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Motivation

The aim of molecular dynamics simulations is to understand the
relationships between the macroscopic properties of a molecular
system and its atomistic features. In particular, one would like to
evaluate numerically macroscopic quantities from models at the
microscopic scale.

Many applications in various fields: biology, physics, chemistry,
materials science.

Various models: discrete state space (kinetic Monte Carlo, Markov
State Model) or continuous state space (Langevin).

The basic ingredient: a potential V which associates to a
configuration (x1, ..., xN) = x ∈ R

3Natom an energy
V (x1, ..., xNatom

). The dimension d = 3Natom is large (a few
hundred thousand to millions).
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Empirical force field

Typically, V is a sum of potentials modelling interaction between
two particles, three particles and four particles:

V =
∑

i<j

V1(x i , x j) +
∑

i<j<k

V2(x i , x j , xk) +
∑

i<j<k<l

V3(x i , x j , xk , x l).

For example,
V1(x i , x j) = VLJ(|x i − x j |)
where
VLJ(r) = 4ǫ

(

(

σ
r

)12 −
(

σ
r

)6
)

is

the Lennard-Jones potential.
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Dynamics

Newton equations of motion:

{

dX t = M−1Pt dt

dPt = −∇V (X t) dt
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Dynamics
Newton equations of motion + thermostat: Langevin dynamics:

{

dX t = M−1Pt dt

dPt = −∇V (X t) dt − γM−1Pt dt +
√

2γβ−1dW t

where γ > 0. Langevin dynamics is ergodic wrt

µ(dx)⊗ Z−1
p exp

(

−β ptM−1p
2

)

dp with

dµ = Z−1 exp(−βV (x)) dx

where Z =
∫

exp(−βV (x)) dx is the partition function and
β = (kBT )−1 is proportional to the inverse of the temperature.
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Dynamics
Newton equations of motion + thermostat: Langevin dynamics:

{

dX t = M−1Pt dt

dPt = −∇V (X t) dt − γM−1Pt dt +
√

2γβ−1dW t

where γ > 0. Langevin dynamics is ergodic wrt

µ(dx)⊗ Z−1
p exp

(

−β ptM−1p
2

)

dp with

dµ = Z−1 exp(−βV (x)) dx

where Z =
∫

exp(−βV (x)) dx is the partition function and
β = (kBT )−1 is proportional to the inverse of the temperature.

In the following, we focus on the overdamped Langevin (or
gradient) dynamics

dX t = −∇V (X t) dt +
√

2β−1dW t ,

which is also ergodic wrt µ.
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Introduction

These dynamics are used to compute macroscopic quantities:

(i) Thermodynamic quantities (averages wrt µ of some
observables): stress, heat capacity, free energy,...

Eµ(ϕ(X )) =

∫

Rd

ϕ(x)µ(dx) ≃ 1

T

∫ T

0

ϕ(X t) dt.

(ii) Dynamical quantities (averages over trajectories): diffusion
coefficients, viscosity, transition rates,...

E(F((X t)t≥0)) ≃
1

M

M
∑

m=1

F((Xm
t )t≥0).

Difficulties: (i) high-dimensional problem (N ≫ 1); (ii) X t is a
metastable process and µ is a multimodal measure.
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Metastability: energetic and entropic barriers
A two-dimensional schematic picture
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−→ • Slow convergence of trajectorial averages
• Transitions between metastable states are rare events



Introduction Free energy and transition times Adaptive Multilevel Splitting Accelerated dynamics Conclusion

Simulations of biological systems
Unbinding of a ligand from a protein

(Diaminopyridine-HSP90, Courtesy of SANOFI)

Elementary time-step for the molecular dynamics = 10−15 s

Dissociation time = 0.5 s

Challenge: bridge the gap between timescales
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A toy example in material sciences
The 7 atoms Lennard Jones cluster in 2D.

(a) C0, V = −12.53 (b) C1, V = −11.50 (c) C2, V = −11.48

(d) C3, V = −11.40

Figure: Low energy conformations of the Lennard-Jones cluster.

−→ simulation
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Introduction

For computing thermodynamics quantities, there is a clear
classification of available methods, and the difficulties are now well
understood (in particular for free energy computations, see for
example [TL, Rousset, Stoltz, 2010]). On the opposite, computing efficiently
dynamical quantities remains a challenge.

Outline of the lectures:

1. Is free energy enough ?: Approximating transition times using
free energy. Coarse-graining, entropy techniques.

2. Adaptive Multilevel Splitting methods: Towards efficient
sampling of reactive paths. Rare event simulation.

3. Accelerated dynamics: These methods have been proposed by
A.F. Voter to generate efficiently metastable dynamics.
Kinetic Monte Carlo approximation and Quasi Stationary

Distributions.
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Introduction

Underlying mathematical questions: How to analyze a metastable
process ? How to properly define and quantify metastability ?

Various approaches:

• Rate of convergence to equilibrium: entropy techniques [Otto,

Villani, TL]; spectral analysis of the underlying Fokker-Planck
operator [Schuette, Helffer, Nier, Pavliotis]; potential theoretic approaches
[Bovier, Schuette, Hartmann,...].

• Exit time from metastable states versus decorrelation time:
large deviation techniques [Freidlin, Wentzell, Dupuis, Spiliopoulos,

Vanden-Eijnden, Weare, Touchette,...], quasi stationary distributions
[Gaudillière, TL,...].

• Asymptotic variance of trajectory averages: central limit
theorems, convergence analysis for stochastic approximation
algorithms [Borkar, Dama, TL, ...].
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Free energy, effective dynamics and transition times
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Free energy, effective dynamics and transition times

Recall the original dynamics

dX t = −∇V (X t) dt +
√

2β−1dW t

with invariant measure dµ = Z−1 exp(−βV (x)) dx . Let us be
given a smooth one dimensional function ξ : Rd → R. Let
A : R → R be the free energy associated with ξ.

Question: What is the dynamical content of A ? Can it be used to
build a surrogate dynamics for (ξ(X t))t≥ ? Does it make sense to
estimate transition times based on A, using the Arrhenius law:

transition time ≃ exp(β∆A)?
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Free energy

The free energy A : R → R is defined by:

exp(−βA(z)) = Z−1

∫

{x , ξ(x)=z}
exp(−βV (x)) δξ(x)−z(dx).

By construction, for any test function ϕ,

∫

ϕ ◦ ξdµ =

∫

ϕ(z) exp(−βA(z)) dz .

Question: Is the effective dynamics

dzt = −A′(zt) dt +
√

2β−1dBt

close to (ξ(X t))t≥0 ? It is indeed thermodynamically consistent
(the invariant measure is exp(−βA(z)) dz = ξ ∗ µ) but is it
dynamically consistent ?
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From free energy to transition times (1/2)

If the stochastic differential equation
dzt = −A′(zt) dt +

√

2β−1dBt is a good approximation of the
dynamics of (ξ(X t))t≥0, then one can deduce the Arrhenius law.

Let us consider a simple 1d case.

z−1

A(z)

1

First hitting time of the right well: for z0 ≤ 1,
τ1 = inf{t ≥ 0, zt ≥ 1}.



Introduction Free energy and transition times Adaptive Multilevel Splitting Accelerated dynamics Conclusion

From free energy to transition times (2/2)
Let us introduce the mean transition time to the right well, starting
from z0 = z : for z ≤ 1,

u(z) = E
z(τ1).

Then u satisfies:
{

A′(z)u′(z)− β−1u′′(z) = 1 for z ∈ (−∞, 1),
u′(−∞) = 0 and u(1) = 0.

Thus

u(z) = β

∫ 1

z

(
∫ y

−∞
exp(β(A(y)− A(x)) dx

)

dy .

Using the 2d Laplace’s method, one then gets: for all z < 0, in the
limit β → ∞ (A being fixed):

u(z) ≃ 2π
√

−A′′(0)A′′(−1)
exp(β(A(0)− A(−1))).
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Construction of an effective dynamics
By Itô, one has

dξ(X t) = (−∇V ·∇ξ+β−1∆ξ)(X t) dt+
√

2β−1|∇ξ(X t)|
∇ξ(X t)

|∇ξ(X t)|
·dW t

First attempt:

dz̃t = b̃(t, z̃t) dt +
√

2β−1σ̃(t, z̃t) dBt

with

b̃(t, z̃) = E

(

(−∇V · ∇ξ + β−1∆ξ)(X t)
∣

∣

∣
ξ(X t) = z̃

)

σ̃2(t, z̃) = E

(

|∇ξ|2(X t)
∣

∣

∣
ξ(X t) = z̃

)

.

Then, for all time t ≥ 0, L(ξ(X t)) = L(z̃t) ! But b̃ and σ̃ are
untractable numerically...
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Construction of an effective dynamics
By Itô, one has

dξ(X t) = (−∇V ·∇ξ+β−1∆ξ)(X t) dt+
√

2β−1|∇ξ(X t)|
∇ξ(X t)

|∇ξ(X t)|
·dW t

The effective dynamics:

dzt = b(zt) dt +
√

2β−1σ(zt) dBt

with

b(z) = Eµ

(

(−∇V · ∇ξ + β−1∆ξ)(X )
∣

∣

∣
ξ(X ) = z

)

σ2(z) = Eµ

(

|∇ξ|2(X )
∣

∣

∣
ξ(X ) = z

)

.

Related approaches: Mori-Zwanzig and projection operator
formalism [E/Vanden-Eijnden, ...], asymptotic approaches [Papanicolaou, Freidlin,

Pavliotis/Stuart, ...].
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Link with the free energy

• It can be checked that b = −σ2A′ + β−1∂z(σ
2) so that the

effective dynamics rewrites:

dzt = σ2(zt)
(

−A′(zt) + β−1∂z(lnσ
2)(zt)

)

dt +
√

2β−1σ(zt) dBt .

In particular (i) the effective dynamics is reversible wrt ξ ∗ µ
and (ii) if |∇ξ(x)| = 1, then σ(z) = 1, and b(z) = −A′(z).

• Let us replace ξ by
ζ(x) = h(ξ(x))

where h′(z) = 1/σ(z). Then, the effective dynamics
associated to ζ(x) is

dzt = −A′(zt) dt +
√

2β−1 dBt

where A is the free energy associated to ζ.
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Error analysis: trajectories

Assume ξ(x1, . . . , xn) = x1 for simplicity and:

(H1) Timescale separation: the conditional probability measures
µ(·|ξ(x) = z) satisfy a Poincaré inequality with constant ρ,

(H2) Bounded coupling: ‖∂1∂2,...,nV ‖L2(µ) ≤ κ,

(H3) b is one-sided Lipschitz (b′ ≤ Lb) and such that
∫

Rd

(

sup
y∈[−|x |,|x |]

|b′(y)|
)2

µ(dx) <∞.

Then, if z0 = ξ(X 0) is distributed according to a measure µ0 such
that dµ0

dµ ∈ L∞,

E

(

sup
t∈[0,T ]

|ξ(Xt)− zt |
)

≤ C
κ

ρ

The proof [Legoll, TL, Olla] uses probabilistic arguments (Poisson
equations, and Doob’s martingale inequality).



Introduction Free energy and transition times Adaptive Multilevel Splitting Accelerated dynamics Conclusion

Proof of a weaker result (1/2)

Assume that X 0 ∼ µ. Since ξ(x1, . . . , xn) = x1, we have

dX 1
t = −∂1V (X t) dt +

√

2β−1dW 1
t

dzt = −A′(zt) dt +
√

2β−1dW 1
t

and thus
d(X 1

t − zt)

dt
= −(A′(X 1

t )− A′(zt)) + et

where et = A′(X 1
t )− ∂1V (X t). Thus, by Gronwall, since

ξ(X 0) = z0, E(et) = E(e0) and A′′ ≥ −Lb by (H3):

1

2
E

(

sup
s≤t

|X 1
s − zs |

)

≤ E

∫ t

0

eLb(t−s)|es | ds

=
eLbt − 1

Lb
E(|e0|).
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Proof of a weaker result (2/2)
Now, using (H1) and (H2),

E(|e0|)2 ≤ E(|e0|2)

=

∫

|∂1V (x)− A′(x1)|2µ(dx)

=

∫ ∫

|∂1V (x)− A′(x1)|2µ(dx |ξ(x) = z) exp(−βA(z))dz

≤ 1

ρ

∫ ∫

|∂2,...n∂1V (x)|2µ(dx |ξ(x) = z) exp(−βA(z))dz

≤ κ2

ρ
.

This yields

E

(

sup
s≤t

|X 1
s − zs |

)

≤ C
κ√
ρ

with C = eLbt−1
Lb

.
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Remark: Application to the averaging principle

These techiques can be used to obtain quantitative limiting results
for two-timescale systems such as:











dX
1,ε
t = −∂1V (X ε

t ) dt +
√

2β−1dW 1
t

dX
i ,ε
t = −∂iV (X ε

t )

ε
dt +

√

2β−1

ε
dW i

t for i = 2, . . . , n

Then, under the assumptions of the former result:

E

(

sup
0≤t≤T

∣

∣

∣
X

1,ε
t − zt

∣

∣

∣

)

≤ C
√

βε
κ

ρ
.

Notice that we do not assume b globally Lipschitz.
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Error analysis: time marginals

Assume that ξ(x1, . . . , xn) = x1 for simplicity and:

(H1’) Timescale separation: the conditional probability measures
µ(·|ξ(x) = z) satisfy a Logarithmic Sobolev Inequality with
constant ρ,

(H2’) Bounded coupling: ‖∂1∂2,...,nV ‖L∞ ≤ κ.

Then, ∃C > 0, ∀t ≥ 0,

H(L(ξ(X t)),L(zt)) ≤ C
κ

ρ

(

H(L(X 0)|µ)− H(L(X t)|µ)
)

.

The proof [Legoll, TL] is based on a decomposition of the entropy
proposed in [Grunewald/Otto/Villani/Westdickenberg], and relies on entropy
estimates.
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Numerical illustration: dimer in a solvant
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• Solvent-solvent, solvent-monomer: truncated LJ for ‖xi − xj‖,
• Monomer-monomer: double well potential for ‖x1 − x2‖.

ξ is the distance between the two monomers: ξ(x) = ‖x1 − x2‖.
Transition times from the compact to the stretched state:

β Reference Eff. dyn. Eff. Dyn. with σ = 1

0.5 262 ± 6 245 ± 5 504 ± 11

0.25 1.81 ± 0.04 1.68 ± 0.04 3.47 ± 0.08
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Conclusion

Back to our question: Can we justify the use of the free energy to
estimate transition times ?

We have:

• Short time analysis on trajectories

• Long time analysis on marginals

−→ This is not enough !

See however the recent work [W. Zhang, C. Hartmann and C.
Schuette, Effective dynamics along given reaction coordinates, and

reaction rate theory, Faraday Discussion, 195, 365-394, 2016].
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How to efficiently simulate metastable dynamics ?

There are many approaches:

• Going from state A to state B:
• Local search: the string method [E, Ren, Vanden-Eijnden], max flux

[Skeel], transition path sampling methods [Chandler, Bolhuis, Dellago],
• Global search, ensemble of trajectories: AMS [Cérou, Guyader, TL],

transition interface sampling [Bolhuis, van Erp], forward flux
sampling [Allen, Valeriani, ten Wolde], milestoning techniques [Elber,

Schuette, Vanden-Eijnden]

• Importance sampling approaches on paths, reweighting [Dupuis,

Vanden-Einjden, Weare, Schuette, Hartmann]

• State-to-state dynamics, adaptive kMC [Voter, Perez, Henkelman]

• Saddle point search techniques [Mousseau, Henkelman, Wales] and graph
exploration [Cameron]

• Starting from a long trajectory, extract states: clustering,
Hidden Markov chain [Schuette]
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Splitting strategies

A B
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Multilevel splitting
We would like to sample trajectories between two given metastable
states A and B . The main assumption is that we are given a
smooth one dimensional function ξ : Rd → R (s.t. |∇ξ| 6= 0) which
"indexes" the transition from A to B in the following sense:

A ⊂ {x ∈ R
d , ξ(x) < zmin} and B ⊂ {x ∈ R

d , ξ(x) > zmax},

where zmin < zmax, and Σzmin
(resp. Σzmax

) is “close” to ∂A
(resp. ∂B).

Example: ξ(x) = ‖x − xA‖ where xA ∈ A is a reference configuration in A.

We are interested in the event {τA < τB}, starting from an initial
condition on Σzmin

, where

τA = inf{t > 0, X t ∈ A}, τB = inf{t > 0, X t ∈ B}

and
τz = inf{t > 0, ξ(X t) > z}.
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Multilevel splitting

Question: How to compute dynamical quantities using ξ ? More
precisely, we consider: (a) Reactive trajectories and (b) Transition
times between the two metastable states A and B .

We propose a multilevel splitting approach [Kahn, Harris, 1951] [Rosenbluth,

1955] to discard failed trajectories and branch trajectories
approaching the rare set. We focus on an adaptive variant [Cérou,

Guyader, 2007] [Cérou, Guyader, TL, Pommier, 2011]: the Adaptive Multilevel
Splitting (AMS) algorithm.

Remark: The algorithm can be seen as a kind of adaptive Forward Flux

Sampling [Allen, Valeriani, Ten Wolde, 2009]. It is also related to the Interface

Sampling Method [Bolhuis, van Erp, Moroni 2003] and the Milestoning method

[Elber, Faradjian 2004]. See the review paper [Bolhuis, Dellago, 2009]. Another

splitting technique in MD: weighted ensemble method [Zuckerman, 2010].



Introduction Free energy and transition times Adaptive Multilevel Splitting Accelerated dynamics Conclusion

Reactive trajectory

A reactive trajectory between two metastable sets A and B is a
piece of equilibrium trajectory that leaves A and goes to B without
going back to A in the meantime [Hummer,2004] [Metzner, Schütte, Vanden-Eijnden,

2006].

A B

Difficulty: A trajectory leaving A is more likely to go back to A

than to reach B .
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Splitting algorithm: basic idea

The idea of splitting algorithms (FFS, TIS, RESTART, ...) is to write
the rare event

{τB < τA}
as a sequence of nested events: for zmin < z1 < . . . < zmax,

{τz1 < τA} ⊃ {τz2 < τA} ⊃ . . . ⊃ {τzmax
< τA} ⊃ {τB < τA}

and to simulate the successive conditional events: for q = 1, 2, . . .,

{τzq < τA} knowing that {τzq−1 < τA}.

It is then easy to build an unbiased estimator of

P(τB < τA) = P(τz1 < τA)P(τz2 < τA|τz1 < τA) . . .P(τB < τA|τzmax
< τA)
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Splitting algorithm: adaptive level computation
Problem: How to choose the intermediate levels (zq)q≥1 ?

It is easy to check that, for a given number of intermediate levels,
the optimum in terms of variance is attained if

P(τzq < τA|τzq−1 < τA) is constant .

This naturally leads to adaptive versions (AMS, nested sampling)

where the levels are determined by using empirical quantiles:
choose k < n, and given n trajectories (Xm

t∧τA)t>0,m=1,...,n in the
event {τzq−1 < τA}, choose zq so that

P(τzq < τA|τzq−1 < τA) ≃
(

1 − k

n

)

.

The level zq is the k-th order statistics of supt≥0 ξ(X
m
t∧τA):

sup
t≥0

ξ(X
(1)
t∧τA) < . . . < sup

t≥0

ξ(X
(k)
t∧τA) =: zq < . . . < sup

t≥0

ξ(X
(n)
t∧τA).
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AMS: estimator of the rare event probability (1/2)

Let Qiter be the number of iterations to reach the level zmax:

Qiter = min{q ≥ 0, zq > zmax}

(where z0 is the k-th order statistics of the n initial trajectories). Then,
one obtains the estimator:

(

1 − k

n

)Qiter

≃ P(τzmax
< τA).
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AMS: estimator of the rare event probability (2/2)

At iteration Qiter, one has an ensemble of n trajectories starting
from Σzmin

and such that τzmax
< τA. Thus

p̂corr :=
1

n

n
∑

ℓ=1

1{TB (X
ℓ,Qiter )<TA(X

ℓ,Qiter )} ≃ P(τB < τA|τzmax
< τA).

p̂corr is the proportion of trajectories reaching B before A at the
last iteration Qiter.

Therefore, an estimator of P(τB < τA) is

(

1 − k

n

)Qiter

p̂corr.



Introduction Free energy and transition times Adaptive Multilevel Splitting Accelerated dynamics Conclusion

AMS Algorithm

A B
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AMS Algorithm: the case of Markov chains

In practice, the dynamics are discrete in time and thus, it may
happen that more than k trajectories are such that

sup
t≥0

ξ(X ℓ
t∧τA) ≤ sup

t≥0

ξ(X
(k)
t∧τA) =: zq

In this case, all the trajectories with maximum level smaller or equal
than zq should be discarded.

The actual estimator of P(τB < τA) thus reads:

p̂ =

(

1 − K1

n

)

. . .

(

1 − KQiter

n

)

p̂corr

instead of
(

1 − k
n

)Qiter

p̂corr, where Kq ≥ k is the effective number
of discarded trajectories at iteration q.
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AMS Algorithm: unbiasedness

Theorem [C.-E. Bréhier, M. Gazeau, L. Goudenège, TL, M. Rousset, 2016]: For any
choice of ξ, n and k ,

E(p̂) = P(τB < τA).

The proof is based on Doob’s stopping theorem on a martingale
built using filtrations indexed by the level sets of ξ. Actually, this
result is proved for general path observables and in a much more
general setting.

Practical counterparts:

• The algorithm is easy to parallelize.

• One can compare the results obtained with different reaction
coordinates ξ to gain confidence in the results.
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Numerical results: a 2D example
Time-discretization of the overdamped Langevin dynamics:

dX t = −∇V (X t) dt +
√

2β−1dW t

with a deterministic initial condition X 0 = x0 and the 2D potential
[Park, Sener, Lu, Schulten, 2003] [Metzner, Schütte and Vanden-Eijnden, 2006]
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A 2D example
The interest of this “bi-channel” potential is that, depending on the
temperature, one or the other channel is prefered to go from A

(around H− = (−1, 0)) to B (around H+ = (1, 0)).

Three reaction coordinates: ξ1(x , y) = ‖(x , y)− H−‖,
ξ2(x , y) = C − ‖(x , y)− H+‖ or ξ3(x , y) = x .

We plot as a function of the number N of independent realizations
of AMS, the empirical average

pN =
1

N

N
∑

m=1

p̂m

together with the associated empirical confidence interval:
[pN − δN/2, pN + δN/2] where

δN = 2
1.96√
N

√

√

√

√

1

N

N
∑

m=1

(p̂m)2 − (pN)
2
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A 2D example: flux of reactive trajectories
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A 2D example: k = 1, n = 100, β = 8.67
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A 2D example: k = 1, n = 100, β = 9.33
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A 2D example: k = 1, n = 100, β = 10
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A 2D example

Observations:

• When N is sufficiently large, confidence intervals overlap.

• For too small values of N, “apparent bias” is observed [Glasserman,

Heidelberger, Shahabuddin, Zajic, 1998].

• Fluctuations depend a lot on ξ.

−→ To gain confidence in the results, check that the estimated
quantity is approximately the same for different ξ’s.



Introduction Free energy and transition times Adaptive Multilevel Splitting Accelerated dynamics Conclusion

“Apparent bias” phenomenon

The apparent bias is due to the fact that [Glasserman, Heidelberger,

Shahabuddin, Zajic, 1998]:

• Multiple pathways exist to go from A to B .

• Conditionally to reach Σz before A, the relative likelihood of
each of these pathways depends a lot on z .

On our example, for small n, we indeed observe that (for ξ3):

• Most of the time, all replicas at the end go through only one
of the two channels (two possible scenarios).

• One of this scenario is rare.

• The values of p̂ associated to each of these two scenarios are
very different.

This explains the large fluctuations.
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“Apparent bias” phenomenon

Another 2D test case:
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“Apparent bias” phenomenon
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Computing transition times

To use the algorithm to compute transition times, we split a
transition path from A to B into: excursions from ∂A to Σzmin

and
then back to ∂A, and finally an excursion from ∂A to Σzmin

and
then to B . Assuming that A is metastable (p ≪ 1), one obtains
that the mean transition time is:

E(T ) =

(

1

p
− 1

)

E(T1 + T2) + E(T1 + T3)

where:

• p is the probability, once Σzmin
has been reached, to go to B

rather than A (approximated by p̂N) ;

• E(T1 + T2) is the mean time for an excursion from ∂A to
Σzmin

and then back to ∂A (approximated by DNS) ;

• E(T1 + T3) is the mean time for an excursion from ∂A to
Σzmin

and then to B (approximated by the AMS algorithm).
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A 1D example

We consider the double-well potential:

V (x) = x4 − 2x2,

which has two minima at ±1 and one saddle point at 0.
In this simple one dimensional setting, we set as metastable states
A = {−1} and B = {+1}, and the reaction coordinate is taken to
be simply

ξ(x) = x .

To test the consistency of the algorithm, we compute the
distribution of the time-lengths of the reactive paths and compare
to DNS (when possible).
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A 1D example
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A 1D example
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The 2D case

N β kAB C.I. on kAB
×103 (AMS) (AMS)

2 1.67 2.03 10−2 [1.83; 2.22] 10−2

10 1.67 1.84 10−2 [1.82; 1.86] 10−2

50 1.67 1.88 10−2 [1.87; 1.88] 10−2

100 1.67 1.89 10−2 [1.89; 1.90] 10−2

2 6.67 9.97 10−8 [7.74; 12.2] 10−8

10 6.67 9.20 10−8 [7.71; 10.7] 10−8

50 6.67 8.88 10−8 [8.42; 9.34] 10−8

100 6.67 9.32 10−8 [9.08; 9.57] 10−8

Estimates of the reaction rate kAB = 2/E(T ), with ξ = ξ2. Values
from [Metzner, Schütte, Vanden-Eijnden, 2006] are kAB = 1.912 10−2 for
β = 1.67 and kAB = 9.47 10−8 for β = 6.67.
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Recent results using NAMD

We are currently implementing AMS in the NAMD software
(collaboration with SANOFI, C. Mayne and I. Teo, PhD of L. Silva Lopes).

Three test cases:

• Alanine di-peptide (test case)

• β-cyclodextrin (in progress)

• benzamidine-trypsin dissociation rate
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Alanine di-peptide (1/5)

Two reaction coordinates:

• ξ1 is a continuous piecewise affine function of ϕ

• ξ2(ϕ, ψ) = min(dA(ϕ, ψ), 6.4)− min(dB(ϕ, ψ), 3.8)

Computational setting: no solvent, force field: CHARMM27. AMS with

n = 500 to 1000 replicas and k = 1.
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Alanine di-peptide (2/5)

Free energy landscape and zones A (yellow) and B (black).



Introduction Free energy and transition times Adaptive Multilevel Splitting Accelerated dynamics Conclusion

Alanine di-peptide (3/5)

Probability estimations using different initial conditions: D=DNS,
1=ξ1, 2=ξ2.
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Alanine di-peptide (4/5)

Flux of reactive trajectories, starting from two different initial
conditions.
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Alanine di-peptide (5/5)

Transition time obtained for two values of zmin: D=DNS, 1=ξ1,
2=ξ2. Reference value obtained by DNS over a 97 DNS simulations
of 2µs.
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β-cyclodextrin (1/3)

The β-cyclodextrin with ligands d and f .
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β-cyclodextrin (2/3)

−→ One reactive path obtained using AMS of the ligand 1f leaving
the cyclodextrin.

Computational setting: explicit solvent, about 6000 atoms, 2fs time step,

AMBER force field, parametrization with GAFF. AMS with n = 50

replicas and k = 1.
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β-cyclodextrin (3/3)

Estimate of the dissocation rate with AMS:

• ligand d: 1.36e+08 (± 1.e+08) fs (30 runs of AMS)

• ligand f: 2.65e+06 (± 6.23+05) fs (57 runs of AMS)

Experimental values (from [X. Zhang, G. Gramlich, X. Wang and W. M. Nau, J. Am.

Chem. Soc., 124 (2) 2002]):

• ligand d: 5.55e + 08 fs

• ligand f: 8.33e + 07 fs

Computational times: AMS gives 50 trajectories, with a total
simulation time = 4.4e+07 fs (d) ; 3.5e+07 fs (f).

... to be continued



Introduction Free energy and transition times Adaptive Multilevel Splitting Accelerated dynamics Conclusion

Benzamidine-trypsin (1/2)
We recently used AMS to estimate the off rate of benzamidine
from trypsin [I. Teo, C. Mayne, K. Schulten and TL, 2016].
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Benzamidine-trypsin (2/2)

We obtain a dissociation rate koff = (260 ± 240)s−1 within the
same order of magnitude as the experimentally measured rate
(600 ± 300)s−1.

The overall simulation time taken, summed over all 1000 replicas,
was 2.1µs (2.3µs after including direct MD and steered MD
simulations), which is four orders of magnitude shorter than the
estimated dissociation time of one event.

The main practical difficulty seems to be the determination of a
’good’ domain A.

Computational setting: 68 789 atoms, with 21 800 water molecules, 62

sodium ions, and 68 chloride ions. Water: TIP3P model. CHARMM36

force field, with parameters for benzamidine obtained from the CGenFF

force field. NPT conditions, at 298 K and 1 atm Langevin thermostat

and barostat settings, using 2 fs time steps. AMS with n = 1000 replicas

and k = 1.
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Another application
The AMS algorithm in other context: in collaboration with CEA,
AMS is currently implemented in the Tripoli code for nuclear safety
application.
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Conclusions (1/2)

Practical recommendations:

• A careful implementation of the splitting step leads to
unbiased estimators for non-normalized quantities.

• Perform many independent realizations of AMS.

• Use ξ as a numerical parameter.

The algorithm is very versatile:

• Non-intrusivity: the MD integrator is a black box.

• Can be applied both to entropic and energetic barriers.

• Can be adapted to generate trajectories of any stopped
process.

• Other models: non-homogeneous Markov process, random
fields, ...

• Algorithmic variants: other resampling procedure, additional
selection, ...
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Conclusions (2/2)

Works in progress:

• Implementation in the NAMD software (collaboration with SANOFI, C.

Mayne and I. Teo), and in TRIPOLI (collaboration with CEA).

• Computation of the committor function and adaptive
algorithm for the reaction coordinate ξ.

• Analysis of the efficiency as a function of ξ. For optimal choice
of ξ, the cost of AMS is (for n large)

(

(log p)2 − log p
)

much better than the cost of naive Monte Carlo: 1−p
p

. How does this degrade
when ξ departs from the optimal case ?



Introduction Free energy and transition times Adaptive Multilevel Splitting Accelerated dynamics Conclusion

Accelerated dynamics
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Accelerated dynamics
The aim of this part is twofold:

• First, discuss numerical methods to efficiently sample
metastable dynamics: the accelerated dynamics algorithms
proposed by A. Voter, D. Perez and collaborators.

• Second, justify rigorously kinetic Monte Carlo models which
are used to simulate metastable dynamics over long times
using a jump process between metastable states.

Both analysis will be based on the notion of quasi-stationary
distribution.

Outline of this part:

• Introduction of the quasi-stationary distribution.

• Accelerated dynamics: Parallel Replica, Parsplicing,
Hyperdynamics and Temperature Accelerated Dynamics.

• Precise asymptotic results of the first exit point density:
justifying kinetic Monte Carlo models, the Harmonic Transition
State Theory and the Eyring-Kramers formulas.
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Accelerated dynamics

The bottom line of the accelerated dynamics proposed by A. Voter
in the late 90’s is to get efficiently the state-to-state dynamics.
Three algorithms: Parallel replica, Hyperdynamics, Temperature
Accelerated Dynamics.

Let us consider the overdamped Langevin dynamics:

dX t = −∇V (X t) dt +
√

2β−1dW t

and let assume that we are given a mapping

S : Rd → N

which to a configuration in R
d associates a state number. Think of

a numbering of the wells of the potential V .

Objective: generate very efficiently a trajectory (St)t≥0 which has
(almost) the same law as (S(X t))t≥0.
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The Quasi-Stationary Distribution

How to take advantage of metastability to build efficient sampling
techniques ?

Let us consider a metastable state W , and

TW = inf{t ≥ 0,X t 6∈ W }.

Lemma: Let X t start in the well W . Then there exists a probability
distribution ν with support W such that

lim
t→∞

L(X t |TW > t) = ν.

Remark: Quantitative definition of a metastable state:
exit time ≫ local equilibration time
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The Quasi-Stationary Distribution

Property 1: ∀t > 0, ∀A ⊂ W ,

ν(A) =

∫

W

P(X x
t ∈ A, t < T x

W ) ν(dx)
∫

W

P(t < T x
W ) ν(dx)

.

If X 0 ∼ ν and if (X s)0≤s≤t has not left the well, then X t ∼ ν.

Property 2: Let L = −∇V · ∇+ β−1∆ be the infinitesimal
generator of (X t). Then the density u1 of ν (dν = u1(x)dx) is the
first eigenfunction of L∗ = div (∇V + β−1∇) with absorbing
boundary conditions:

{

L∗u1 = −λ1u1 on W ,

u1 = 0 on ∂W .
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The Quasi-Stationary Distribution

Property 3: If X 0 ∼ ν then,

• the first exit time TW from W is exponentially distributed
with parameter λ1 ;

• TW is independent of the first hitting point XTW
on ∂W ;

• the exit point distribution is proportional to −∂nu1: for all
smooth test functions ϕ : ∂W → R,

E
ν(ϕ(XTW

)) = −

∫

∂W
ϕ∂nu1 dσ

βλ1

∫

W

u1(x) dx

.
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Link with kinetic Monte Carlo models (1/2)
Starting from the QSD in W , the exit event from W is Markovian:
it can be rewritten as one step of a Markov jump process (kinetic
Monte Carlo or Markov state model):

∂W1

∂W2

∂W3

∂W4



Introduction Free energy and transition times Adaptive Multilevel Splitting Accelerated dynamics Conclusion

Link with kinetic Monte Carlo models (2/2)

Let us introduce λ1 = 1/E(TW ) and

p(i) = P(XTW
∈ ∂Wi ) = −

∫

∂Wi

∂nu1 dσ

βλ1

∫

W

u1(x) dx

.

To each possible exit region ∂Wi is associated a rate k(i) = λ1p(i).
If τi ∼ E(k(i)) are independent, then

• The exit time is min(τ1, . . . , τI );

• The exit region is arg min(τ1, . . . , τI ).
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Escaping from a metastable state

How to use these properties to design efficient algorithms ?

Assume that the stochastic process remained trapped for a very
long time in a metastable state W . How to accelerate the escape
event from W , in a statistically consistent way ?

Remark: In practice, one needs to:

• Choose the partition of the domain into (metastable) states;

• Associate to each state an equilibration time (a.k.a.
decorrelation time).

These are not easy tasks... we will come back to that.

Remark: All the algorithms below equally apply to the Langevin
dynamics. The extensions of the mathematical results to the
Langevin dynamics are not straightforward though...
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The accelerated dynamics

Four numerical methods:

• The parallel replica algorithm

• The parsplicing algorithm

• The hyperdynamics

• The Temperature Accelerated Dynamics
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The Parallel Replica Algorithm
Idea [Voter, 1998]: perform many independent exit events in parallel.

Two steps:
• Distribute N independent initial conditions in W according to

the QSD ν ;
• Consider the first exit event, and multiply it by the number of

replicas.
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The Parallel Replica Algorithm
Why is it consistent ?

• Exit time is independent of exit point so that

X
I0

T
I0
W

L
= X 1

T 1
W
,

where I0 = arg mini (T
i
W );

• Exit times are i.i.d. exponentially distributed so that, for all N,

N min(T 1
W , . . . ,T

N
W )

L
= T 1

W .

Remark: In practice, discrete time processes are used. Exponential
laws become geometric, and one can adapt the algorithm by using
the identity [Aristoff, TL, Simpson, 2014]: if τi i.i.d. with geometric law,

N[min(τ1, . . . , τN)− 1] + min[i ∈ {1, . . . ,N}, τi = min(τ1, . . . , τN)]
L
= τ1.



Introduction Free energy and transition times Adaptive Multilevel Splitting Accelerated dynamics Conclusion

The Parallel Replica Algorithm

This algorithm is very versatile: it works for entropic barriers, and
for any partition of the state space into states. But it requires some
a priori knowledge on the system: the local equilibration time τcorr
attached to each state S .

Two questions: How to choose τcorr ? How to sample the QSD ?

One can use a generalized Parallel Replica algorithm [Binder, TL, Simpson,

2014] to solve these issues. It is based on two ingredients:

• the Fleming-Viot particle process

• the Gelman-Rubin statistical test
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The Fleming-Viot particle process
Start N processes i.i.d. from µ0, and iterate the following steps:

1. Integrate (in parallel) N realizations (k = 1, . . . ,N)

dX k
t = −∇V (X k

t ) dt +
√

2β−1dW k
t

until one of them, say X 1
t , exits;

2. Kill the process that exits;

3. With uniform probability 1/(N − 1), randomly choose one of
the survivors, X 2

t , . . . ,X
N
t , say X 2

t ;

4. Branch X 2
t , with one copy persisting as X 2

t , and the other
becoming the new X 1

t .

It is known that the empirical distribution

µt,N ≡ 1

N

N
∑

k=1

δX k
t

satisfies:
lim

N→∞
µt,N = L(X t |t < TW ).
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The generalized Parallel Replica algorithm

1. Run a reference walker, using standard MD.

2. Each time the reference walker enters a state, start a
Fleming-Viot particle process (with N replicas simulated in
parallel) with initial condition the entering point.

3. If the reference walker exits before the Fleming Viot particle
process reaches stationarity go back to 1. Else go to the
parallel step.

4. Parallel step: Starting from the end points of the Fleming-Viot
particle process (approximately i.i.d. with law the QSD), run
independent MD and consider the first exit event. Multiply the
first exit time by N and go back to 1, using the first exit point
as initial condition.

The time at which the Fleming-Viot particle process becomes
stationary is determined using the Gelman-Rubin statistical test.
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Numerical test case: the 7 atoms LJ cluster

(a) C0, V = −12.53 (b) C1, V = −11.50 (c) C2, V = −11.48

(d) C3, V = −11.40

We study the escape from the configuration C0 using overdamped
Langevin dynamics with β = 6. The next visited states are C1

or C2.
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Numerical test case: the 7 atoms LJ cluster

Method TOL 〈T 〉 P[C1] P[C2]

Serial – 17.0 (0.502, 0.508) (0.491, 0.498)
ParRep 0.2 19.1 (0.508, 0.514) (0.485, 0.492)
ParRep 0.1 18.0 (0.506, 0.512) (0.488, 0.494)
ParRep 0.05 17.6 (0.505, 0.512) (0.488, 0.495)
ParRep 0 .01 17.0 (0.504, 0.510) (0.490, 0.496)

Method TOL 〈tcorr〉 〈Speedup〉 % Dephased

Serial – – – –
ParRep 0.2 0.41 29.3 98.5%
ParRep 0.1 .98 14.9 95.3%
ParRep 0.05 2.1 7.83 90.0%
ParRep 0 .01 11 1.82 52.1%
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Numerical test case: the 7 atoms LJ cluster

Figure: LJ
2D

7
: Cumulative distribution function of the escape time

from C0.
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The Parallel Trajectory Splicing algorithm

Idea [Perez, Cubuk, Waterland, Kaxiras, Voter, 2015]:

• Simulate in parallel short trajectories which start from the
QSD in a state, and end at the QSD in a state.

• Glue together these short trajectories to build the full
dynamics.
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The Hyperdynamics
Idea [Voter, 1997]: raise the potential in W to reduce the exit time.

Two steps:
• Equilibrate on the biased potential V + δV ;
• Wait for an exit and multiply the exit time T δV

W by the boost

factor B = 1

T δV
W

∫ T δV
W

0 exp(β δV (X t)) dt.
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The Hyperdynamics

Why is it consistent ?

Recall property 3 go to Prop3 . The underlying mathematical
question is: how λ1 and ∂nu1 are modified when V is changed to
V + δV ?

Recall that
{

div (∇V u1 + β−1∇u1) = −λ1u1 on W ,

u1 = 0 on ∂W .

Strategy: change u1 to u1 exp(V /2) and use results from
semi-classical analysis for boundary Witten Laplacians in order to
characterize (λ1, ∂nu1) in terms of V .
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The Hyperdynamics: mathematical analysis
Assumptions on V . We assume there exists W− ⊂⊂ W such that:

• Regularity: V and V |∂W are Morse functions ;

• Localization of the small eigenvectors in W−:
(i) |∇V | 6= 0 in W \W− ,
(ii) ∂nV > 0 on ∂W− ,
(iii) min∂W V ≥ min∂W− V ,
(iv) min∂W− V − cvmax > cvmax − minW− V where

cvmax = max{V (x), x s.t. |∇V (x)| = 0} ;

• Non degeneracy of exponentially small eigenvalues: The
critical values of V in W− are all distinct and the differences
V (y)− V (x), where x ∈ U (0) ranges over the local minima of
V |W− and y ∈ U (1) ranges over the critical points of V |W−

with index 1, are all distinct.

Assumptions on δV .

• V + δV satisfies the same assumptions as V ;

• δV = 0 on W \W− .
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The Hyperdynamics: mathematical analysis
Result [TL, Nier, 2013]: Under the above assumptions on the potentials
V and (V + δV ), there exists c > 0 such that, in the limit β → ∞,

λ1(V + δV )

λ1(V )
=

∫

W
e−βV

∫

W
e−β(V+δV )

(1 +O(e−βc)) ,

∂n [u1(V + δV )]
∣

∣

∂W

‖∂n [u1(V + δV )]‖L1(∂W )

=
∂n [u1(V )]

∣

∣

∂W

‖∂n [u1(V )] ‖L1(∂W )
+O(e−βc) in L1(∂W ) .

Remark: We indeed have

B =
1

T δV
W

∫ T δV
W

0

exp(β δV (X t)) dt.

≃
∫

W
exp(βδV ) exp(−β(V + δV ))
∫

W
exp(−β(V + δV ))

=

∫

W
exp(−βV )

∫

W
exp(−β(V + δV ))

.
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The Hyperdynamics: idea of the proof

Use semi-classical analysis for boundary Witten laplacians (f = V ,
h = 2/β).

• Build quasimodes for ∆
D,(p)
f ,h (W ) (p = 0, 1) using eigenvectors

of ∆
N,(p)
f ,h (W−) (p = 0, 1) and of ∆

D,(1)
f ,h (W \W−).

• Analyze the asymptotics of the singular values of the restricted
differential (ν(h) ≤ h and limh→0 h log(ν(h)) = 0)

df ,h : F (0) → F (1) where F (p) = Ran
(

1[0,ν(h)]

(

∆
D,(p)
f ,h (W )

))

.

This is a finite dimensional linear operator.

• Show that, up to exponentially small terms,
λ1(V ) = A∫

W
exp(−βV )

(1 +O(e−
c
h )) and ∂nu1

‖∂nu1‖ = B +O(e−
c
h )

where A and B only depends on the eigenvectors of

∆
D,(1)
f ,h (W \W−), and are thus not modified when changing V

to V + δV .
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The Temperature Accelerated Dynamics
Idea [Sorensen, Voter, 2000]: increase the temperature to reduce the exit
time.

Algorithm:
• Observe the exit events from W at high temperature ;
• Extrapolate the high temperature exit events to low

temperature exit events.

x1

z1

z2

z3

z4

∂W1

∂W2

∂W3∂W4
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Extrapolation procedure (1/2)
Recall that, starting from the QSD, the exit event from a given
state W can exactly be modelled using a kinetic Monte Carlo
model with rates

k(i) = λ1p(i)

where λ1 = 1/E(TW ) is the exit rate and

p(i) = P(XTW
∈ ∂Wi ) = −

∫
∂Wi

∂nu1 dσ

βλ1

∫
W

u1(x) dx
.

x1

z1

z2

z3

z4

∂W1

∂W2

∂W3∂W4
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Extrapolation procedure (2/2)

Extrapolating from high temperature to low temperature:

The extrapolation procedure is based on the empirical
Eyring-Kramers law (HTST): for large β,

k(i) = λ1p(i) ≃ Ai exp(−β(V (zi )− V (x1)))

where Ai is independent of β, which yields

k lo(i)

khi (i)
=
λlo1 p

lo(i)

λhi1 phi (i)
≃ exp(−(βlo − βhi )(V (zi )− V (x1))).

Algorithm: observe exit events at high temperature, extrapolate the
rates to low temperature, stop when the extrapolated event will not
modify anymore the low temperature exit event.

Remark: TAD can be seen as a smart saddle point search method.
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Eyring-Kramers law
If the Eyring-Kramers law is exactly satisfied, one can show that
the temperature accelerated dynamics method is exact.

Mathematical question: Under which assumptions is the
Eyring-Kramers law satisfied ? This is again a semi-classical
analysis problem...

In 1D, this can be done. In the
limit βhi , βlo → ∞, βlo/βhi =
r , under appropriate assump-
tions, one has [Aristoff, TL, 2014]:

b10

λhiphii
λloploi

= e−(βhi−βlo)(V (zi )−V (x1))

(

1 + O

(

1

βhi
− 1

βlo

))
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kinetic Monte Carlo and Harmonic Transition State Theory

x1

z1

z2

z3

z4

∂W1

∂W2

∂W3∂W4
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kMC models
Let us go back to the kinetic Monte Carlo model.

∂W1

∂W2

∂W3

∂W4

To each exit region ∂Wi is associated a rate k(i). Let τi ∼ E(k(i))
be independent exponential random variables. And then,

• The exit time is min(τ1, . . . , τI );

• The exit region is arg min(τ1, . . . , τI ).

Thus, (i) exit time and exit region are independent r.v. ; (ii) exit
time is E(k(1) + . . .+ k(I )); (iii) exit region is i with prob.

k(i)
k(1)+...+k(I ) .



Introduction Free energy and transition times Adaptive Multilevel Splitting Accelerated dynamics Conclusion

The Eyring Kramers law and HTST
In practice, kMC models are parameterized using HTST.

x1

z1

z2

z3

z4

∂W1

∂W2

∂W3∂W4

We assume in the following V (z1) < V (z2) < . . . < V (zI ).

Eyring Kramers law (HTST): k(i) = Ai exp (−β(V (zi )− V (x1)))
where Ai is a prefactor depending on V at zi and x1.
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kMC and HTST

Thus, one obtains the following law for the exit event:

• exit time and exit region are independent r.v.

• exit time is E(k(1) + . . .+ k(I )) and, when β is large

k(1) + . . .+ k(I ) ≃ k(1) = A1 exp (−β(V (z1)− V (x1)))

• exit region is i with probability k(i)
k(1)+...+k(I ) and, when β is

large,

k(i)

k(1) + . . .+ k(I )
≃ k(i)

k(1)
=

Ai

A1

exp (−β(V (zi )− V (z1)))

Our aim: justify these formulas.
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Back to overdamped Langevin and the QSD
Starting from the QSD dν = u1(x)dx , we already know that

• the exit time TW and the exit point XTW
are independent r.v.

• the exit time is exponentially distributed with parameter λ1

• the exit region is ∂Wi with probability

p(i) = P(XTW
∈ ∂Wi ) = −

∫

∂Wi

∂nu1 dσ

βλ

∫

W

u1(x) dx

.

We thus need to prove that

λ1 ≃ A1 exp (−β(V (z1)− V (x1)))

and

−

∫

∂Wi

∂nu1 dσ

βλ1

∫

W

u1(x) dx

≃ Ai

A1

exp (−β(V (zi )− V (z1))).
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Small temperature regime
The question is thus: consider (λ1, u1) such that (first eigenvalue

eigenfunction pair)

{

div (∇Vu1 + β−1∇u1) = −λ1u1 on W ,

u1 = 0 on ∂W .

We assume wlg u1 > 0 and
∫

u2

1
eβV = 1.

In the small temperature regime (β → ∞), prove that

λ1 ≃ A1 exp (−β(V (z1)− V (x1)))

and

−

∫

∂Wi

∂nu1 dσ

βλ1

∫

W

u1(x) dx

≃ Ai

A1

exp (−β(V (zi )− V (z1))).
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Assumptions
• W is an open bounded smooth domain in R

d .
• V : W → R is a Morse function with a single critical point x1.

Moreover, x1 ∈ W and V (x1) = minW V .
• ∂nV > 0 on ∂W and V |∂W is a Morse function with local

minima reached at z1, . . . , zI with V (z1) < . . . < V (zI ).
• V (z1)− V (x1) > V (zI )− V (z1)
• ∀i ∈ {1, . . . I}, consider Bzi the basin of attraction for the

dynamics ẋ = −∇TV (x) and assume that

inf
z∈Bc

zi

da(z , zi ) > V (zI )− V (z1)

x1

z1

z2

z3

z4
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Agmon distance

Here, da is the Agmon distance:

da(x , y) = inf
γ

∫ 1

0

g(γ(t))|γ′(t)| dt

where g =

{

|∇V | in W

|∇TV | in ∂W
, and the infimum is over all Lipschitz

paths γ : [0, 1] → W such that γ(0) = x and γ(1) = y . A few

properties:

• One has ∀x , y ∈ W , |V (x)− V (y)| ≤ da(x , y) ≤ C |x − y |
• On a neighborhood V of a local minima zi , the function
x 7→ da(x , zi ) satisfies the eikonal equation: |∇Φ|2 = |∇V |2
on V with boundary conditions Φ = V on V ∩ ∂W , and
Φ ≥ V (zi ).
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Results

[G. Di Gesu, TL, D. Le Peutrec and B. Nectoux] In the limit β → ∞, the exit rate is

λ1 =

√

β

2π
∂nV (z1)

√

det(HessV )(x1)
√

det(HessV|∂W )(z1)
e−β(V (z1)−V (x1))(1+O(β−1)).

Moreover, for all open set Σi containing zi such that Σi ⊂ Bzi ,

∫

Σi
∂nu1 dσ
∫

W
u1

= −Ci (β)e
−β(V (zi )−V (x1))(1 + O(β−1)),

where Ci (β) =
β3/2
√

2π
∂nV (zi )

√

det(HessV )(x1)
√

det(HessV |∂W )(zi )
. Therefore,

P
ν(XTW

∈ Σi ) =
∂nV (zi )

√

det Hess(V |∂W )(z1)

∂nV (z1)
√

det Hess(V |∂W )(zi )
e−β(V (zi )−V (z1))(1+O(β−1)).
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Related results in the literature (1/3)

The result on λ1 is well known and actually holds under weaker
assumptions. See for example [Helffer Nier] [Le Peutrec].

Similar formulas are obtained concerning the problem on the whole
domain to compute the cascade of timescales down to the global
minimum.

• Potential theoretic approaches [Bovier, Schuette, Hartmann,...]

• Spectral analysis of the Fokker Planck operator on the whole
space and semi-classical analysis [Holley, Kusuoka, Stroock, Miclo, Sjöstrand,

Helffer, Nier, Pavliotis, Schuette]

Warning: The exit rate is (1/2) times the transition rate !
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Related results in the literature (2/3)
Another approach to study the exit problem from a domain: Large
deviation techniques [Freidlin, Wentzell, Day, Vanden Eijnden, Weare, Touchette,...].

Compared to our approach, the assumptions in LD are much less
stringent but LD only provides the exponential rates (not the
prefactors) and LD does not provide error bounds. (Moreover the fact that

the exit time is exponentially distributed and the independance property between exit time and exit

point are only obtained when β = ∞.)

There are also PDE versions of these results see [Matkowsky, Schuss, Maier,

Stein] for formal expansions, and [Holley, Kusuoka, Stroock, Kamin, Friedman, Mathieu,

Perthame] for precise results.

Typical result [Freidlin, Wentzell, Theorem 5.1]: for all W ′ ⊂⊂ W , for any
γ > 0, for any δ > 0, there exists δ0 ∈ (0, δ] and β0 > 0 such that
for all β ≥ β0, for all x ∈ W ′ such that f (x) < min∂W f and for all
y ∈ ∂W ,

exp(−β(V (y)− V (z1) + γ)) ≤ P
x(XTW

∈ Vδ0(y))

≤ exp(−β(V (y)− V (z1)− γ))
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Related results in the literature (3/3)

Why do we care about prefactors ?

Consider a situation with two local minima on the boundary
(V (z1) < V (z2)). Compare

• the probability to leave through Σ2 such that z2 ∈ Σ2,
Σ2 ⊂ Bz2 and

• the probability to leave through Σ such that Σ ⊂ Bz1 and
infΣ V = V (z2).

Then, in the limit β → ∞,

P
ν(XTW

∈ Σ)

Pν(XTW
∈ Σ2)

= O(β−1/2).
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Discussion on the assumptions (1/5)

The assumption

∀i ∈ {1, . . . I}, inf
z∈Bc

zi

da(z , zi ) > V (zI )− V (z1)

seems indeed important to get the expected results.
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Discussion on the assumptions (2/5)
Let us consider the potential function V (x , y) = x2 + y2 − ax with
a ∈ (0, 1/9) on the domain W . Two saddle points: z1 = (1, 0) and
z2 = (−1, 0) (and V (z2)− V (z1) = 2a). One can check that the
above assumptions are satisfied.

Σ2

z2 z1

The domain W

x1
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Discussion on the assumptions (3/5)
With a = 1/10, let us plot

• the numerical results f : β 7→ ln P
ν(XTW

∈ Σ2)

• the theoretical result g : β 7→ lnB2 − β(V (z2)−V (z1)), where

B2 =
∂nV (z2)

√
det Hess(V |∂W )(z1)

∂nV (z1)
√

det Hess(V |∂W )(z2)
is the expected prefactor.
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Discussion on the assumptions (4/5)
Same result with a = 1/20.
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Discussion on the assumptions (5/5)
We now modify the potential such that the assumption on the
Agmon distance is not satisfied anymore.
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Sketch of the proof
The difficult part is to find an approximation for
∫

Σi
∂nu1dσ =

∫

Σi
∂nv1e

−βV , where v1 = u1e
βV .

We have
{

L(0)v1 = −λ1v1 on W ,

v1 = 0 on ∂W ,

where L(0) = β−1∆−∇V · ∇ is a self adjoint operator on
L2(e−βV ). We are interested in ∇v1 · n, and ∇v1 satisfies











L(1)∇v1 = −λ1∇v1 on W ,

∇T v1 = 0 on ∂W ,

(β−1div −∇V ·)∇v1 = 0 on ∂W ,

where
L(1) = β−1∆−∇V · ∇ − Hess(V ).

Therefore ∇v1 is an eigenvector (eigen-1-form) of −L(1) associated
with the small eigenvalue λ1.
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Sketch of the proof

Let Π(p) = 1[0,β−3/2](−L(p)) be the spectral projection operator on

small eigenvalues. We know that, for β large, dim(RanΠ(0)) = 1
and dim(RanΠ(1)) = I [Helffer,Sjöstrand]:

RanΠ(0) = Span(v1)

RanΠ(1) = Span(ψ1, . . . , ψI ).

Since ∇v1 ∈ RanΠ(1),

∫

Σi

∂nv1 exp(−βV ) =
I
∑

j=1

〈∇v1, ψj〉L2(e−βV )

∫

Σi

ψj · ne−βV .

The idea is now to build so-called quasi-modes which approximate
the eigenvectors of L(0) and L(1) associated with small eigenvalues
in the regime β → ∞, in order to approximate the terms in the
sum.
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Sketch of the proof

• RanΠ(0): an approximation of v1 is given by

ṽ = Z−11W ′

where W ′ ⊂⊂ W .

• RanΠ(1): an approximation of RanΠ(1) is Span(ψ̃1, . . . , ψ̃I )
where (ψ̃i )1≤i≤I are solutions to auxiliary eigenvalue problems,
attached to the local minima (zi )1≤i≤I .

Two tools:

• Agmon estimates (the support of ψ̃i is essentially in a
neighborhood of zi ):

∃N > 0, ‖eβda(zi ,·)/2ψ̃i‖H1(e−βV ) = O(βN).

• WKB approximations:

∃N > 0, ψ̃i ≃ Z−1
i d(eβV /2e−βda(zi ,·)/2)βp.
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Sketch of the proof
The last step consists in projecting the approximation of ∇v1 on
the approximation of RanΠ(1).
Using the assumptions V (z1)− V (x1) > V (zI )− V (z1) and
infz∈Bc

zi
da(z , zi ) > V (zI )− V (zi ), one can check that ṽ and

(ψ̃i )i=1...I are such that

• [Normalization] ṽ ∈ H1
0 (e

−βV ) and ‖ṽ‖L2(e−βV ) = 1. ∀i ,
ψ̃i ∈ H1

T (e
−βV ) and ‖ψ̃i‖L2(e−βV ) = 1.

• [Good quasimodes]
• ∀δ > 0

‖(1 − Π(0))ṽ‖2

L2(e−βV ) = O(e−β(V (z1)−V (x1)−δ)),

• ∃ε > 0, ∀i ,
‖(1 − Π(1))ψ̃i‖2

H1(e−βV ) = O(e−β(V (zI )−V (z1)+ε))

• [Orthonomality of quasimodes] ∃ε0 > 0, ∀i < j

〈ψ̃i , ψ̃j〉L2(e−βV ) = O( e−
β
2
(V (zj )−V (zi )+ε0) ).
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Sketch of the proof

• [Decomposition of ∇ṽ ] ∃Ci , p, ∀i ,

〈∇ṽ , ψ̃i 〉L2(e−βV ) = Ci β
−pe−

β
2
(V (zi )−V (x1)) (1 + O(β−1) ).

• [Normal components of the quasimodes] ∃Bi ,m, ∀i , j
∫

Σi

ψ̃j ·n e−βV dσ =

{

Bi β
−m e−

β
2
V (zi ) ( 1 + O(β−1) ) if i = j

0 if i 6= j

Then for i = 1, ..., n, when β → ∞
∫

Σi

∂nv1 e−βV dσ = CiBi β
−(p+m) e−

β
2
(2V (zi )−V (x1)) (1+O(β−1))
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Sketch of the proof

The proof of this last estimate is based on the formula:

∫

Σi

∂nv1 exp(−βV ) =

I
∑

j=1

〈∇v1, ψj〉L2(e−βV )

∫

Σi

ψj · ne−βV .

Using the fact that v1 = Π(0)ṽ and that (ψ1, . . . , ψI ) can be
obtained by a Gram-Schmidt procedure on (Π(1)ψ̃1, . . . ,Π

(1)ψ̃I ),
one can rewrite this formula in terms of ṽ and (ψ̃i )1≤i≤n. Injecting
the estimates then yields the result.
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Conclusions

• From ParRep (ParSplicing) to Hyper to TAD, the underlying
assumptions for the algorithms to be correct are more and
more stringent. In particular, TAD is based on the fact that
the Eyring-Kramers formula yield a correct approximation of
the exit event.

• The QSD is a good intermediate between continuous state
dynamics and kMC-like approximations (Markov state models).
Transition rates could be defined starting from the QSD.

• The QSD can be used to analyze the validity of kMC models
and the Eyring-Kramers law, in the small temperature regime.
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