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Born-Oppenheimer Approximation
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e The electrons are much lighter than the nuclei (mp/me= 1,800)
e Hence, for given nuclei position, the electrons are in their ground state Wy
e This approximation is known as the Born-Oppenheimer approximation

e However, for some materials and properties this approximation can fail
- Hydrogen diffusion in materials by tunneling
- Hydrogen phases at high temperature and pressure
- He droplets

- Superconductivity
- Atomic gases at low temperatures = Bose-Einstein condensation

e Treat nuclei as classical particles and use the Born-Oppenheimer approximation



Hierarchy of Energy Models

Quantum mechanical methods

e Start from the many-body Schrodinger equation and make approximations
e Examples: » Quantum chemistry (Hartree-Fock, Coupled clusters, configuration interaction, ...)
» Density-functional theory, GW approximation, random-phase approximation
» Quantum Monte Carlo, dynamical mean-field theory, density matrix renormalization

group

Semi-empirical models Quantum
mechanical

e Functional form motivated by quantum mechanics,
methods

neglecting difficult terms, fitted parameters
e Examples: Tight-binding, neglect of differential overlap

Semi-
empirical
models

Accuracy

Empirical models
e Functional forms with fitted parameters

Empirical
models
e Examples: Pair potentials, many-body potentials,
effective medium potentials




Outline

Choice of functional form of empirical potentials

e Motivated by types of chemical bonds relevant for specific material
e Increasing in complexity: pair potentials, pair functionals, many-body potentials, ...

Optimization of empirical potential parameters
e Least-square optimization techniques using a fitting and testing database

Validation strategies

e Obvious: Comparison with other available data

e Validation of energy landscapes using structure search methods
Open questions

e How to select the optimal functional form of potential for a given material?
e How to choose an optimal data set for model parameter optimization?
e How to identify tradeoffs between conflicting model predictions?



Common Features of Empirical Potentials

Decomposition in atomic energies
e Energy is constructed as sum of local atomic energies

e Locality of atomic interactions is known as near-sightedness in quantum chemistry

General N-body expansion

E=) ®(R)+) > P(Ri,Rj)+> > > P3(Ri, Ry, Ry) + -
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Pair Potentials

Common features 1
e Approximation of only pairwise interaction B = — Z V(‘I‘i — T D
e Form of pair potential V(r) 2 i

» Repulsive at short distances, attractive at long distances

» Usually applied with a cutoff
e Analytical forms of potentials are usually based on basic physics
e Physical relevance of parameters disappears when potentials are fitted
e Minimal set of parameters: energy scale and length scale V(R)|

Functional forms of potentials

e Many different functional forms have been developed and used
e Lennard-Jones, Buckingham, Morse, Coulomb, screened Coulomb, hard sph R,

\/;R
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Lennard-Jones Potential

e Proposed in 1931 by John Lennard-Jones at Bristol University
e Attractive 1/r° term describes
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J. E. Lennard-Jones, Cohesion. Proc. Phys. Soc. 43, 461 (1931).



Lennard-Jones Potential

e \When expressing T, p, and p in renormalized units all Lennard-Jones potentials are identical

» Temperature &/kg
» Pressure g/o3
» Density 1/03
e |f we set lattice parameter ro = 0 and
cohesive energy Econh = €, then

all other properties such as elastic coefficients,
melting point etc. are determined

= There is only one Lennard-Jones material

The Lennard-Jones potential is really

only applicable to noble gases
(no bonding, only van der Waals attraction)

Interaction energy (cm'1)
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Born-Mayer/Buckingham Potential

e Sometimes, the repulsive 1/r'? term of the Lennard-Jones potential is too steep
e The Buckingham potential employs a softer repulsive potential




Morse Potential for Diatomic Molecules

A Q=0

; “Dissociation Energy Proposed by Morse in 1929 for the
______ |l hamonic —T 1 potential energy of a diatomic molecule
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P. M. Morse, Diatomic molecules according to the wave mechanics. Il. Vibrational levels. Phys. Rev. 34, 57 (1929).



Energy (Kcal/mol)

Bond Stretching in Methane
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How far from equilibrium do we need the

04 -02 00 02 04 0.6 0.8 potential to be accurate?
AR (A) e 1 kcal/mol corresponds to 43 meV or 503 K
Figure by MIT OCW. e Potential needs to be accurate only close
Morse potential highly accurate compared to to the minimum

harmonic (P2) and quartic (P4) potential.



Potentials for Charged Systems

Start with pair potentials with Coulomb interactions
e Buckingham plus electrostatic Coulomb term

V(r):A-exp( ;) C} 11 " 42

0 r
— >
Buckingham Coulomb

Include polarization of ions
e Electric field from other ions induces a dipole moment

e Shell model

» Describe the ion core and the electron shell
separately as two particles connected by a spring

» Spring constant between core and shell
corresponds to polarizability



Limitations of Pair Potentials

e Pair Potentials “count” bonds but do not take into account their organization
= Similar energy for a triangle of three atoms versus chain of four

e 0000

e Tendency to form close-packed structures such as bcc and hcp
- Difficult to stabilize diamond-cubic structure of Si with pair potential
- Silicon undergoes a series of structural phase transitions
(from tetrahedral to B-tin to simple hexagonal to fcc) under pressure
- Small energy differences between these structures
- Cohesive energy nearly independent of coordination number




Silicon Phases

Compression
11 GPa
. % BOAR S
Si1(I) diamond Si(II) p—tin S1(XI) Imma S1(V) hexagonal Si1(VI) orthorhombic  Si1(VII) hcp S1(X) fcc
7=4 7=6 7=6 7=8 Z=10 7=12 7=12
Decompression

Slow pressure release Fast pressure release

%—» S1(VIII) and Si(IX) tetragonal

Si(II) B—tin S1(XII) R8 Si(1IT) BC-8 Si1(IV) hex. diamond
7=6 7=4 7=4 7=4

Under pressure silicon displays 12 crystal phases with a steady increase
of coordination and a transition from insulating to metallic.




Limitations of Pair Potentials

The assumption of a pair potential determines a variety of properties

Cry5tal Ecoh/kBTm Evac/Ecoh C12/C44
Pair potential
Lennard-Jones 13 ~1 1
Noble gases
Ar 11 0.95 1.1
Kr 12 0.66 1
fcec metals
Ni 30 0.31 1.2
Cu 30 0.37 1.6
Pd 25 0.36 2.5
Ag 27 0.39 2
Pt 33 0.26 3.3
Au 34 0.23 3.7

Ratio between Econ and ks Tm |l Ratio between the Evac and the Econ is 8 Cauchy ratio C12/Cas = 1
is about 30 in metals and 10 between 1/4 and 1/3 in metals and for pair potentials.

for pair potentials and noble W about 1 in two-body systems (exactly Deviations in metals are
gases 1 if relaxations are neglected) common.




Energy (eV)

Environment Dependence of the Binding Energy

Example: Cohesion in Al

e Energy per atom for a variety of Al structures
e The curve s fitto afunction E=Eg+aZ?+68Z7

54 - - =

Lack of environment dependence in pair potentials

| e One bond does not know about the others

e This is in contradiction with both experiments and
accurate guantum mechanical calculations
» For pair potentials: E « Z

| » For metals: E «VZ

Bonding gets weaker as more

j atoms surround the central atom

Coordination number = Number of bonds



Cohesive Energy and Vacancy Formation in Al

Remove a single atom and place it in bulk position somewhere else

For pair potential E < Z For metals E <« VZ
e Cohesive energy per atom: e Each of the neighboring atoms changes configuration
Each Al atom has 12 bonds and each bond is number from 12 to 11
shared between two atoms e Removed atoms is again placed in bulk
12 - Eyond ABE,. = 12 (c- V12— ¢ \/11)
Ecoh — 9 =0 - Ebond
e Pair potentials — 12 bonds are broken and A Bvac — 12.11 /11 ~ 0.5
removed atom is placed in bulk Econ v 12
AE,.. = 12 -Evond —6 - Epond e Vacancy energy in metals lower then predicted by
————— S—— pair potentials
broken bonds bulk

O - Ebond — Ecoh



Environment Dependence of the Binding Energy

Example: Cohesion in Si

e Cohesive energy has a maximum for 4-fold coordinated diamond structure
e Energy of each bond decreases with increased coordination number

e Bond strength depends on local environment 0 ' | ' | ' |
» Either through angular dependence with other bonds Silicon ‘/,,. ———————— ®
» Or through dependence on number of other bonds, 1L Pt bond
e.g. bond-order -® perbon
e This limits the transferability of pair potentials §
e Fitted for one particular coordination environment they CE Bond strength depends
can not be used without significant error for other 2 :
coordination (e.qg. fit to bulk but use on surface) E’ 3 g e
e Fitting to all environments simultaneously only “averages” -
the error Al
e Pair potentials cannot predict crystal structures in metals or i N /,,&———0 —————
covalent solids 5 | l' | j | |
e For example, the fcc-bcec energy difference requires four- 0 4 8 12

body interactions Coordination Z



How to Overcome Deficiencies of Pair Potentials

Palr e |Include effect of other atoms on bond
potentials e Energy as a non-linear function of
— coordination
e Pair functionals include effective
Non-linearity ! ! medium potentials
* Include three-body terms (angular
( . \ dependent forces) and four-body terms
Pair e Cluster potentials include many-body
- terms
functlonals e (Cluster functionals combine both

E=% ®1(R)+» » ®R,Rj)+> » » O3(R;,Rj,Rp)+ -+

i j>i i >0 k>



Embedded Atom Potentials (EAM)

ldea:

e Energy of an atom depends non-linearly on the surrounding atoms (hnumber and distance)
e F=f(number of bonds) where fis a non-linear function = Energy functionals

e Use electron density as a measure of the surrounding atoms

l v—= e Use either analytic or tabulated embedding function
T ) L L V(Rij) e Tabulated form computationally efficient, use of cubic splines

Ecoh — ZFZ(IOZ)

—_———— L7 e Often the embedding function is fit to the equation of state
Embedding energy Pair potential (Energy versus volume)
Pi — E S(Rij)
17]




Embedded Atom Potentials (EAM)

Physics Concept

e Bonding energy (embedding energy) due to electron delocalization

e As electrons spread out more, their kinetic energy decreases

e When an impurity is put into a metal its energy is lowered because its electrons can delocalize
into the solid

e The embedding density (electron density at the embedding site) is a measure of the number of
states available to delocalize onto
= Many body effect

Other effective medium theories

e EAM is similar to many other effective medium theories

e Other theories differ in the “non-linearity” used or the measure of “embedding density”
e Glue model (Ercollesi, Tosatti and Parrinello)

* Finnis-Sinclair Potentials

e Equivalent Crystal Models (Smith and Banerjee)



Accuracy of EAM Potentials for Phonons

e Phonon dispersion for fcc Ni

e Importance of checking the accuracy
of empirical potential models

e The NRL potential is very accurate
while the Voter&Chen potential
overestimates the frequencies

Frequency [THz]
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Accuracy of EAM Potentials for Liquids

Structure of liquid Ag at 1270 K. The
solid line is from EAM simulations and
the dots are experimental results.

Melting points

Element EAM Experiment
Cu 1340 1358
Ag 1170 1234
Au 1090 1338
Ni 1740 1726
Pd 1390 1825
Pt 1480 2045




Accuracy of EAM Potentials for Grain Boundaries

Grain boundary in Al

e Comparison of theory and experiment
for a grain boundary in Al.

e The high-resolution TEM image of tilt
boundary is overlaid with an inset of
the simulated structure predicted by
an EAM potential




Many-Body Potentials

\ Many-body ( (

Pair | :> Cluster
potentials potentials

—

e Expansion of energy in terms of clusters of atoms
e Two, three, and four-body and higher order terms

N N
1 1
B= ) Va(Ri,Ry) - 3 Y V3(Ri, Ry, Ry) + ...

i,j=1 Ci,5,k=1




Interactions in Many-Body Potentials

Types of interactions of interactions considered
e Four common components of energy models describe

1. Bond stretching 3. Bond rotation
2. Bond bending 4. Electrostatic and non-bonding interactions

V{ R = %(zi—zi,o)% > 5 (0 —-0,0)°

bonds angles
bond stretching bond bending
X I O‘. . 12 O‘. . 6_ q. q .
2 2 ()
E - [1+cos(n-w—7)] + g — ) —2( I .
T'ij T4 47’(’60 r;
torsion _ i ]

bond rotation clectrostatics and dispersion



Example: 3-Body Potential for Silicon

Coordinates R;, Rj and R can be replaced by Ri— R;, Rk— Rj and Bjjk
Tetrahedral coordination:
» Bond angle of 80=109.5° and bond distance of 2.35A

V({ﬁi}): > ]; (Ii = lio)” + Z MO~ 040)7

bonds angles

bond stretching bond bending

Possible choices are K (6-60)? or K (cos Bijx +1/3)2

Stillinger-Weber potential

N 2
1
Z V(R w Z Q(Rij)g(Rkj) (COSHijk 3>
7.7 1 ’L,j,k:]_

Reproduces Si properties such as 2x1 reconstruction of Si(100) but not 7x7 reconstruction



Potentials for Organic Molecules

Distinguish between bonded and non-bonded interactions

(1) Ethane H3C—CHs
- Torsion of C—C bond
- Staggered versus eclipsed configuration
has different energy
- Requires four-body potential Viorsion = K - COS(?)@)

(2) Ethene H,C=CH,
- Double bond between C=C has different strength
than single bond C—C in ethane
- Requires cluster functional or different potentials
for sp, sp?, and sp?3 carbon

e Changes in coordination are done by changing the potential
e Examples: AMBER, CHARMM, MM3



Reactive Force Field Potentials (COMB and ReaxFF)

* Sum of many-body and Coulomb terms Esystem = Ebond + Eover + Eangle + Etors + Evdwaals + Ecoulomb
e Can handle bond breaking and formation + Especific-

Atom
positions
Determine
Determine System

Determine
angles and

Non-bonding Bonding

Computational Materials 2, 15011 (2016)



Modified-Embedded Atom Potentials

e Similar form to EAM with modified density function

1 ( . \ Many-body ( 1 )
E.., = Z F; (ﬂz) | Z Z V(Rz'j) Pan.* i> C ust.er
, D et potentials potentials
0 S \ ‘
H,—/
Embedding energy : : Non-linearity
Pair potential s L
— ) . ) . . Pair Cluster
Pi = zk: f(Rw ) f(RZk) g(COS (9” k) functionals functionals
J> ——

e Angular force terms particularly important for early transition metal elements and covalent
bonded systems
e Applications of EAM to Si, Ti and refractory metals



Recent Advances in Empirical Energy Models

Gaussian Approximation Potentials developed by Bartok and Csanyi
e Create database of various atomic configurations
e Decompose the energy of these configurations into sum of atomic energies

e For new configuration, determine the energy of each atom by using a function g(q;) of local atomic
neighborhood structure, structure represented by q;

E = e(q;
Z () Example: Tungsten
: 15% 50%
: : : : i i GAP
e The energy function g(q;) is expanded in a basis set _ .. Bop ¢
I R . i F'S
L 4 * & I M | |
- 0 - | —* O - - -
e(q) = ) a;K(q;,q) I R
. B _ . ¢® "
J . o
e The kernel K(gj;, g) measures the similarity between
. . C11 C12 C44 I (100)  (110) (111) (112)
two dlﬁ:e rent environments Elastic const. \glcealig;y Surface energy

More on this and neural network potentials in Workshop lli



Optimization of Model Parameters

Data for optimization of potential parameters
e Properties of crystals, defects, liquids

» Crystal structures and energy differences
» Lattice constants, cohesive energy, equation of state
» Elastic coefficients, phonon frequencies, and forces

» Point defect structures and energies, surface energies, and relaxation

Optimization methods

Optimization using simulated annealing, parallel tempering, genetic algorithms, etc.

Parameters usually loose the particular physical meaning of the analytic form

It is crucial to test the transferability and accuracy of the potential on data that was not in the fit
Empirical potentials have the tendency to lead to unexpected behavior in parts of phase space
such as energy divergencies and unphysical roughness of landscape

Fitting a potential is an art form and requires a lot of experience

= Clear need for improved methods



Evaluation of Empirical Potentials

Comparison between potentials: For metals

e Most potentials result in similar static properties e Bond energy depends on the number of

e Note, that they are often fit to static properties bonds already made to an atom

e Problems usually occur for dynamics properties e This effect is absent in pair potentials,
(forces, phonons) and defect properties which are environment-independent

e Hence, whenever bond-breaking is

For oxides involved, the result of a potential model

results can be expected with empirical potential

models (+ electrostatic energy)

e Accuracy is mainly limited by the oxygen For organic molecules
“breathing” effect e Very good potentials have been fit to C-H and C-C
e The more covalent the oxide, the more difficult bonds in various bonding arrangements (AMBER,
it will be to find potentials that reproduce the CHARMM, MM3, MMFF94)
materials behavior in a wide range of e These can be used to model conformational
environments arrangements of polymeric systems (where no
e Shell polarization is essential in low symmetry bond-breaking is involved)

environments



Validation of Empirical Energy Models

Should at least use a testing dataset to estimate uncertainty

e Testing datasets of similar properties as fitting dataset
e Can also contain more expensive data such as:

» Melting points

» Thermal expansion

» Thermal conductivity

» Phase transition pressures

» Rates
b ...

e These require MD simulations and are less suitable for fitting database



Validation of Empirical Energy Models

Validation of energy landscapes

e Goal: Identify unphysical minima where the potential fails
e Strategy: Explore configuration space using global optimization methods
e Methods:

» Simulated annealing, parallel tempering MD

» Basin hopping

» Evolutionary algorithms

b ...



Validation of Empirical Energy Models

. . MEAM® GGA-PBE® Exp.

Example 1. MO MEAM pOtentlaI E.on (eV/atom) 6.82 6.25 6.82"
e Comparison of empirical potential with a (A) 3.167 3.169  3.147°
: : B (GPa) 253 263 270
density-functional theory Cy1 (GPa) wi 6o 4ot

e Modified embedded-atom model for Mo Ci2 (GPa) 158 163 165°
(44 (GPa) 96 102 1084

e Perform GASP search with LAMMPS

AFrddd—bee (meV /atom 242 231
* Calculate DFT energy of newly found structures C Ao ((n_le\, //amm)) 260 o6 )

e Potential reproduces the ground state and apw (A) 5.026 .058
) o CAEpmma_bCC (meV /atom) 269 233 )

a” IOW_lylng minima AEgta_pee (meV/atom) 280 168

e Provides confidence in accuracy of the potential agTa (A) D719 9.2

cata (A) 5.048 5.113

AFE, Ti—bee (meV /atom) 332 404

auri (A) 1.616 4.681

coti (A) 2.595 2.572

AFEsccbee (meV /atom) 391 418

asce (A) 3.931 4.013

AFEncp—bee (meV /atom) 415 433

anep (A) 2.743 2.765

Chep (A) 1.692 1.905

Phys. Rev. B 85, 214121 (2012)

( AFEco/m (meV/atom)

198




Validation of Empirical Energy Models

Example 2: Testing of Al-Cu-Zr EAM potential

Cu
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Ternary phase diagram search is a hard problem

Fitting a good potential is as well
\//i

Al Zr

DFT energies of DFT energies of
GA ground states expt ground states

4

|
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Validation of Empirical Energy Models

Example 2: Li-S system

e Three ground state phases: Li, Li3S, S

e Li monosulfide, LiS, reported by Thomas and Jones in 1929

e ReaxFF potential fitting and evolutionary algorithm testing (van Duin et al.)

e Unphysical structure from first search were used in fit to improve potential
Density-functional theory ReaxFF potential model

*  (GA structures —
¢ GA ground states
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Open Question

How should we select the optimal functional form
of an energy model for a given materials system?

How should we choose a fitting data sets for
parameter optimization that minimizes the
errors on the model predictions?

How can we identify tradeoffs between
conflicting model predictions for a given
functional form of the model?

How can we effectively employ energy models
as surrogate models for energy landscapes?




