strictly
negative eigenvalues. We assume that L possesses a complete set of eigenfunctions corresponding to isolated
eigenvalues, that is, there are functions ψ1,ψ2, . . . and non-negative numbers 0 = κ1 < κ2 ≤ . . . such that

Lψi = −κiψi, (9)

and every function f ∈ L2
µ can be represented by the expansion

f =
∞
∑

i=1

⟨f,ψi⟩ψi. (10)

By the spectral mapping theorem [7, Ch 2, Thm 2.4.], the eigenfunctions ψi are also eigenfunctions of the
transfer operators Tt for all t, corresponding to eigenvalues

λi(t) = e−κit. (11)

The action of Tt on a function f ∈ L2
µ can thus be decomposed as

Ttf =
∞
∑

i=1

e−κit⟨f,ψi⟩ψi. (12)

Due to the exponential decay of all λi(t), it is common to refer to the generator eigenvalues κi as rates,
and to their reciprocals as implied timescales

ti =
1
κi

. (13)

We note that for t ≫ ti, the i-th term in Eq. (12) has approximately decayed to zero. In many applications,
including molecular dynamics, we expect to find a number M of dominant rates 0 = κ1 < κ2 < κM ≪
κM+1, separated from all others. In this case, the expansion (12) consists of only M slowly decaying terms
if t ≫ tM+1. The existence of dominant spectral components is directly related to metastability, that is,
the existence of long-lived macrostates such that transitions between those states are rare events [2,3,8,5].

3 Projected Dynamics

Simulation of the dynamics Eq. (1) in the typically high-dimensional space Rn can be prohibitively costly.
It is therefore desirable to perform a dimensionality reduction by projecting the system onto a much smaller
number m of variables, and replace the full dynamics by a suitable effective dynamics that only depends
on the selected degrees of freedom. Many different techniques to accomplish this have been developed.
Here, we focus on the projection formalism introduced in Ref. [6] and discussed in detail in Ref. [9]. Unless
explicitly stated, all of the definitions, properties and related proofs can be found in this reference.

3.1 Projection Formalism

We assume that the reduction of the system to essential degrees of freedom is realized by a smooth
function ξ which maps the full space Rn into Rm, where m ≤ n. We denote the components of the map
ξ by ξl, l = 1, . . . ,m. Moreover, we assume that the invariant measure possesses a density function with
respect to Lebesgue measure, likewise denoted by µ. The key ingredient to the definition of an effective
dynamics that only depends on the image space ξ(Rn) ⊂ Rm, is the projection operator

Pf(x) =
1

ν(z)

ˆ

Σz

f(x)µ(x)J−1/2(x) dσz(x). (14)

Projection operator:

Projection Formalism

Projection is an orthogonal projection onto the space:

3

In this definition, z = ξ(x) ∈ Rm, Σz = {x ∈ Rn : ξ(x) = z} is the pre-image of z under the map ξ, and
σz denotes the surface measure on the set Σz. Moreover,

J(x) = det(DξTDξ),

where Dξ is the Jacobi matrix of ξ, such that J−1/2 is the inverse of the functional determinant appearing
in the change of variables formula. Lastly,

ν(z) =

ˆ

Σz

µ(x)J−1/2(x) dσz(x).

The projection operator acts on a function f ∈ L2
µ by averaging its values over the level sets of the map

ξ w.r.t. the invariant measure. The additional factor J−1/2 and the appearance of the surface measure
are due to the co-area formula, which is heavily used in the proofs of all properties discussed below. They
account for the non-linear change of variables introduced by the map ξ. The normalization by ν(z) ensures
that the projection of a constant function is the constant itself.

Equation (14) defines a linear operator on L2
µ. For each f ∈ L2

µ, the result Pf is a function of z only,
Pf(x) = Pf(z). In fact, P is indeed a projection onto the subspace

H0 =
{

f ∈ L2
µ : f = f(z) = f(ξ(x))

}

(15)

of functions which only depend on the effective variables z, that is, P2f = Pf for any f ∈ L2
µ and Pf = f

for f ∈ H0. In addition, P is an orthogonal projection and thus self-adjoint [1]. The function ν(z) is a
probability density on Rm

ˆ

Rm

ν(z) dz = 1, (16)

and hence gives rise to a probability measure which we will also denote by ν. For f, g ∈ H0, we have the
following duality between the scalar product Eq. (3) for functions on Rn, and the corresponding scalar
product

⟨f, g⟩ν =

ˆ

Rm

f(z)g(z) dν(z), (17)

for functions on Rm:

⟨f ◦ ξ, g ◦ ξ⟩µ = ⟨f, g⟩ν . (18)

It follows that H0 can be identified with L2
ν .

3.2 Projected Generator

A new dynamics on the space Rm can be defined by applying the projection operator to the generator of
the full dynamics:

Lξ = PLP, (19)

which is a self-adjoint operator on D(Lξ) = D(L)∩H0 ⊂ L2
ν . For sufficiently smooth functions f ∈ D(Lξ),

it also acts as a differential operator

Lξf(z) =
m
∑

l=1

P(Lξl)(z)
∂f

∂zl
(20)

+
1
β

m
∑

l,r=1

P

(

n
∑

i=1

σ2
ii
∂ξl
∂xi

∂ξr
∂xi

)

∂2f

∂zl∂zr
. (21)

Zhang et. al., Faraday Discuss. (2016)
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Projected generator is again the generator of a diffusion:

3

In this definition, z = ξ(x) ∈ Rm, Σz = {x ∈ Rn : ξ(x) = z} is the pre-image of z under the map ξ, and
σz denotes the surface measure on the set Σz. Moreover,

J(x) = det(DξTDξ),

where Dξ is the Jacobi matrix of ξ, such that J−1/2 is the inverse of the functional determinant appearing
in the change of variables formula. Lastly,

ν(z) =
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Σz

µ(x)J−1/2(x) dσz(x).

The projection operator acts on a function f ∈ L2
µ by averaging its values over the level sets of the map

ξ w.r.t. the invariant measure. The additional factor J−1/2 and the appearance of the surface measure
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account for the non-linear change of variables introduced by the map ξ. The normalization by ν(z) ensures
that the projection of a constant function is the constant itself.

Equation (14) defines a linear operator on L2
µ. For each f ∈ L2

µ, the result Pf is a function of z only,
Pf(x) = Pf(z). In fact, P is indeed a projection onto the subspace

H0 =
{

f ∈ L2
µ : f = f(z) = f(ξ(x))

}

(15)

of functions which only depend on the effective variables z, that is, P2f = Pf for any f ∈ L2
µ and Pf = f

for f ∈ H0. In addition, P is an orthogonal projection and thus self-adjoint [1]. The function ν(z) is a
probability density on Rm

ˆ

Rm

ν(z) dz = 1, (16)

and hence gives rise to a probability measure which we will also denote by ν. For f, g ∈ H0, we have the
following duality between the scalar product Eq. (3) for functions on Rn, and the corresponding scalar
product

⟨f, g⟩ν =

ˆ

Rm

f(z)g(z) dν(z), (17)

for functions on Rm:

⟨f ◦ ξ, g ◦ ξ⟩µ = ⟨f, g⟩ν . (18)

It follows that H0 can be identified with L2
ν .

3.2 Projected Generator

A new dynamics on the space Rm can be defined by applying the projection operator to the generator of
the full dynamics:

Lξ = PLP, (19)

which is a self-adjoint operator on D(Lξ) = D(L)∩H0 ⊂ L2
ν . For sufficiently smooth functions f ∈ D(Lξ),

it also acts as a differential operator

Lξf(z) =
m
∑

l=1

P(Lξl)(z)
∂f

∂zl
(20)

+
1
β

m
∑

l,r=1

P

(

n
∑

i=1

σ2
ii
∂ξl
∂xi

∂ξr
∂xi

)

∂2f

∂zl∂zr
. (21)

3

In this definition, z = ξ(x) ∈ Rm, Σz = {x ∈ Rn : ξ(x) = z} is the pre-image of z under the map ξ, and
σz denotes the surface measure on the set Σz. Moreover,
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where Dξ is the Jacobi matrix of ξ, such that J−1/2 is the inverse of the functional determinant appearing
in the change of variables formula. Lastly,
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Σz

µ(x)J−1/2(x) dσz(x).

The projection operator acts on a function f ∈ L2
µ by averaging its values over the level sets of the map

ξ w.r.t. the invariant measure. The additional factor J−1/2 and the appearance of the surface measure
are due to the co-area formula, which is heavily used in the proofs of all properties discussed below. They
account for the non-linear change of variables introduced by the map ξ. The normalization by ν(z) ensures
that the projection of a constant function is the constant itself.

Equation (14) defines a linear operator on L2
µ. For each f ∈ L2

µ, the result Pf is a function of z only,
Pf(x) = Pf(z). In fact, P is indeed a projection onto the subspace

H0 =
{

f ∈ L2
µ : f = f(z) = f(ξ(x))

}

(15)

of functions which only depend on the effective variables z, that is, P2f = Pf for any f ∈ L2
µ and Pf = f

for f ∈ H0. In addition, P is an orthogonal projection and thus self-adjoint [1]. The function ν(z) is a
probability density on Rm

ˆ

Rm

ν(z) dz = 1, (16)

and hence gives rise to a probability measure which we will also denote by ν. For f, g ∈ H0, we have the
following duality between the scalar product Eq. (3) for functions on Rn, and the corresponding scalar
product

⟨f, g⟩ν =

ˆ

Rm

f(z)g(z) dν(z), (17)

for functions on Rm:

⟨f ◦ ξ, g ◦ ξ⟩µ = ⟨f, g⟩ν . (18)

It follows that H0 can be identified with L2
ν .

3.2 Projected Generator

A new dynamics on the space Rm can be defined by applying the projection operator to the generator of
the full dynamics:

Lξ = PLP, (19)

which is a self-adjoint operator on D(Lξ) = D(L)∩H0 ⊂ L2
ν . For sufficiently smooth functions f ∈ D(Lξ),

it also acts as a differential operator

Lξf(z) =
m
∑

l=1

P(Lξl)(z)
∂f

∂zl
(20)

+
1
β

m
∑

l,r=1

P

(

n
∑

i=1

σ2
ii
∂ξl
∂xi

∂ξr
∂xi

)

∂2f

∂zl∂zr
. (21)

Projection Formalism

Effective drift and diffusion can be estimated from data:

for 8z 2 Rm. Di↵erent from the setting in Section 2 where the noise intensity matrix � is allowed

to have di↵erent numbers of rows and columns, here we can simply assume that e� is an m⇥m

square matrix. Notice that derivatives of the reaction coordinate ⇠ are involved in (3.11). On the

other hand, recalling the definitions of the infinitesimal generator L and the quadratic variation

and using (3.9) we directly obtain the following alternative formula for eb and ea

ebl(z) = lim
s!0+

E
⇣⇠l(x(s))� zl

s

��� x(0) ⇠ µz

⌘
, 1  l  m,

ealk(z) =
�

2
lim

s!0+
E
⇣ (⇠l(x(s))� zl)(⇠k(x(s))� zk)

s

��� x(0) ⇠ µz

⌘
, 1  l, k  m,

(3.12)

where the conditional expectations are with respect to the ensemble of trajectories of the full

dynamics (2.1) with the initial distribution µz on ⌃z (see Subsection 3.1 for definitions). Numer-

ical algorithms for simulating the e↵ective dynamics (3.10) based on formulas (3.11) and (3.12)

will be discussed in Subsection 3.4. Applying conditions (2.3) and (3.3), we also obtain

⌘Tea(z)⌘ = P
�
⌘Tr⇠Tar⇠⌘) � c1P(|r⇠⌘|2) � c1c2|⌘|2 , 8z, ⌘ 2 Rm . (3.13)

Using the form of the coe�cient eb and ea from (3.11), it is clear that the operator eL defined by

(3.8) can alternatively be written as

eL =
mX

l=1

ebl
@

@zl
+

1

�

mX

k,l=1

ealk
@2

@zl@zk
, (3.14)

which is exactly the form of the infinitesimal generator of dynamics (3.10). That is, the projection
eL of the full generator to the reduced space eH is identical to the generator of the e↵ective

dynamics (3.10).

Remark 2. In general, the process z(s) resulting from the e↵ective dynamics (3.10) is

not the same as the full process seen from the reaction coordinate space, ⇠(x(s)), but just an

approximation of it. In [51], the associated approximation error was studied for the case that

(2.1) is a gradient system and m = 1, i.e. in the case that the reaction coordinate ⇠ is a scalar

function.

Remark 3. It is well known that the coe�cients b and a in (2.1) satisfy the Kramers

Moyal expansion [70]

bl(x) = lim
s!0+

E
⇣x(s)� xl

s

��� x(0) = x
⌘
, 1  l  n ,

alk(x) =
�

2
lim

s!0+
E
⇣ (xl(s)� xl)(xk(s)� xk)

s

��� x(0) = x
⌘
, 1  l, k  n ,

(3.15)

where x = (x1, x2, · · · , xn) 2 Rn and the expectations are with respect to the ensemble of trajec-

tories under dynamics (2.1). (3.12) shows that similar expressions are satisfied by the e↵ective

coe�cients eb and ea. In several papers related to the equation-free approach [47, 27, 36, 75, 49],

the authors assumed the existence of Fokker-Planck equation of the coarse variables and compute

the coe�cients using formula (3.12). In connection with our arguments, it is thus clear that the

coarse dynamics in the equation-free approach is actually the e↵ective dynamics (3.10).

3.2.2. Mori-Zwanzig formalism. In this part, we give a reasoning to motivate the ef-

fective dynamics (3.10) using the Mori-Zwanzig formalism. The Mori-Zwanzig formalism is an

11

Legoll and Lelièvre, Nonlinearity (2010)
Zhang et. al., Faraday Discuss. (2016)
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Approximation Quality

Do these effective dynamics preserve the dominant 
timescales of the original process?

If we use the optimal reaction coordinates, yes! More 
precisely, if the eigenfunctions only depend on z:

 j =  j(z)

the dominant timescales are exactly preserved:

Zhang et. al., Faraday Discuss. (2016)

PLP j(z) = �j j(z)
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Approximation Quality

What if we only have an approximation?
5

Proposition 1 If, for each dominant eigenfunction ψi, i = 2, . . . ,M , there is a function gi ∈ H0 that

approximates ψi in H1-norm, i.e.

∥gi − ψi∥
2
H1 = ∥gi − ψi∥

2
L2 +

N
∑

j=1

∥
∂gi
∂xj

−
∂ψi

∂xj
∥2L2 ≤ ϵ2, (31)

then the maximal relative error between the dominant eigenvalues of Lξ and L is bounded by

max
i=2,...,M

ωi − κi
ωi

≤ (M − 1)κ−1/2
2 ∥σ∥

√

β−1ϵ. (32)

Proof Following the approach in Ref. [4], we choose some positive constant α > 0 and introduce the
operator A = αId − L. Since L is negative semi-definite, A is positive definite, and therefore defines a
norm

∥f∥2A = ⟨Af, f⟩µ (33)

on D(L). We consider the finite dimensional space G spanned by the functions gi, which we assume
to be linearly independent. Let QA denote the A-orthogonal projection onto G, and let ω̂i denote the
approximate eigenvalues generated by the Ritz-Galerkin projection onto G. Theorem 4.3 and Remark 4.2
in Ref. [4] provide us with the following estimate:

max
i=2,...,M

ω̂i − κi
ω̂i

≤ (1 + γ)(M − 1) max
j=2,...,M

(α+ κj)
−1/2 ∥Q⊥

Aψj∥A, (34)

for every positive constant γ. Examining the projection errors on the right-hand-side, we find

∥Q⊥
Aψj∥

2
A ≤ ∥ψj − gj∥

2
A (35)

= α∥ψj − gj∥
2
L2 − ⟨L (ψj − gj) , (ψj − gj)⟩µ (36)

= α∥ψj − gj∥
2
L2 +

1
β

n
∑

k=1

ˆ

σ2
kk

[

∂

∂xk
(ψj − gj)

]2

µ(x) dx, (37)

by Eq. (8). We conclude

∥Q⊥
Aψj∥

2
A ≤ (α+

1
β
∥σ∥2)∥ψj − gj∥

2
H1 (38)

≤ (α+
1
β
∥σ∥2)ϵ2, (39)

and since both α and γ were arbitrary, we end up with the result

max
i=2,...,M

ω̂i − κi
ω̂i

≤ (M − 1)k−1/2
2 ∥σ∥

√

β−1ϵ. (40)

As discussed in Ref. [9, Sec. 3.2.3], it follows from Eq. (25) that Galerkin projection of the full generator
onto a subspace of H0 is equivalent to a Galerkin projection of the projected generator Lξ onto the same
subspace. From the Rayleigh-Ritz variational principle, we conclude

ωi − κi
ωi

= 1−
κi
ωi

≤ 1−
κi
ω̂i

=
ω̂i − κi
ω̂i

,

and the claim follows.

Nüske and Clementi (in preparation)



Feliks Nüske Surrogate ModelsIPAM Tutorials 2017

Numerical Example

39

original coordinate x0 and simulate the effective dynamics if estimated at s ∈
{

10−3, 0.1, 1.0
}

. As
expected, the resulting implied timescales are estimated reasonably well for small θ (up to θ = π

8 ), but
the estimation breaks down for larger rotation angles (Fig. 36).

Figure 35. Stationary distribution of the dynamics Eq. (C9) for different values of θ shown on the left. The
left column corresponds to histograms from simulations, while the right column shows the reference values.

- Two-d landscape
- Dynamics in x-direction 

is slow.
- Study several rotations 

of the system.
- Always use x as reaction 

coordinate.

Nüske and Clementi (in preparation)
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Figure 36. Implied timescales of the one-dimensional effective dynamics obtained by projecting the dynamics
Eq. (C9) onto the original coordinate x0, for different values of θ shown on the left. The columns correspond
to the values of the offset s shown on top of each column. The slowest three reference timescales of the system
are indicated by dashed lines.

Preliminary Conclusions The results discussed above suggest that

• if we project on “good” reaction coordinates which allow to parametrize the slow dynamics well,
these essential dynamics will be preserved by the effective dynamics.

• it seems possible to use a fairly large offset s for the estimation of drift and diffusion. Most
probably it must be below any relevant timescale that depends on the reaction coordinates.

40

Figure 36. Implied timescales of the one-dimensional effective dynamics obtained by projecting the dynamics
Eq. (C9) onto the original coordinate x0, for different values of θ shown on the left. The columns correspond
to the values of the offset s shown on top of each column. The slowest three reference timescales of the system
are indicated by dashed lines.

Preliminary Conclusions The results discussed above suggest that

• if we project on “good” reaction coordinates which allow to parametrize the slow dynamics well,
these essential dynamics will be preserved by the effective dynamics.

• it seems possible to use a fairly large offset s for the estimation of drift and diffusion. Most
probably it must be below any relevant timescale that depends on the reaction coordinates.

Numerical Example

Nüske and Clementi (in preparation)
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Figure 22. Two-dimensional potential and its stationary distribution.

Figure 23. Dominant relaxation timescales of the two-dimensional example.

soon as s increases beyond those timescales. We also find that the stationary distribution is recovered
as long as s is smaller than 0.1, which is on the order of t6, t7, after that it starts to smear out.

Lastly, we also attempt to run the effective dynamics at larger time steps. In this example, we find
that we can go up to ∆t = 0.01 without changing properties of the dynamics. From Figs. 28 and 29,
we conclude that the previous findings also hold true at this value of the time step.

Numerical Example II

Use the polar angle as reaction coordinate.

Nüske and Clementi (in preparation)
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Numerical Example II30

Figure 26. Implied timescale tests for the effective dynamics simulations using the drift and diffusion estimated
at different values of the offset s (shown on top of each plot). The dashed lines correspond to the six leading
timescales of the original dynamics (note that they come in pairs of two almost identical timescales). We also
show the implied timescales estimated from simulations of the reference dynamics defined by Eqs. (C5-C6).

Nüske and Clementi (in preparation)
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