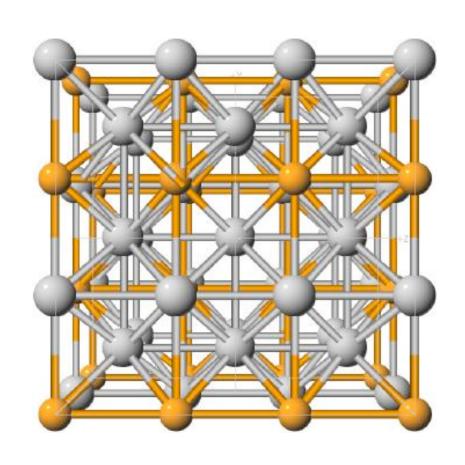
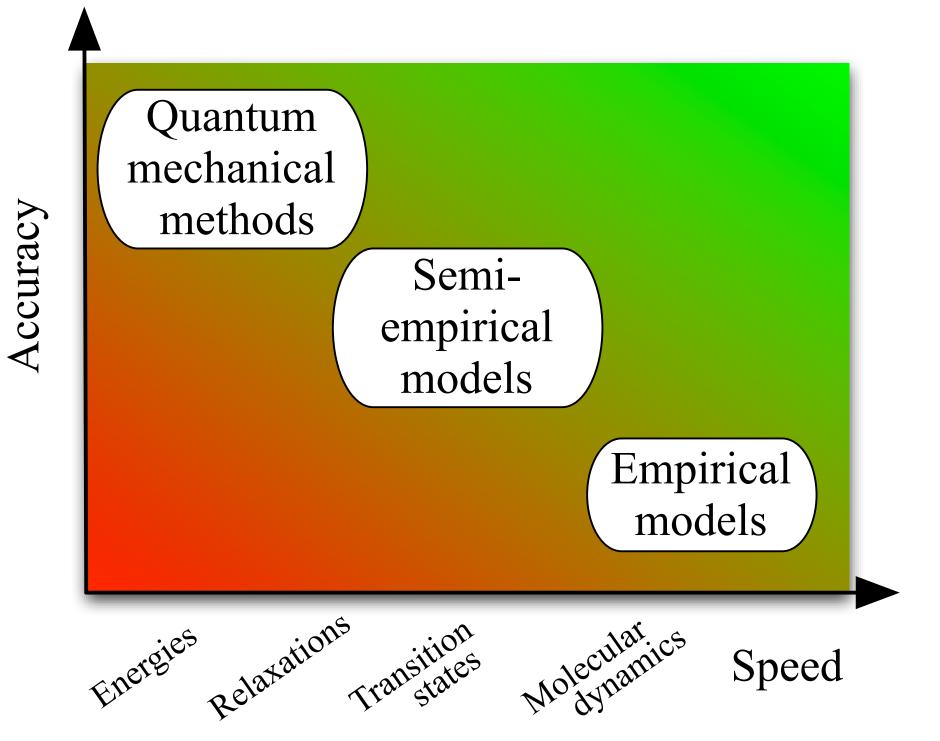
Empirical Energy Models and Force Fields Richard G. Hennig, University of Florida



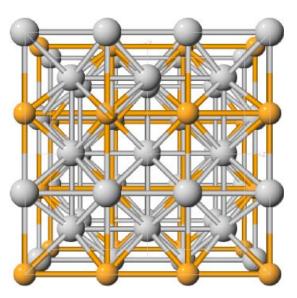
Atomic structure {**R**_i}

Hierarchy of energy models

Energy *E*({**R**_{*i*}})



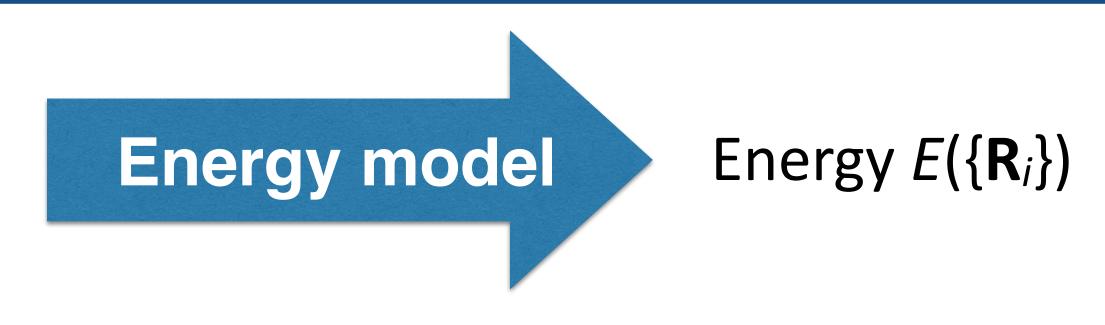
Born-Oppenheimer Approximation



Atomic structure $\{\mathbf{R}_i\}$

- Hydrogen diffusion in materials by tunneling

- The electrons are much lighter than the nuclei $(m_p/m_e \approx 1,800)$ • Hence, for given nuclei position, the electrons are in their ground state Ψ_0 This approximation is known as the Born-Oppenheimer approximation • However, for some materials and properties this approximation can fail
- - Hydrogen phases at high temperature and pressure
 - He droplets
 - Superconductivity
 - Atomic gases at low temperatures \Rightarrow Bose-Einstein condensation
- Treat nuclei as classical particles and use the Born-Oppenheimer approximation



Hierarchy of Energy Models

Quantum mechanical methods

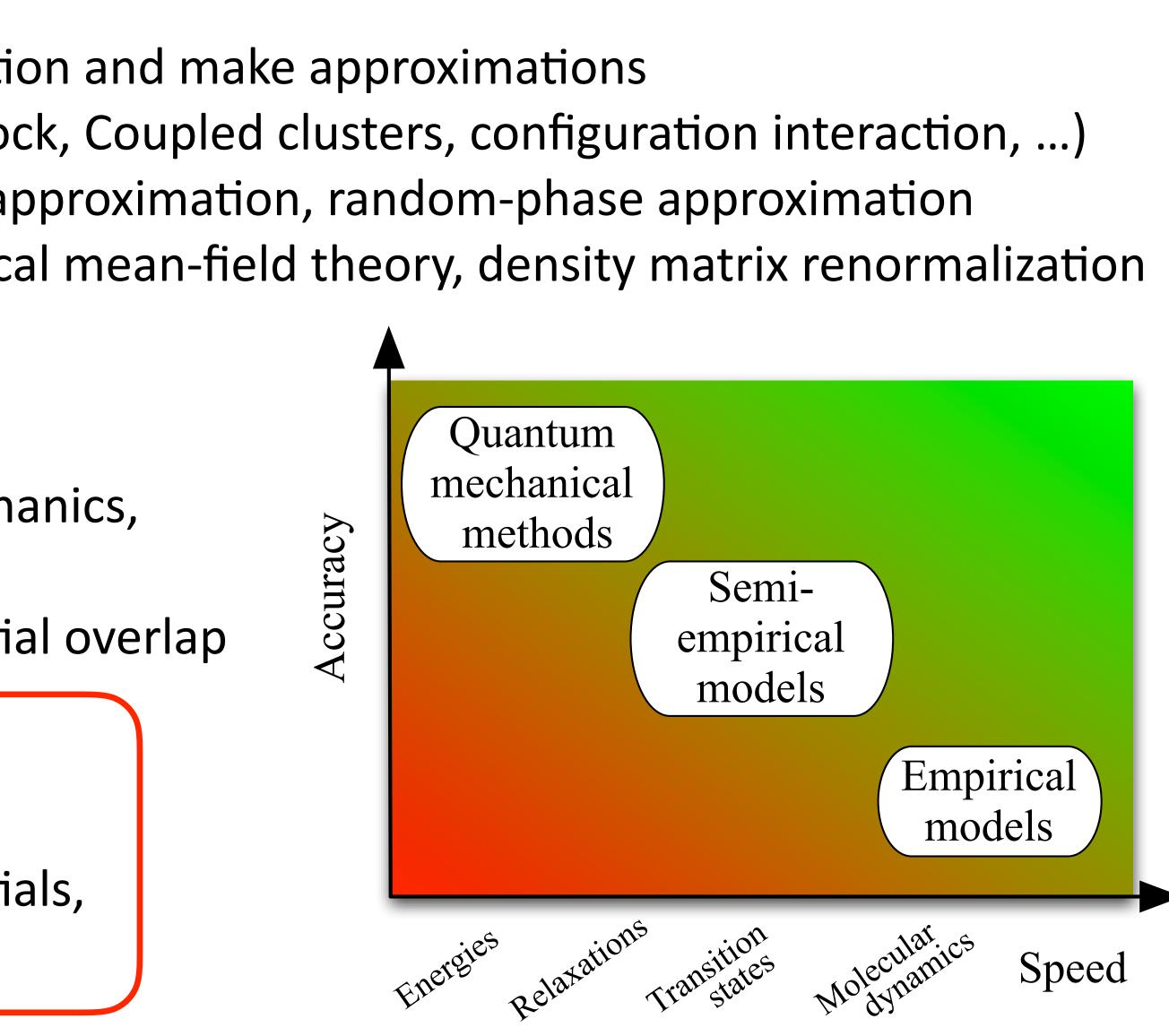
- Start from the many-body Schrödinger equation and make approximations • Examples: • Quantum chemistry (Hartree-Fock, Coupled clusters, configuration interaction, ...) Density-functional theory, GW approximation, random-phase approximation Quantum Monte Carlo, dynamical mean-field theory, density matrix renormalization
- - group

Semi-empirical models

- Functional form motivated by quantum mechanics, neglecting difficult terms, fitted parameters
- Examples: Tight-binding, neglect of differential overlap

Empirical models

- Functional forms with fitted parameters
- Examples: Pair potentials, many-body potentials, effective medium potentials



Choice of functional form of empirical potentials

- Motivated by types of chemical bonds relevant for specific material
- Increasing in complexity: pair potentials, pair functionals, many-body potentials, ...

Optimization of empirical potential parameters

• Least-square optimization techniques using a fitting and testing database

Validation strategies

- Obvious: Comparison with other available data
- Validation of energy landscapes using structure search methods

Open questions

- How to select the optimal functional form of potential for a given material? • How to choose an optimal data set for model parameter optimization? How to identify tradeoffs between conflicting model predictions?

Outline

Common Features of Empirical Potentials

Decomposition in atomic energies

• Energy is constructed as sum of local atomic energies

E =

• Locality of atomic interactions is known as near-sightedness in quantum chemistry

General N-body expansion

$$E = \sum_{i} \Phi_1(\mathbf{R}_i) + \sum_{i} \sum_{j>i} \Phi_2(\mathbf{R}_i, \mathbf{R}_j) + \sum_{i} \sum_{j>i} \sum_{k>j} \Phi_3(\mathbf{R}_i, \mathbf{R}_j, \mathbf{R}_k) + \cdots$$

$$=\sum_{i}\epsilon_{i}(\mathbf{R}_{i})$$

Pair Potentials

Common features

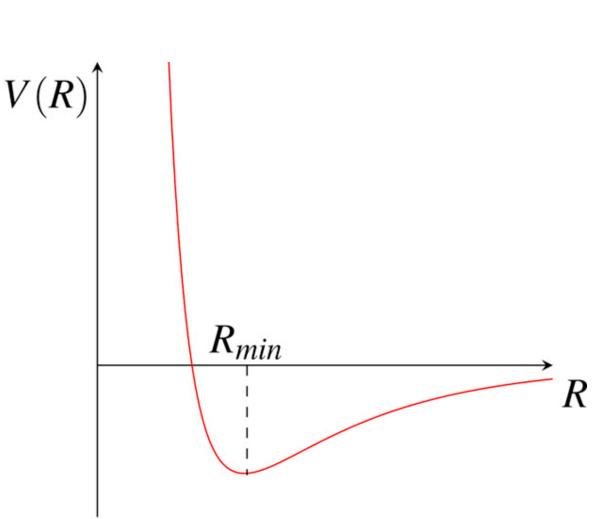
- Approximation of only pairwise interaction
- Form of pair potential V(r)
 - Repulsive at short distances, attractive at long distances
 - Usually applied with a cutoff

- Analytical forms of potentials are usually based on basic physics • Physical relevance of parameters disappears when potentials are fitted • Minimal set of parameters: energy scale and length scale

Functional forms of potentials

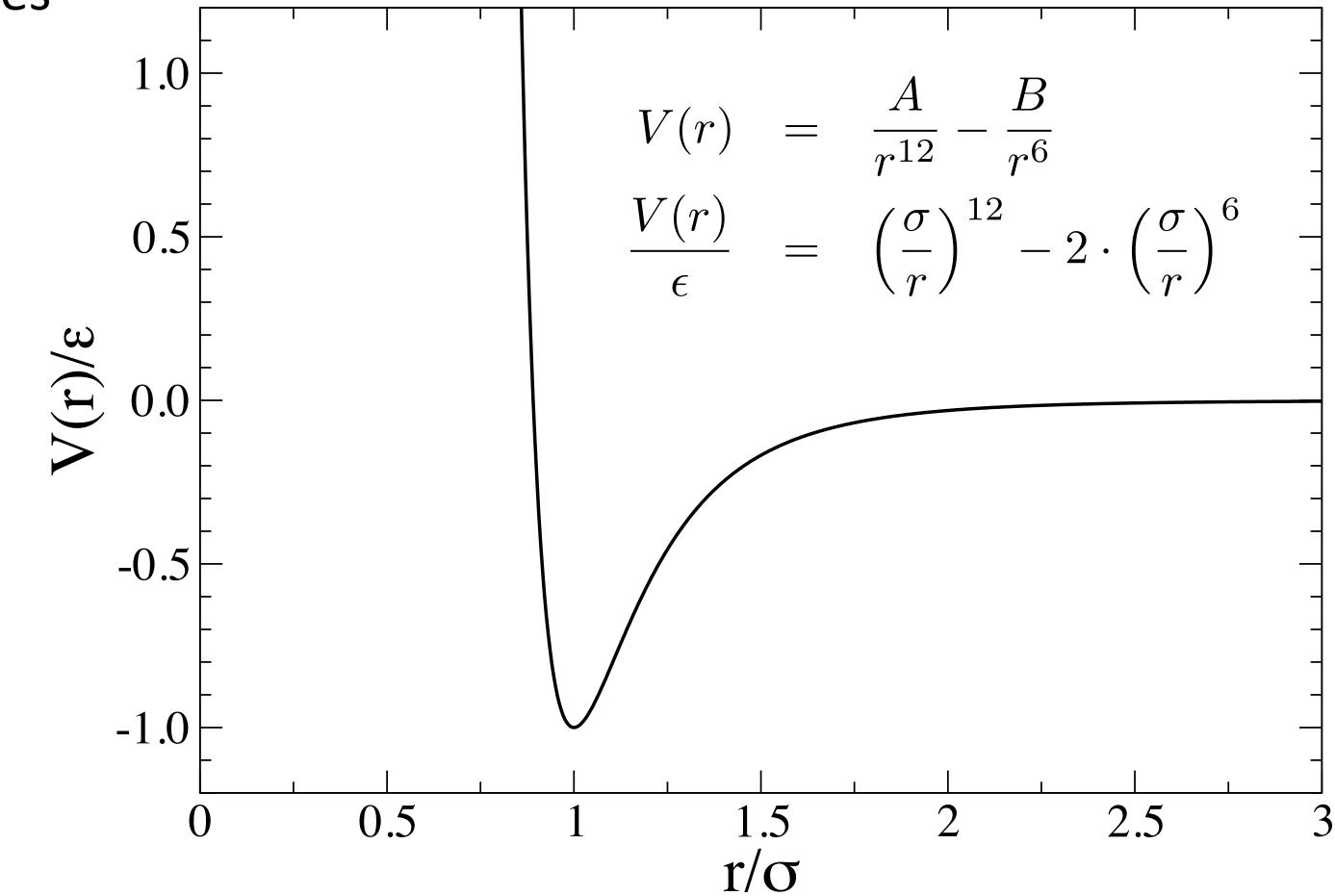
- Many different functional forms have been developed and used • Lennard-Jones, Buckingham, Morse, Coulomb, screened Coulomb, hard sph

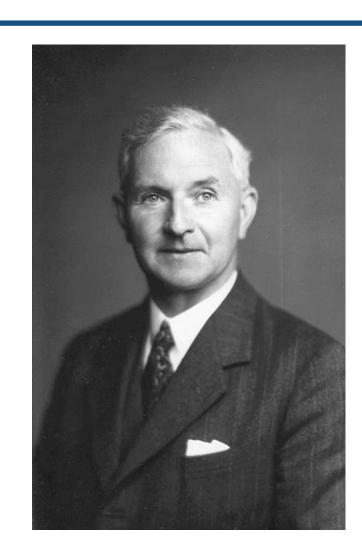
$$E = \frac{1}{2} \sum_{i,j} V(|\mathbf{r}_i - \mathbf{r}_j|)$$



Lennard-Jones Potential

- Proposed in 1931 by John Lennard-Jones at Bristol University
- Attractive $1/r^6$ term describes van der Waals attraction
- Repulsive $1/r^{12}$ term chosen for efficiency





Sir John Lennard-Jones

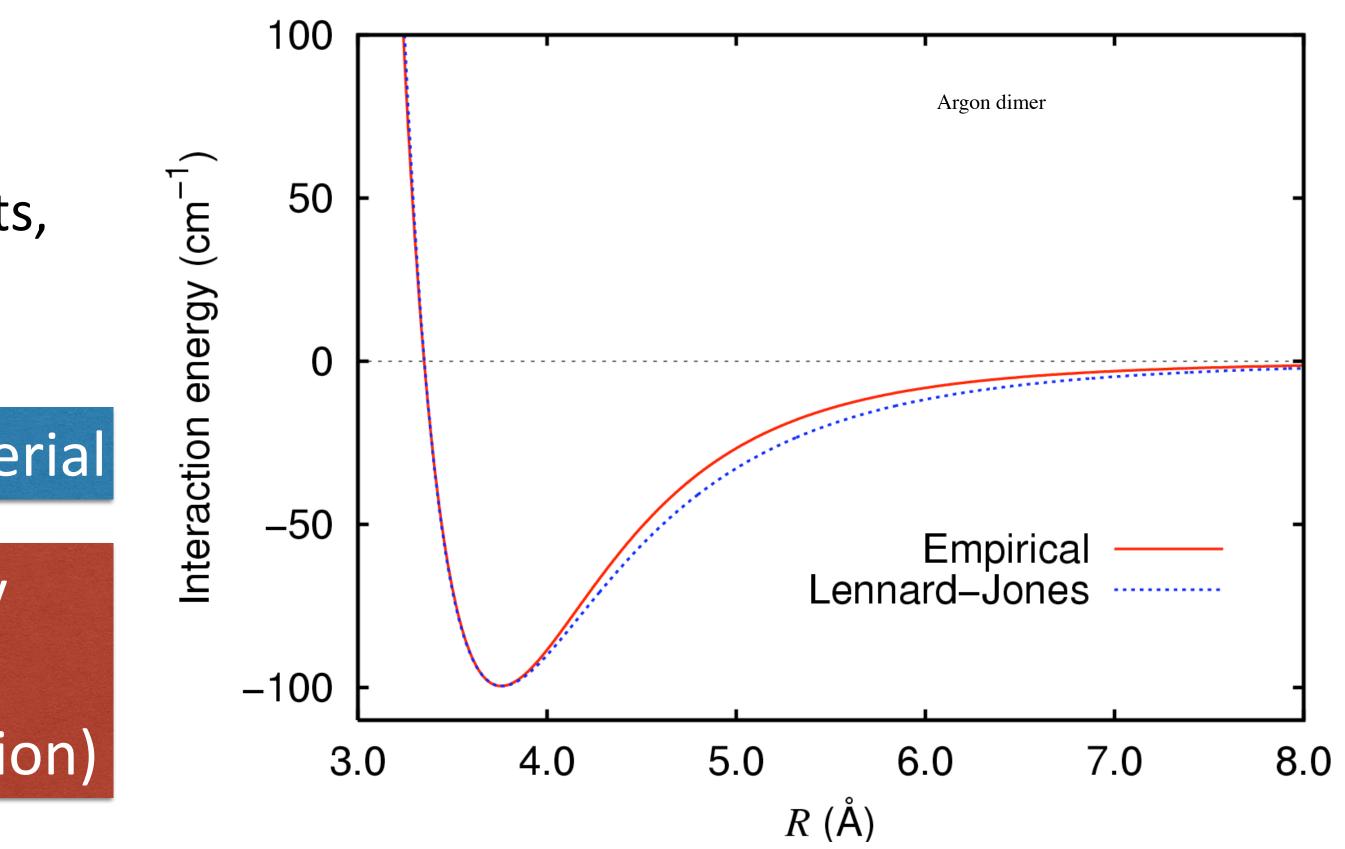
Lennard-Jones Potential

- - $\varepsilon/k_{\rm B}$ Temperature
 - ε/σ^3 Pressure
 - $1/\sigma^3$ Density
- If we set lattice parameter $r_0 = \sigma$ and cohesive energy $E_{coh} = \varepsilon$, then all other properties such as elastic coefficients, melting point *etc*. are determined

\Rightarrow There is only one Lennard-Jones material

The Lennard-Jones potential is really only applicable to noble gases (no bonding, only van der Waals attraction)

• When expressing T, p, and p in renormalized units all Lennard-Jones potentials are identical



Born-Mayer/Buckingham Potential

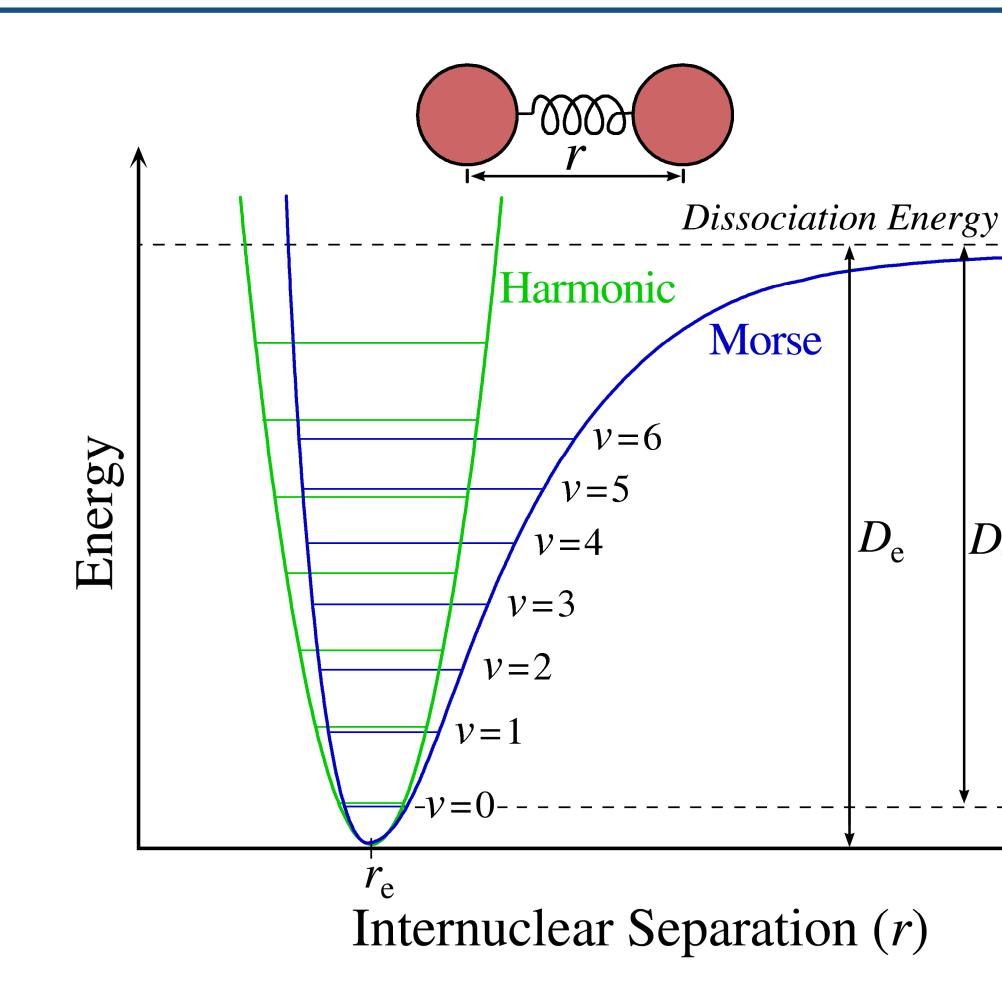
- Sometimes, the repulsive $1/r^{12}$ term of the Lennard-Jones potential is too steep
- The Buckingham potential employs a softer repulsive potential

$$V(r) = (A \cdot \exp(-B \cdot r)) - \frac{C}{r^6}$$

ennard-Jones potential is too steep repulsive potential

Morse Potential for Diatomic Molecules

 D_0



P. M. Morse, Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev. 34, 57 (1929).

Proposed by Morse in 1929 for the potential energy of a diatomic molecule

$$V(r) = D_e \left(1 - e^{-\alpha(r - r_e)}\right)$$



Bond Stretching in Methane

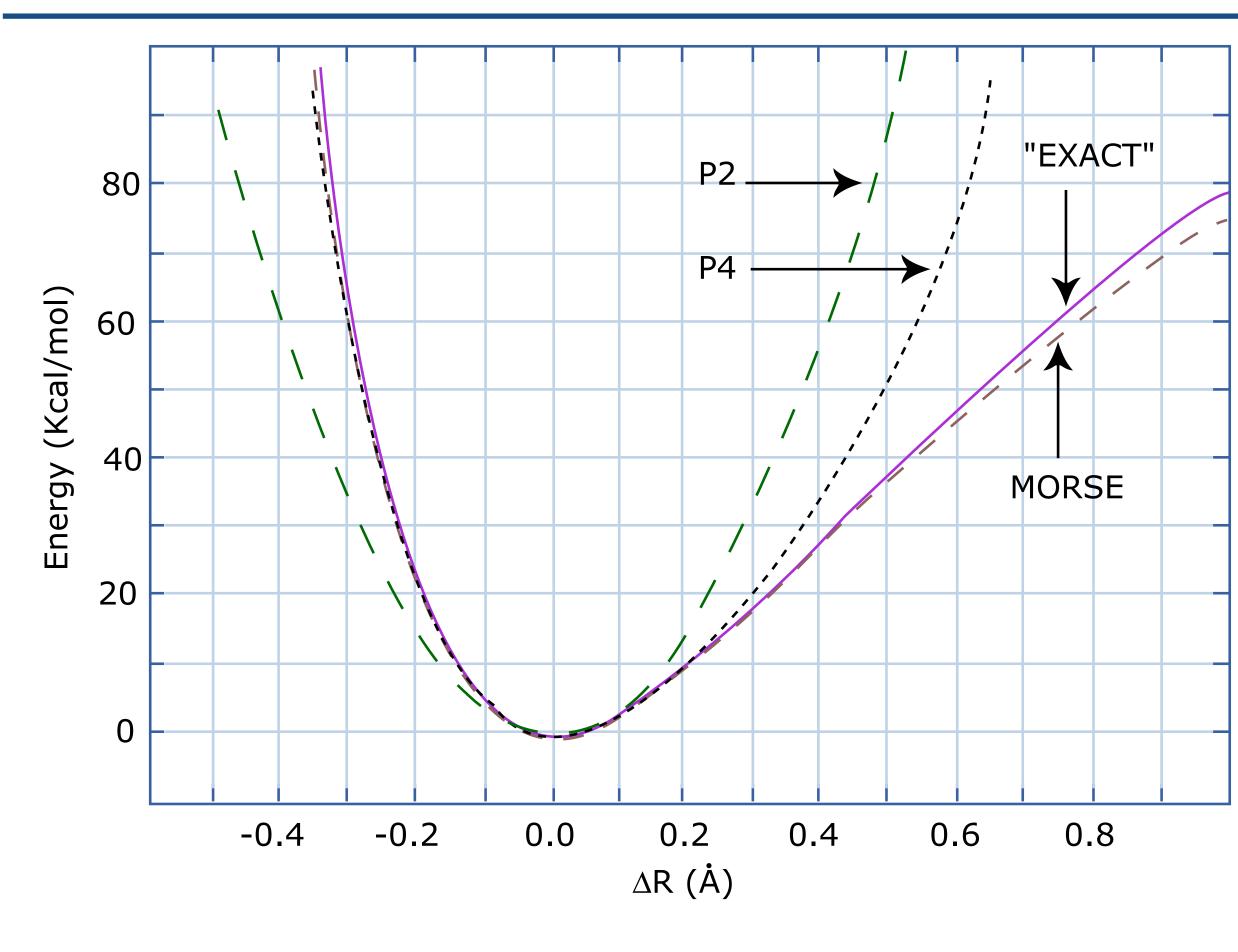


Figure by MIT OCW.

Morse potential highly accurate compared to harmonic (P2) and quartic (P4) potential.

 $V(r) = D_e \left(1 - e^{-\alpha(r - r_e)}\right)^2$

How far from equilibrium do we need the potential to be accurate?

- 1 kcal/mol corresponds to 43 meV or 503 K
- Potential needs to be accurate only close to the minimum

Start with pair potentials with Coulomb interactions

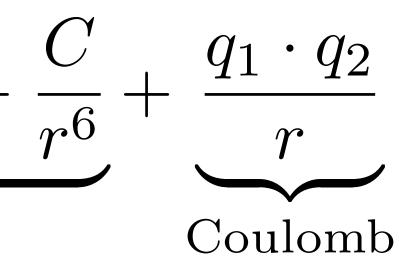
• Buckingham plus electrostatic Coulomb term

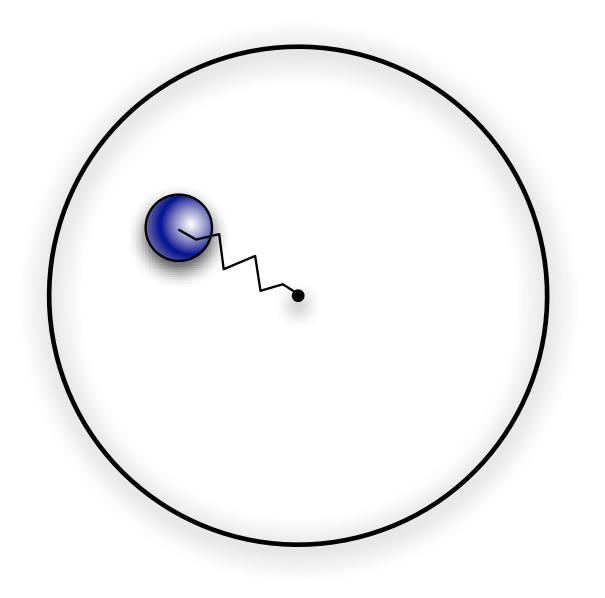
$$V(r) = A \cdot \exp\left(-\frac{r}{B}\right) -$$
Buckingham

Include polarization of ions

- Electric field from other ions induces a dipole moment
- Shell model
 - Describe the ion core and the electron shell separately as two particles connected by a spring
 - Spring constant between core and shell corresponds to polarizability

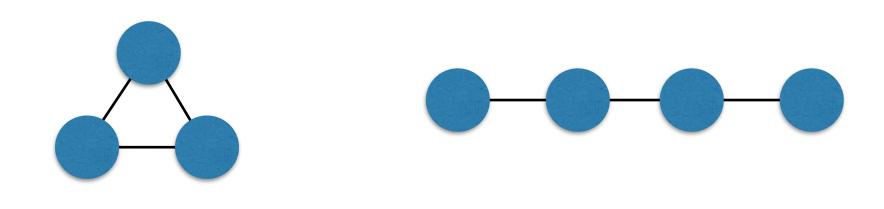
Potentials for Charged Systems





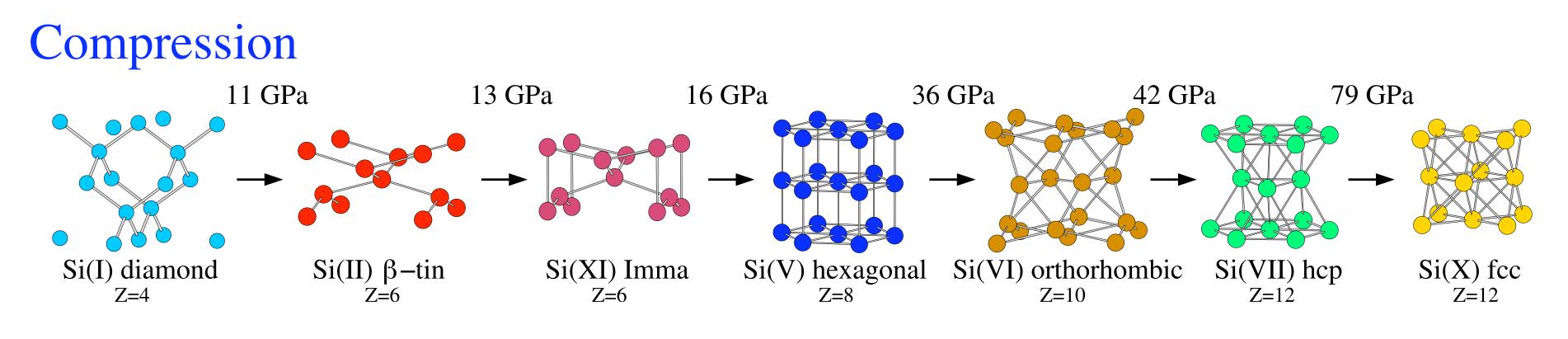
Limitations of Pair Potentials

Pair Potentials "count" bonds but do not take into account their organization
 ⇒ Similar energy for a triangle of three atoms versus chain of four

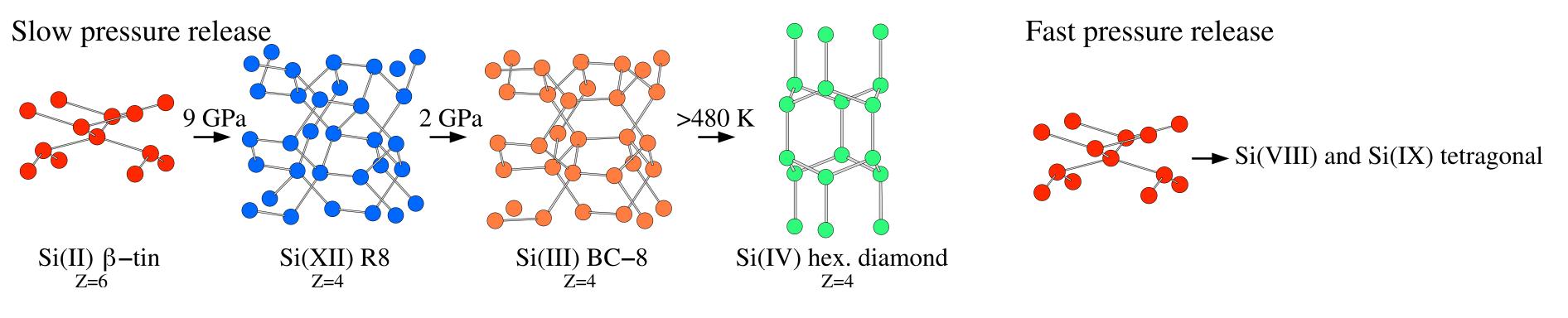


- Tendency to form close-packed structures such as bcc and hcp
 - Difficult to stabilize diamond-cubic structure of Si with pair potential
 - Silicon undergoes a series of structural phase transitions (from tetrahedral to β-tin to simple hexagonal to fcc) under pressure
 - Small energy differences between these structures
 - Cohesive energy nearly independent of coordination number

Silicon Phases



Decompression



Under pressure silicon displays 12 crystal phases with a steady increase of coordination and a transition from insulating to metallic.

Limitations of Pair Potentials

The assumption of a pair potential determines a variety of properties					
Crystal	$E_{\rm coh}/k_{\rm B}T_{\rm m}$	$E_{\rm vac}/E_{\rm coh}$	<i>C</i> ₁₂ / <i>C</i> ₄₄		
Pair potential					
Lennard-Jones	13	~1	1		
Noble gases					
Ar	11	0.95	1.1		
Kr	12	0.66	1		
fcc metals					
Ni	30	0.31	1.2		
Cu	30	0.37	1.6		
Pd	25	0.36	2.5		
Ag	27	0.39	2		
Pt	33	0.26	3.3		
Au	34	0.23	3.7		

Ratio between E_{coh} and $k_B T_m$ is about 30 in metals and 10 for pair potentials and noble gases

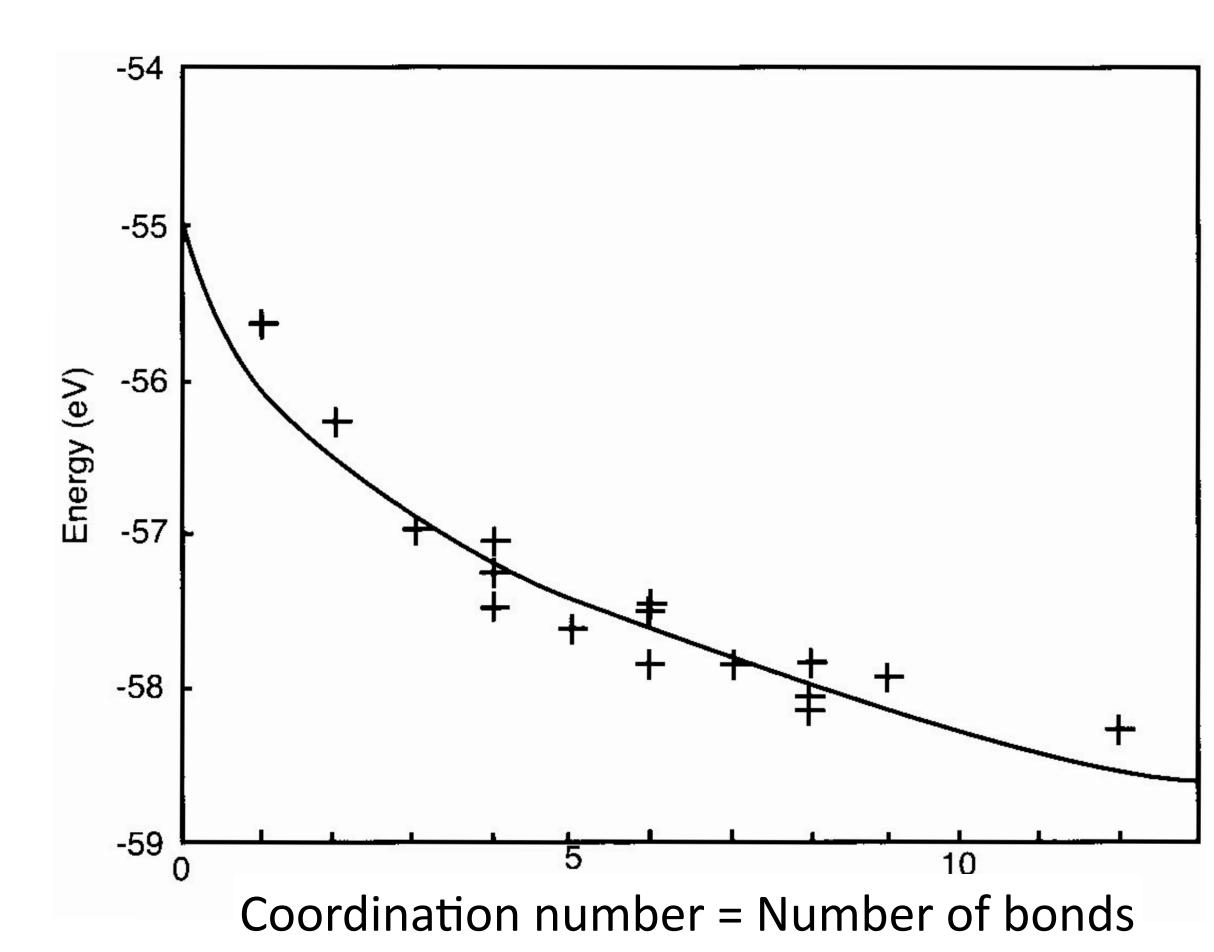
Ratio between the E_{vac} and the E_{coh} is between 1/4 and 1/3 in metals and about 1 in two-body systems (exactly 1 if relaxations are neglected)

Cauchy ratio $C_{12}/C_{44} = 1$ for pair potentials. Deviations in metals are common.

Environment Dependence of the Binding Energy

Example: Cohesion in Al

- Energy per atom for a variety of Al structures
- The curve is fit to a function $E = E_0 + \alpha Z^{\frac{1}{2}} + \beta Z$



Lack of environment dependence in pair potentials

- One bond does not know about the others
- This is in contradiction with both experiments and accurate quantum mechanical calculations
 - For pair potentials: $E \propto Z$
 - For metals: $E \propto \sqrt{Z}$

Bonding gets weaker as more atoms surround the central atom

Cohesive Energy and Vacancy Formation in Al

Remove a single atom and place it in bulk position somewhere else

For pair potential $E \propto Z$

 Cohesive energy per atom: Each Al atom has 12 bonds and each bond is shared between two atoms

$$E_{\rm coh} = \frac{12 \cdot E_{\rm bond}}{2} = 6 \cdot E_{\rm bond}$$

Pair potentials – 12 bonds are broken and removed atom is placed in bulk

$$\Delta E_{\text{vac}} = \underbrace{12 \cdot E_{\text{bond}}}_{\text{broken bonds}} - \underbrace{6 \cdot E_{\text{bond}}}_{\text{bulk}}$$
$$= 6 \cdot E_{\text{bond}} = E_{\text{coh}}$$

For metals $E \propto \sqrt{Z}$

- Each of the neighboring atoms changes configuration number from 12 to 11
- Removed atoms is again placed in bulk

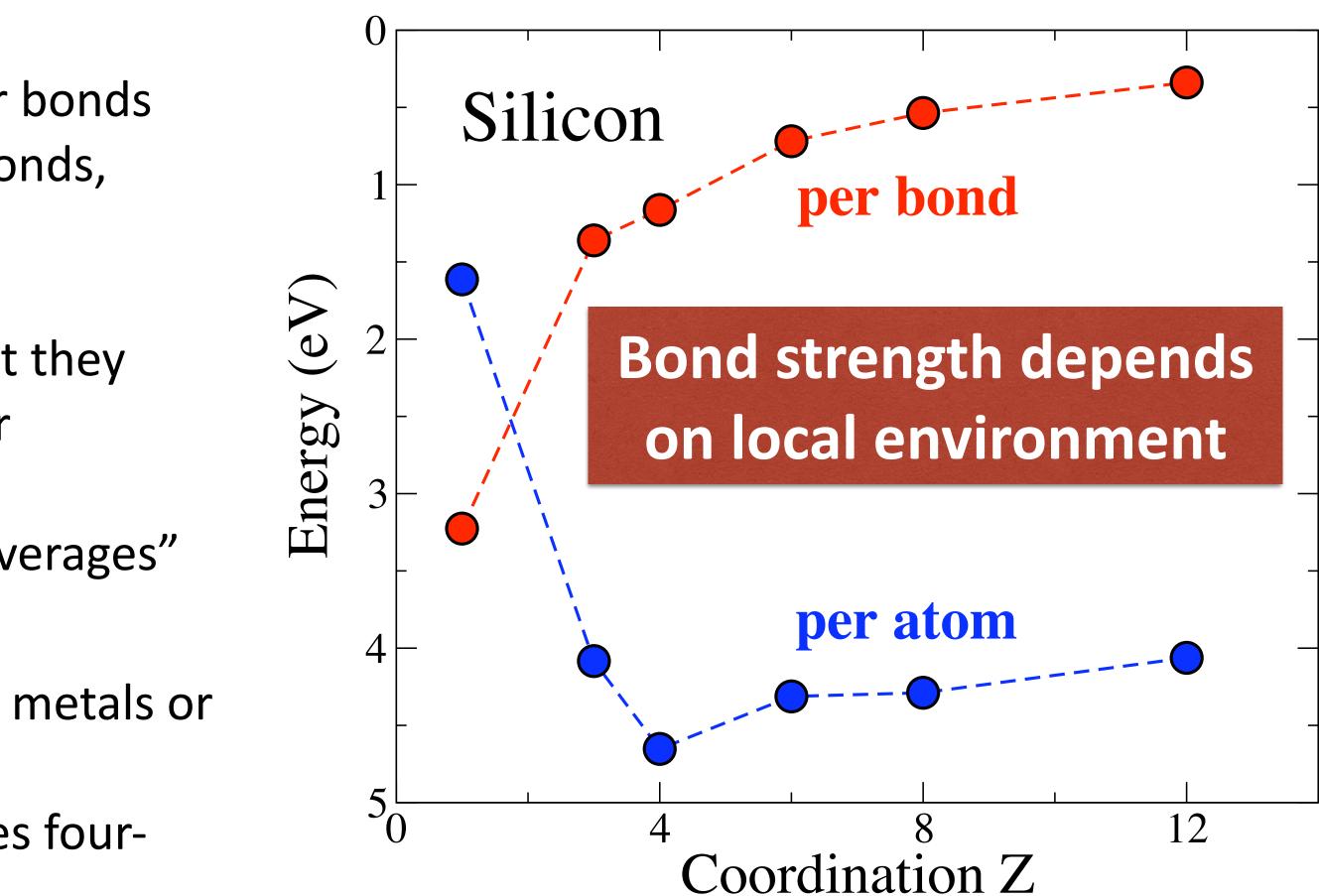
$$\begin{aligned} \Delta E_{\text{vac}} &= 12 \cdot \left(c \cdot \sqrt{12} - c \cdot \sqrt{11} \right) \\ \frac{\Delta E_{\text{vac}}}{E_{\text{coh}}} &= 12 \cdot \left(1 - \frac{\sqrt{11}}{\sqrt{12}} \right) \approx 0.5 \end{aligned}$$

 Vacancy energy in metals lower then predicted by pair potentials

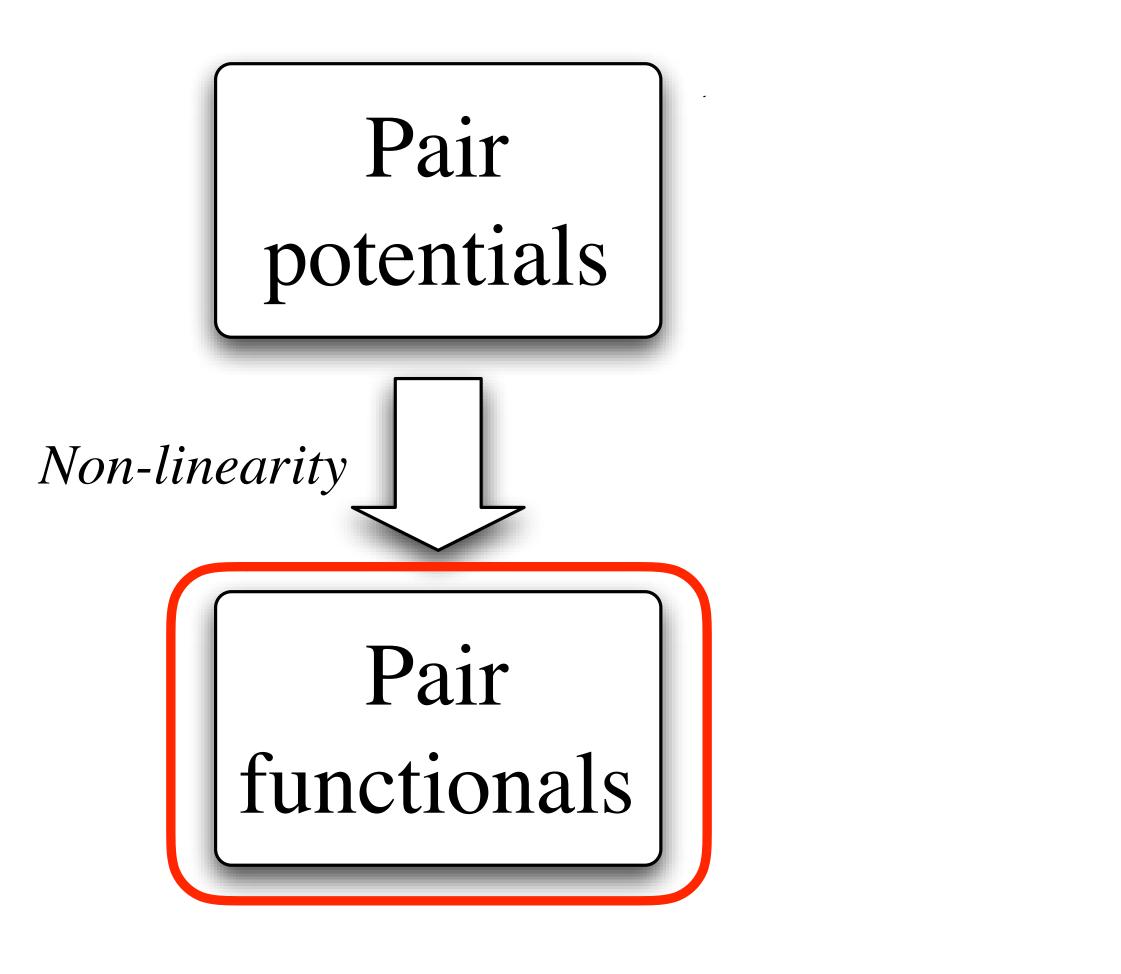
Environment Dependence of the Binding Energy

Example: Cohesion in Si

- Cohesive energy has a maximum for 4-fold coordinated diamond structure Energy of each bond decreases with increased coordination number
- Bond strength depends on local environment
 - Either through angular dependence with other bonds
 - Or through dependence on number of other bonds, e.g. bond-order
- This limits the transferability of pair potentials
- Fitted for one particular coordination environment they can not be used without significant error for other coordination (*e.g.* fit to bulk but use on surface)
- Fitting to all environments simultaneously only "averages" the error
- Pair potentials cannot predict crystal structures in metals or covalent solids
- For example, the fcc-bcc energy difference requires fourbody interactions



How to Overcome Deficiencies of Pair Potentials



$$E = \sum_{i} \Phi_1(\mathbf{R}_i) + \sum_{i} \sum_{j>i} \Phi_2(\mathbf{F}_i) + \sum_{i$$

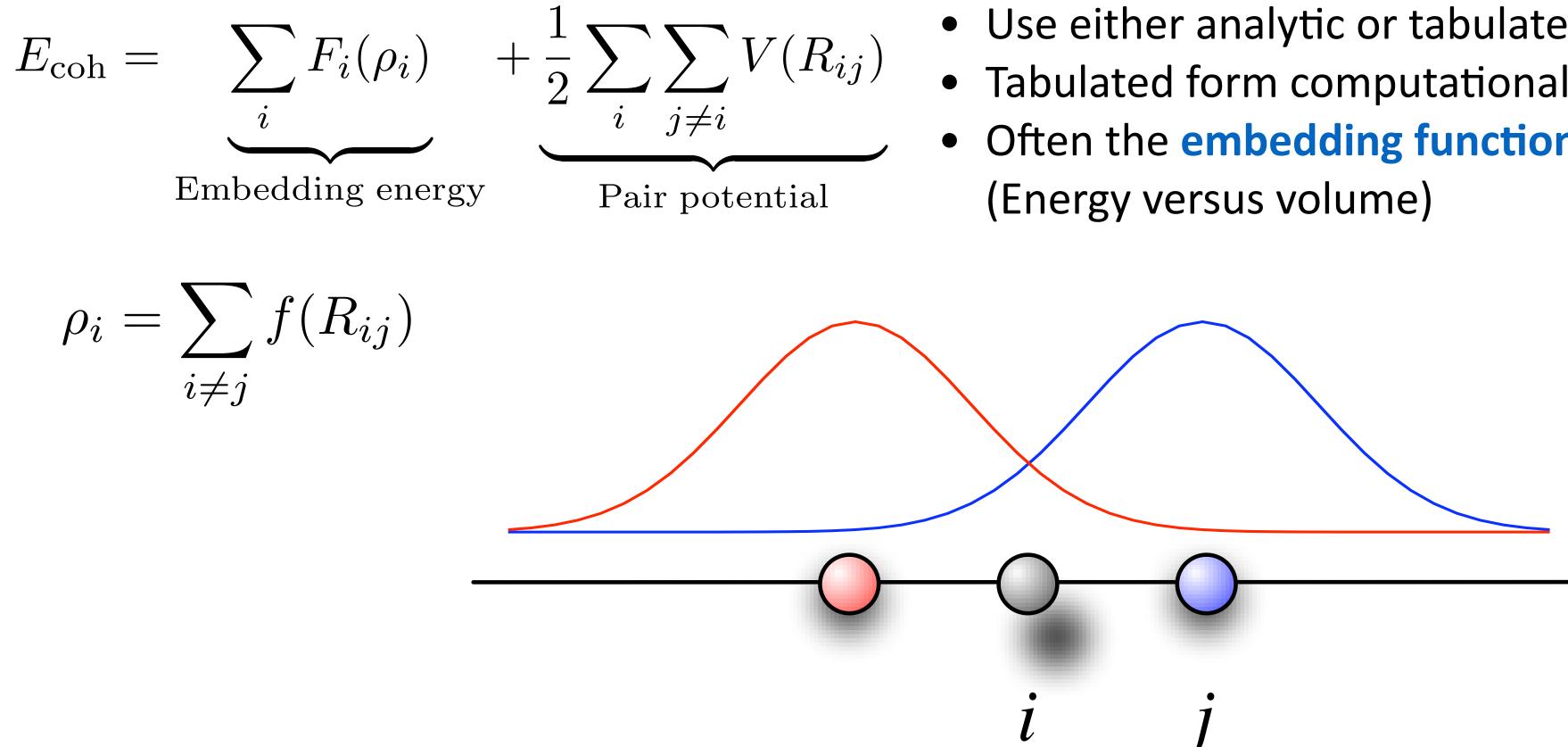
- Include effect of other atoms on bond
- Energy as a non-linear function of coordination
- Pair functionals include effective medium potentials
- Include three-body terms (angular dependent forces) and four-body terms
- Cluster potentials include many-body terms
- Cluster functionals combine both

$\mathbf{R}_i, \mathbf{R}_j) + \sum_i \sum_{j>i} \sum_{k>j} \Phi_3(\mathbf{R}_i, \mathbf{R}_j, \mathbf{R}_k) + \cdots$

Embedded Atom Potentials (EAM)

Idea:

- Energy of an atom depends non-linearly on the surrounding atoms (number and distance) • E = f(number of bonds) where f is a non-linear function \Rightarrow Energy functionals
- Use electron density as a measure of the surrounding atoms



 Use either analytic or tabulated embedding function • Tabulated form computationally efficient, use of cubic splines • Often the **embedding function** is fit to the equation of state

Embedded Atom Potentials (EAM)

Physics Concept

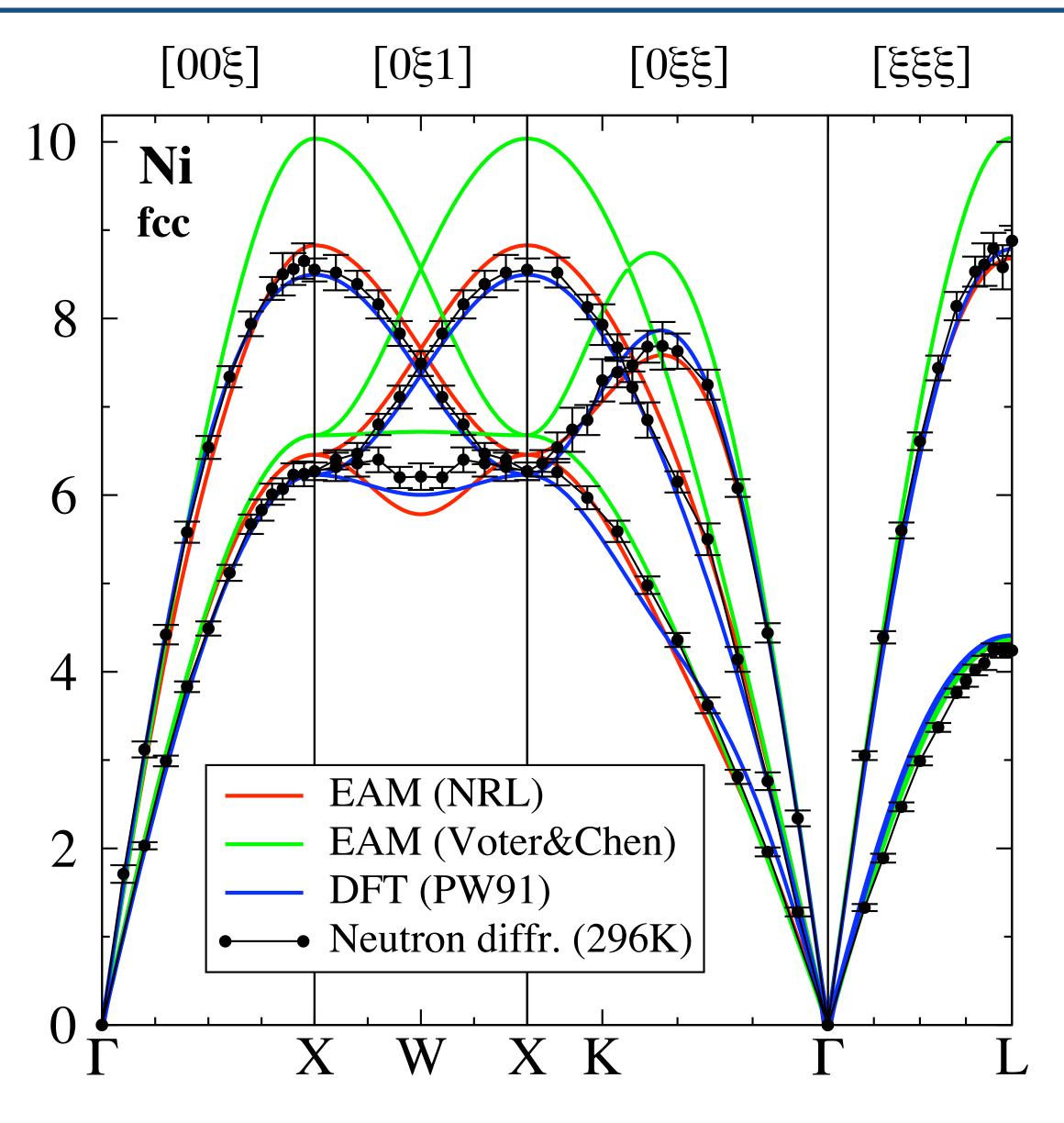
- Bonding energy (embedding energy) due to electron delocalization
- As electrons spread out more, their kinetic energy decreases
- When an impurity is put into a metal its energy is lowered because its electrons can delocalize into the solid
- The embedding density (electron density at the embedding site) is a measure of the number of states available to delocalize onto \Rightarrow Many body effect

Other effective medium theories

- EAM is similar to many other effective medium theories • Other theories differ in the "non-linearity" used or the measure of "embedding density"
- Glue model (Ercollesi, Tosatti and Parrinello)
- Finnis-Sinclair Potentials
- Equivalent Crystal Models (Smith and Banerjee)

Accuracy of EAM Potentials for Phonons

- Phonon dispersion for fcc Ni
- Importance of checking the accuracy of empirical potential models
- The NRL potential is very accurate while the Voter&Chen potential overestimates the frequencies

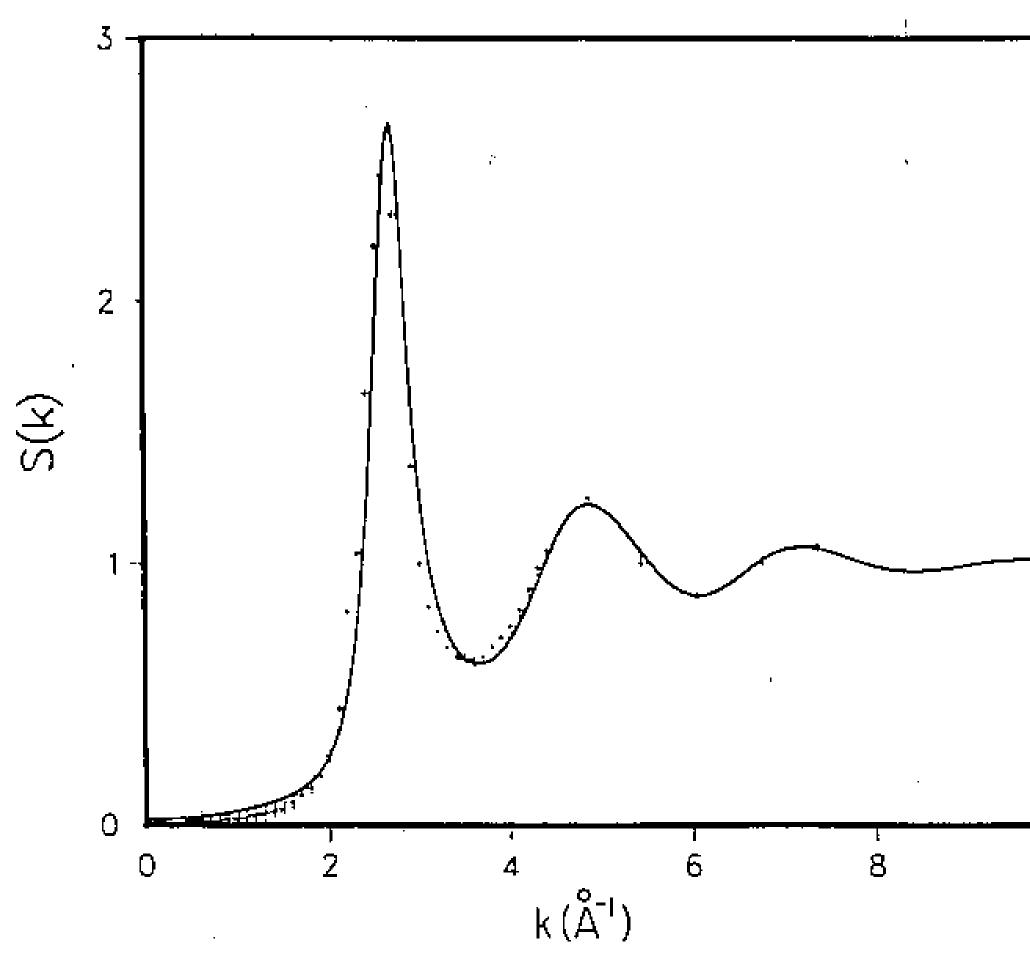


Accuracy of EAM Potentials for Liquids

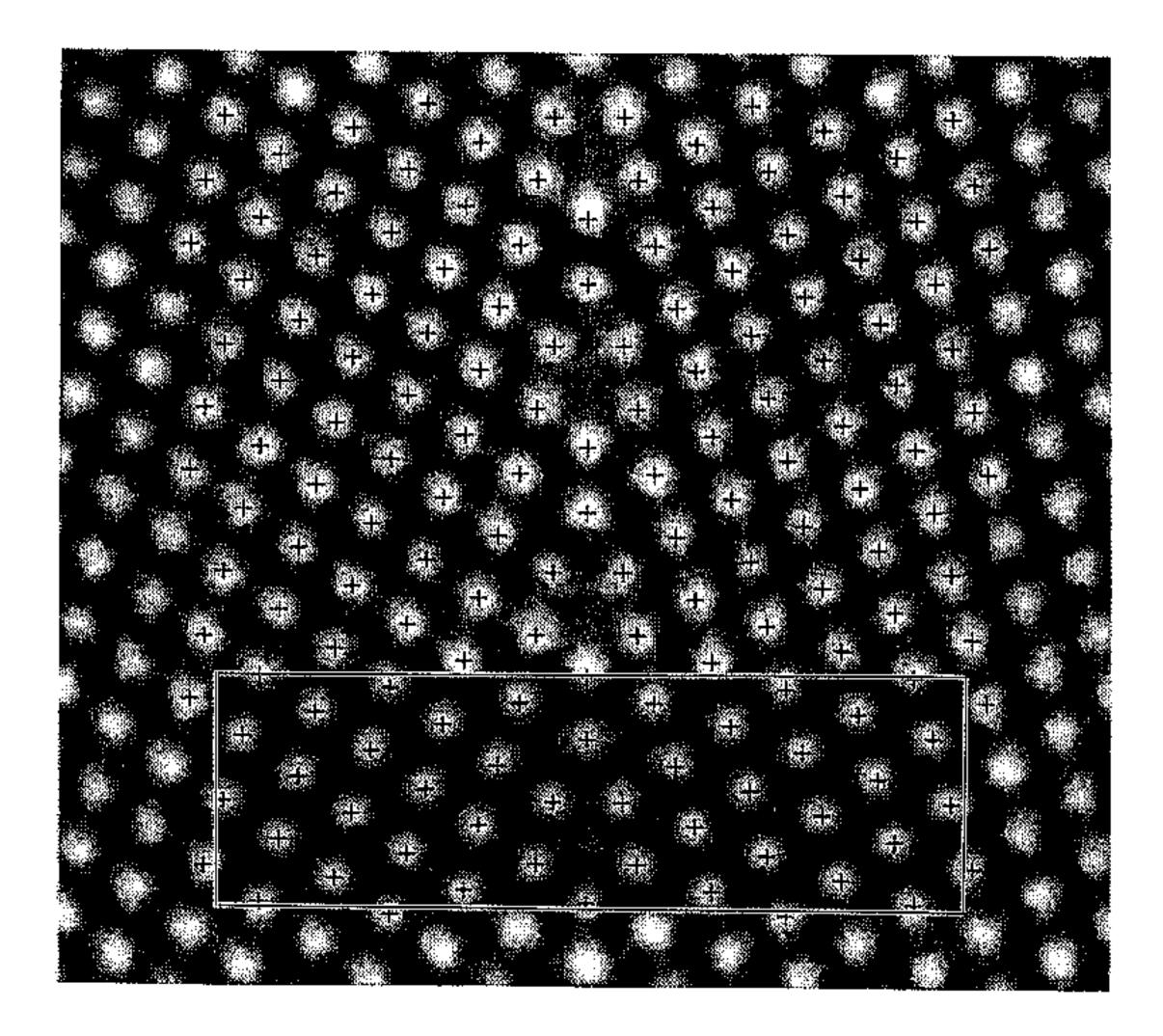
Melting points

Element	EAM	Experiment
Cu	1340	1358
Ag	1170	1234
Au	1090	1338
Ni	1740	1726
Pd	1390	1825
Pt	1480	2045

Structure of liquid Ag at 1270 K. The solid line is from EAM simulations and the dots are experimental results.



Accuracy of EAM Potentials for Grain Boundaries

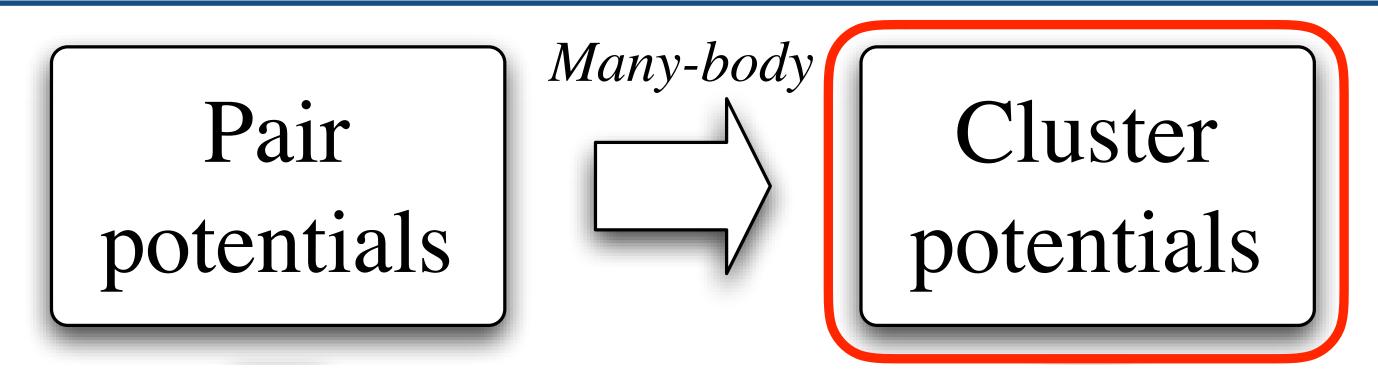


Grain boundary in Al

- Comparison of theory and experiment for a grain boundary in Al.
- The high-resolution TEM image of tilt boundary is overlaid with an inset of the simulated structure predicted by an EAM potential

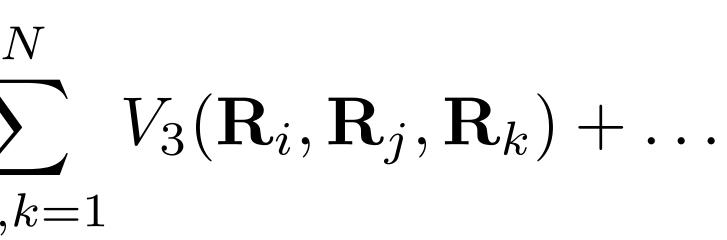
ent lt f

Many-Body Potentials



- Expansion of energy in terms of clusters of atoms • Two, three, and four-body and higher order terms

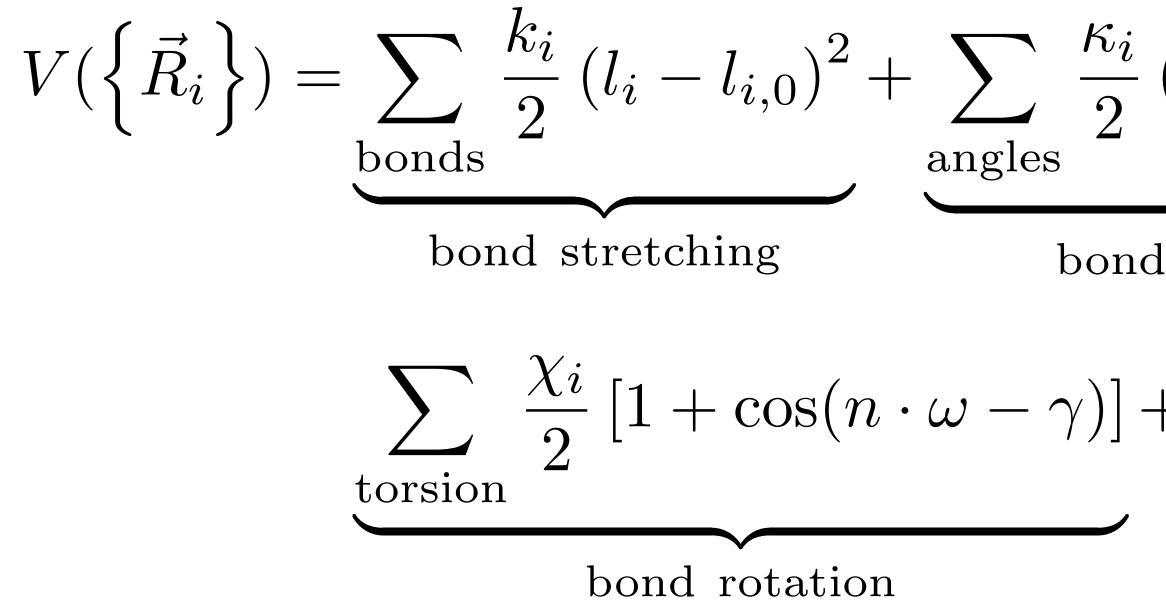
$$E = \frac{1}{2!} \sum_{i,j=1}^{N} V_2(\mathbf{R}_i, \mathbf{R}_j) + \frac{1}{3!} \sum_{i,j,k=1}^{N} V_2(\mathbf{R}_i, \mathbf{R}_j) + \frac{1}{3!} \sum_{i,j=1}^{N} V_2(\mathbf{R}_i, \mathbf{R}_j$$



Interactions in Many-Body Potentials

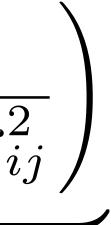
Types of interactions of interactions considered

- Four common components of energy models describe
 - 1. Bond stretching 3. Bond rotation
 - 2. Bond bending 4. Electrostatic and non-bonding interactions



$$\left(\Theta_i - \Theta_{i,0}\right)^2 +$$

d bending
+
$$\sum_{i,j} \left(\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - 2 \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right] + \frac{q_i q_j}{4\pi\epsilon_0 r_j} \right]$$
electrostatics and dispersion



Example: 3-Body Potential for Silicon

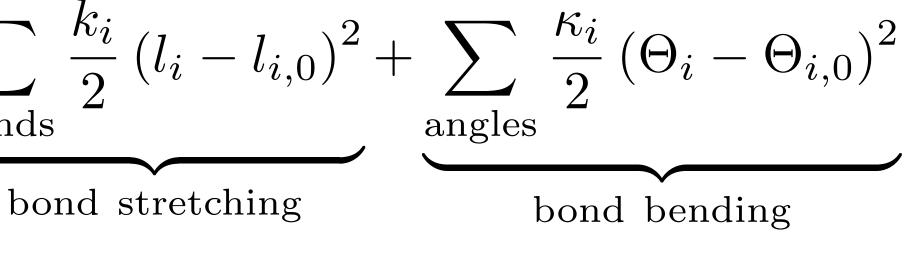
- Coordinates \mathbf{R}_i , \mathbf{R}_i and \mathbf{R}_k can be replaced by $\mathbf{R}_i \mathbf{R}_i$, $\mathbf{R}_k \mathbf{R}_i$ and θ_{ijk}
- Tetrahedral coordination:
 - Bond angle of $\theta_0 = 109.5^\circ$ and bond distance of 2.35Å

$$V(\left\{\vec{R}_i\right\}) = \underbrace{\sum_{\text{bonds}} \frac{k_i}{2} \left(l_i + \underbrace{\sum_{\text{bonds}}$$

- Possible choices are $K (\theta \theta_0)^2$ or $K (\cos \theta_{ijk} + 1/3)^2$
- Stillinger-Weber potential

$$E = \frac{1}{2} \sum_{i,j=1}^{N} V(R_{ij}) + \sum_{i,j,k=1}^{N} g(R_{ij}) g(R_{kj}) \left(\cos \theta_{ijk} + \frac{1}{3}\right)^2$$

• Reproduces Si properties such as 2×1 reconstruction of Si(100) but not 7×7 reconstruction

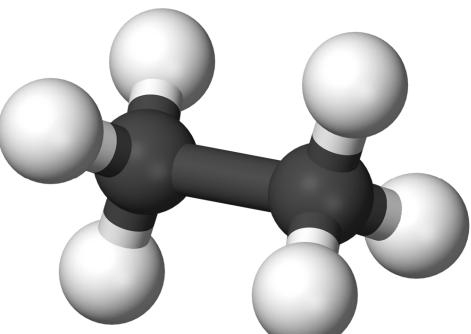


Distinguish between *bonded* and *non-bonded* interactions

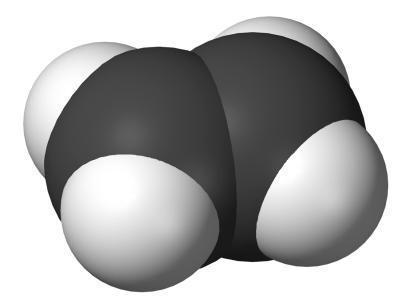
(1) Ethane H_3C-CH_3

- Torsion of C–C bond
- Staggered versus eclipsed configuration has different energy
- Requires four-body potential
- (2) Ethene $H_2C=CH_2$
 - Double bond between C=C has different strength than single bond C–C in ethane
 - Requires cluster functional or different potentials for sp, sp², and sp³ carbon
- Changes in coordination are done by changing the potential
- Examples: AMBER, CHARMM, MM3

Potentials for Organic Molecules

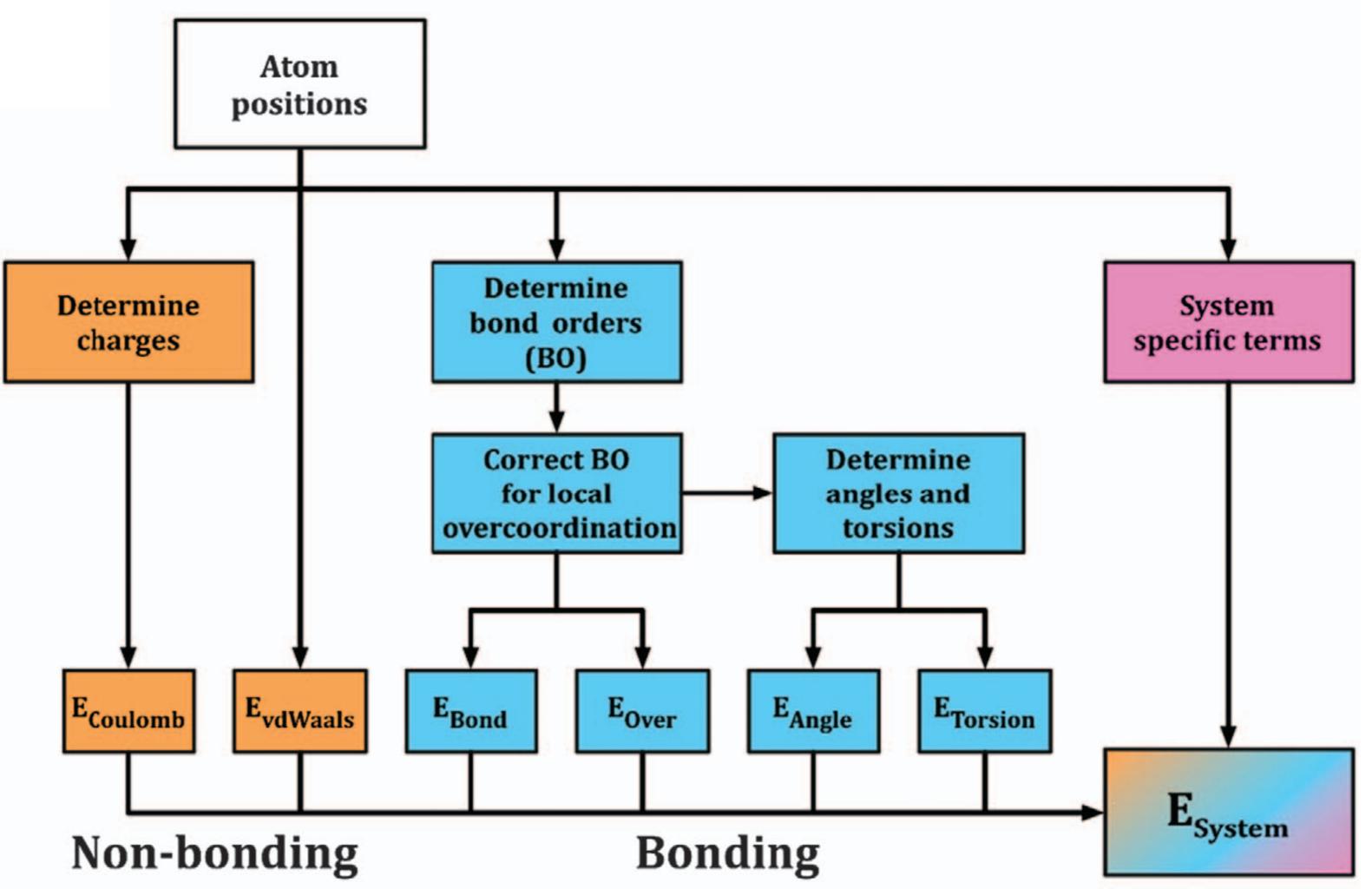


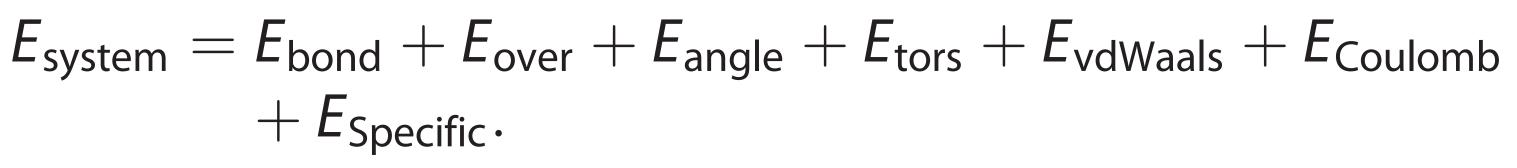
$V_{\text{torsion}} = K \cdot \cos(3\theta)$



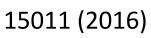
Reactive Force Field Potentials (COMB and ReaxFF)

- Sum of many-body and Coulomb terms
- Can handle bond breaking and formation



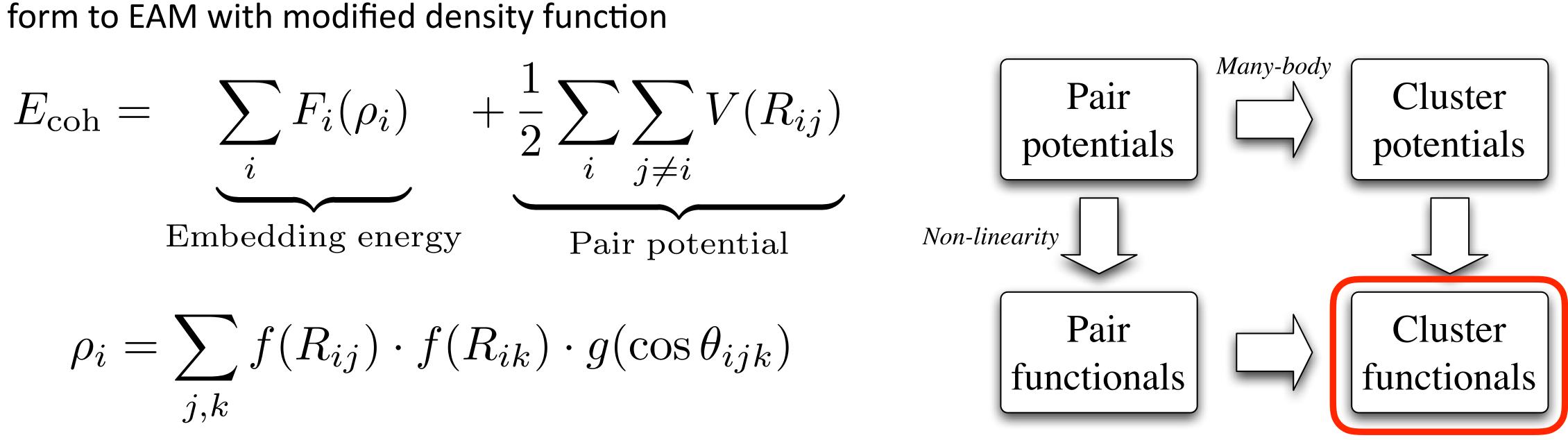


Computational Materials 2, 15011 (2016)



Modified-Embedded Atom Potentials

Similar form to EAM with modified density function



- Angular force terms particularly important for early transition metal elements and covalent bonded systems
- Applications of EAM to Si, Ti and refractory metals

Recent Advances in Empirical Energy Models

Gaussian Approximation Potentials developed by Bartók and Csányi

- Create database of various atomic configurations
- Decompose the energy of these configurations into sum of atomic energies
- For new configuration, determine the energy of each atom by using a function ε(q_i) of local atomic neighborhood structure, structure represented by q_i

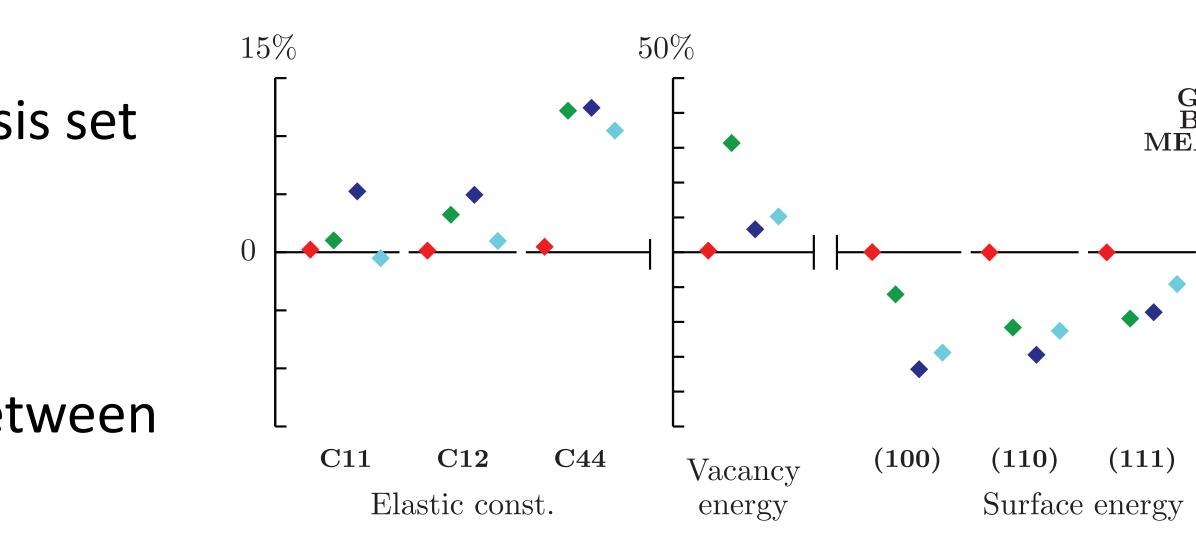
$$E = \sum_{i} \epsilon(\mathbf{q}_i)$$

• The energy function $\epsilon(\mathbf{q}_i)$ is expanded in a basis set

$$\epsilon(\mathbf{q}) = \sum_{j} \alpha_{j} K(\mathbf{q}_{j}, \mathbf{q})$$

 The kernel K(q_j, q) measures the similarity between two different environments

More on this and neural network potentials in Workshop III



Example: Tungsten

Data for optimization of potential parameters

- Properties of crystals, defects, liquids
 - Crystal structures and energy differences
 - Lattice constants, cohesive energy, equation of state
 - Elastic coefficients, phonon frequencies, and forces
 - Point defect structures and energies, surface energies, and relaxation

Optimization methods

- Optimization using simulated annealing, parallel tempering, genetic algorithms, etc.
- Parameters usually loose the particular physical meaning of the analytic form
- It is crucial to test the transferability and accuracy of the potential on data that was **not** in the fit
- Empirical potentials have the tendency to lead to unexpected behavior in parts of phase space such as energy divergencies and unphysical roughness of landscape
- Fitting a potential is an art form and requires a lot of experience

\Rightarrow Clear need for improved methods

Optimization of Model Parameters

Comparison between potentials:

- Most potentials result in similar static properties
- Note, that they are often fit to static properties
- Problems usually occur for dynamics properties (forces, phonons) and defect properties

For oxides

- In highly ionic oxides, qualitatively reasonable results can be expected with empirical potential models (+ electrostatic energy)
- Accuracy is mainly limited by the oxygen "breathing" effect
- The more covalent the oxide, the more difficult it will be to find potentials that reproduce the materials behavior in a wide range of environments
- Shell polarization is essential in low symmetry environments

Evaluation of Empirical Potentials

For metals

- Bond energy depends on the number of bonds already made to an atom
- This effect is absent in pair potentials, which are environment-independent
- Hence, whenever bond-breaking is involved, the result of a potential model should be interpreted cautiously

For organic molecules

- Very good potentials have been fit to C-H and C-C bonds in various bonding arrangements (AMBER, CHARMM, MM3, MMFF94)
- These can be used to model conformational arrangements of polymeric systems (where *no bond-breaking* is involved)

Should at least use a testing dataset to estimate uncertainty

- Testing datasets of similar properties as fitting dataset
- Can also contain more expensive data such as:
 - Melting points
 - Thermal expansion
 - Thermal conductivity
 - Phase transition pressures
 - ► Rates
 - •
- These require MD simulations and are less suitable for fitting database

Validation of energy landscapes

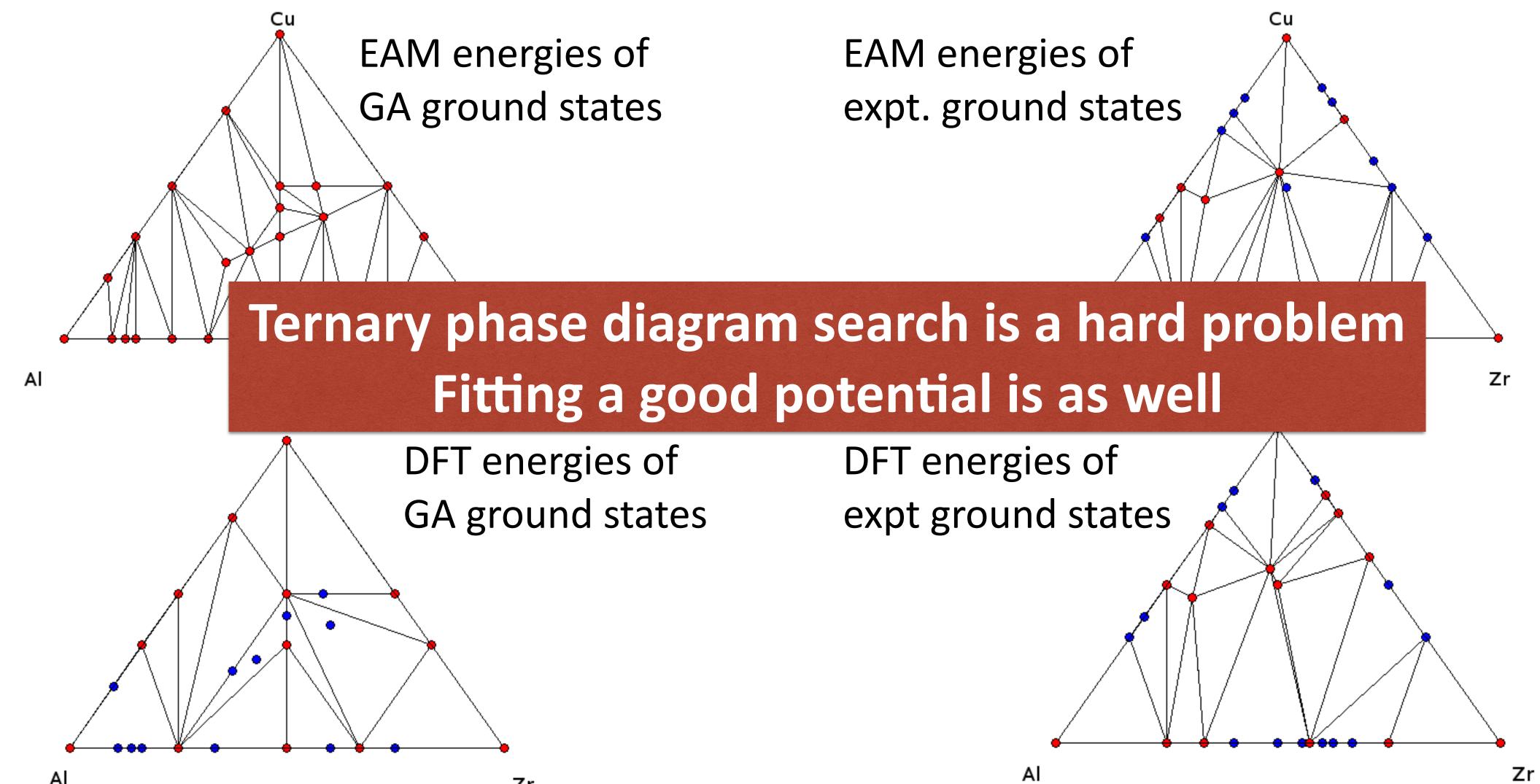
- Goal: Identify unphysical minima where the potential fails • Strategy: Explore configuration space using global optimization methods
- Methods:
 - Simulated annealing, parallel tempering MD
 - Basin hopping
 - Evolutionary algorithms
 - •

Example 1: Mo MEAM potential

- Comparison of empirical potential with density-functional theory
- Modified embedded-atom model for Mo
- Perform GASP search with LAMMPS
- Calculate DFT energy of newly found structures
- Potential reproduces the ground state and all low-lying minima
- Provides confidence in accuracy of the potential

	$MEAM^{a}$	$\operatorname{GGA-PBE}^{a}$	ł
$E_{\rm coh} \ ({\rm eV/atom})$	6.82	6.25	6
a (Å)	3.167	3.169	3
B (GPa)	253	263	6 4
C_{11} (GPa)	441	462	4
C_{12} (GPa)	158	163	1
C_{44} (GPa)	96	102	
$\Delta E_{\rm C2/m} \ ({\rm meV/atom})$	198	175	- —
$\Delta E_{\rm Fddd-bcc} \ ({\rm meV/atom})$	242	231	
$\Delta E_{\beta W-bcc} (meV/atom)$	266	96	
$a_{eta W}$ (Å)	5.026	5.058	
$\Delta E_{\rm Pmma-bcc} \ ({\rm meV/atom})$	269	233	
$\Delta E_{\beta \text{Ta-bcc}} \text{ (meV/atom)}$	280	168	
$a_{\beta { m Ta}}$ (Å)	9.719	9.752	
$c_{\beta { m Ta}}$ (Å)	5.048	5.113	
$\Delta E_{\omega \mathrm{Ti-bcc}} (\mathrm{meV/atom})$	332	404	
$a_{\omega \mathrm{Ti}}$ (Å)	4.616	4.681	
$c_{\omega \mathrm{Ti}}$ (Å)	2.595	2.572	
$\Delta E_{\rm fcc-bcc} \ ({\rm meV/atom})$	391	418	
$a_{ m fcc}$ (Å)	3.931	4.013	
$\Delta E_{\rm hcp-bcc} \ ({\rm meV/atom})$	415	433	
$a_{\rm hcp}$ (Å)	2.743	2.765	
$c_{\rm hcp}$ (Å)	4.692	4.905	

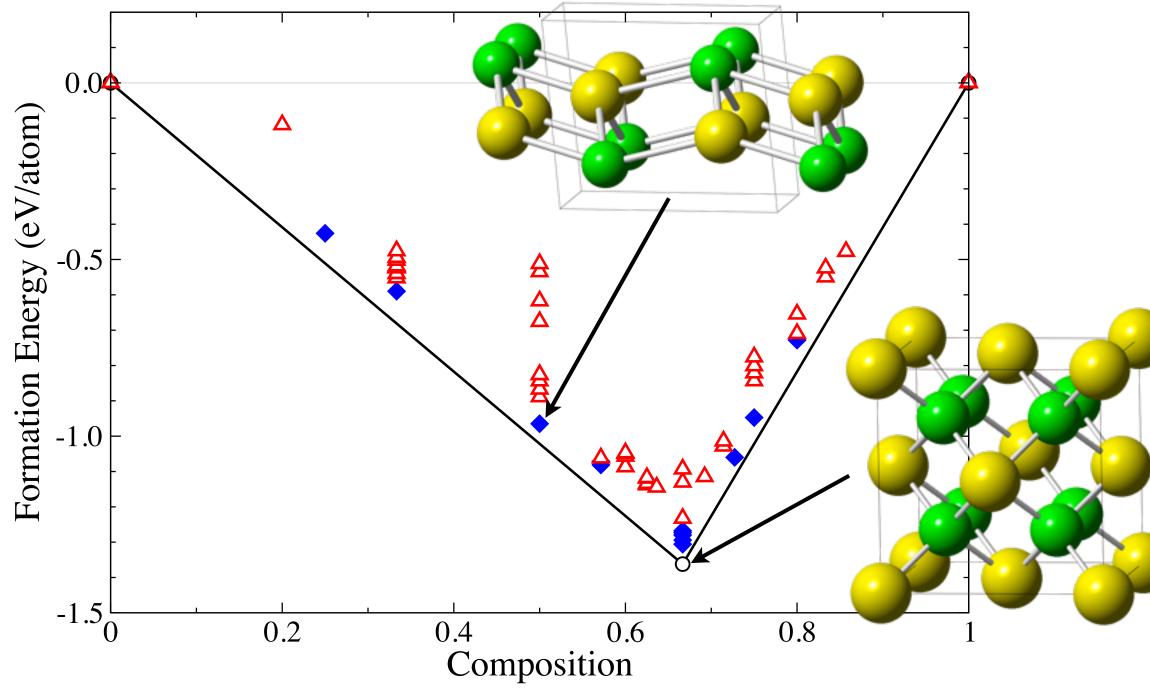
Example 2: Testing of Al-Cu-Zr EAM potential

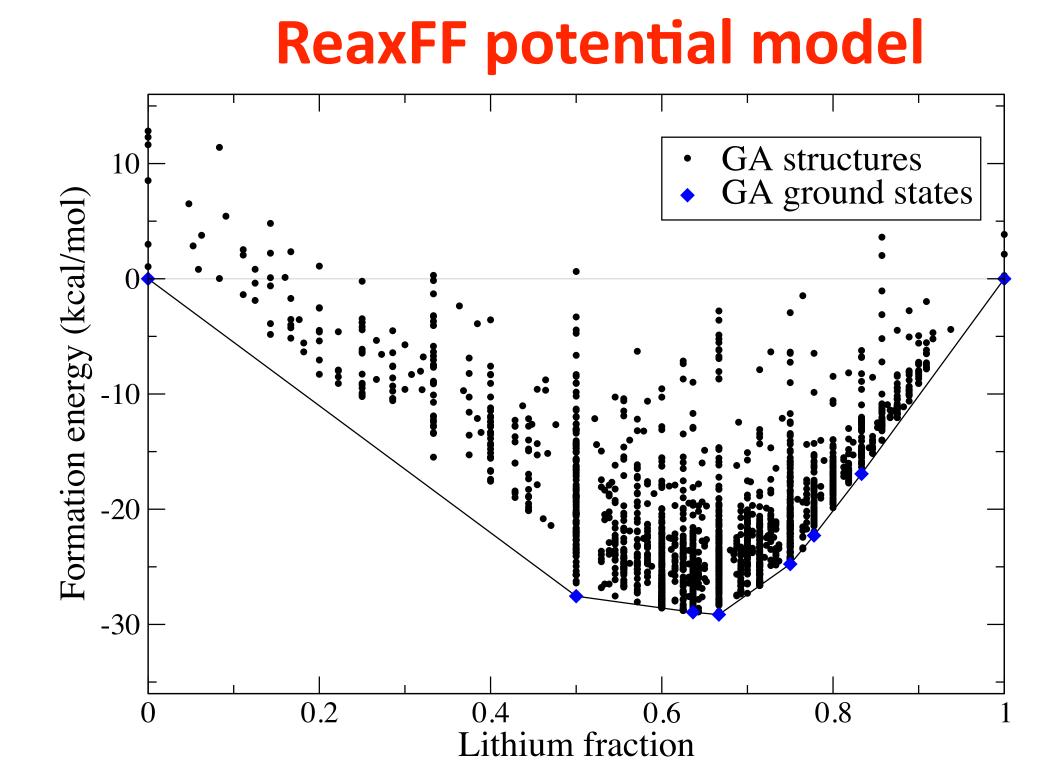


Example 2: Li-S system

- Three ground state phases: Li, Li₂S, S
- Li monosulfide, LiS, reported by Thomas and Jones in 1929
- ReaxFF potential fitting and evolutionary algorithm testing (van Duin et al.)
- Unphysical structure from first search were used in fit to improve potential

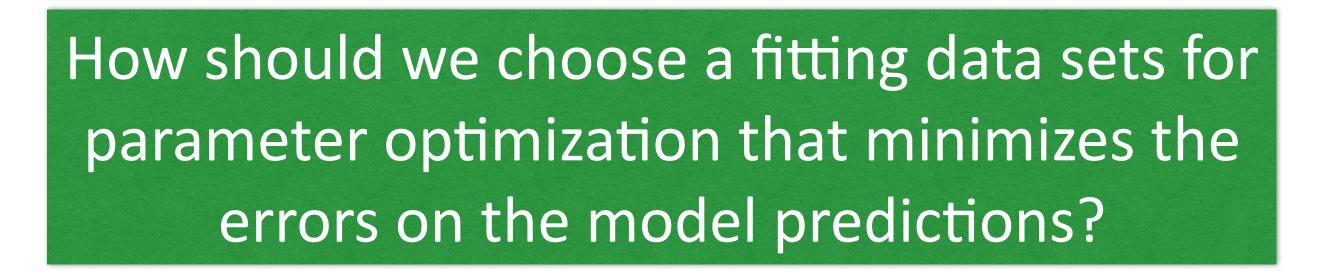
Density-functional theory





How should we select the optimal functional form of an energy model for a given materials system?

How can we identify tradeoffs between conflicting model predictions for a given functional form of the model?



How can we effectively employ energy models as surrogate models for energy landscapes?

