What is the Riemann Hypothesis for Zeta Functions of Irregular Graphs?

Audrey Terras
UCLA, IPAM
February, 2008

Joint work with H. M. Stark, M. D. Horton, etc.

What is an expander graph X?

X finite connected (irregular) graph, not a cycle, no degree 1 vertices

4 Ideas

1) spectral property of some matrix
 Adjacency matrix, Laplacian, edge matrix W for X
 Lubotzky: compare with spectrum analogous operator
 on universal cover of X (or some graph X covers)

2) X behaves like a random graph.

3) Information is passed quickly in the gossip network
 based on X;
 $|\partial S|/|S| \geq c$ if S is a set of vertices and $|S| \leq |X|/2$.
 See Fan Chung's papers on Cheeger constant c on her
 website. Note that it is closely related to the size of
 the smallest non-0 eigenvalue of the Laplacian

4) Random walker gets lost FAST.
Primes in Graphs

are equivalence classes \([C]\) of closed backtrackless
tailless primitive paths \(C\)

DEFINITIONS

- **backtrack**
- **equivalence class**: change starting point
- **tail**

Here \(\alpha\) is the start of the path

non-primitive: go around path more than once

EXAMPLES of Primes in a Graph

\[[C] = [e_1e_2e_3]\]
\[[D] = [e_4e_5e_3]\]
\[[E] = [e_1e_2e_3e_4e_5e_3]\]

\(\nu(C) = 3, \ \nu(D) = 4, \ \nu(E) = 6\)

\(E = CD\)

another prime \([C\cdot D]\), \(n=2,3,4,\ldots\)
ininitely many primes
Ihara Zeta Function

\[\zeta(u,X) = \prod_{[C] \text{ prime}} \left(1-u^{\nu(C)}\right)^{-1} \]

\[\zeta(u,X)^{-1} = (1-u^2)^{r-1} \det(I-Au+Qu^2) \]

for \(u \) complex, \(|u| \) small

\(A \) = adjacency matrix, \(Q + I \) = diagonal matrix of degrees, \(r \) = rank fundamental group

For \(q+1 \) - regular graph, \(u = q^{-s} \) makes Ihara zeta more like Riemann zeta.

\(f(s) = \zeta(q^{-s}) \) has a functional equation relating \(f(s) \) and \(f(1-s) \).

Riemann Hypothesis (RH) says \(\zeta(q^{-s}) \) has no poles with \(0 < \text{Re } s < 1 \) unless \(\text{Re } s = \frac{1}{2} \).

RH means graph is Ramanujan i.e., non-trivial spectrum of adjacency matrix is contained in the spectrum for the universal covering tree which is the interval \((-2\sqrt{q}, 2\sqrt{q})\) [see Lubotzky, Phillips & Sarnak, Combinatorica, 8 (1988)].

and thus a good expander
Possible Locations of Poles u of $\zeta(u)$ for $q+1$ Regular Graph

1/q is always the closest pole to the origin in absolute value Circle of radius $1/\sqrt{q}$ from part of spectrum of adjacency matrix satisfying the Ramanujan inequality
Real poles ($\neq \pm q^{-1/2}, \pm 1$) correspond to non-Ramanujan eigenvalues of A.

Alon conjecture for regular graphs says RH true for “most” regular graphs but can be false. See Joel Friedman’s website (www.math.ubc.ca/~jf) for a paper proving a random regular graph is almost Ramanujan.

What is the meaning of the RH & Ramanujan for irregular graphs?

For irregular graph, natural change of variables is $u=R^s$, where $R =$ radius of convergence of Dirichlet series for Ihara zeta.

Note: R is closest pole of zeta to 0.

Then the critical strip is $0 \leq \Re s \leq 1$ and we get

Graph theory RH: $\zeta(u)$ is pole free in $R < |u| < \sqrt{R}$.

$\rho = \max |\lambda|$, λ in spectrum $A=$adjacency matrix of graph X

$\rho' = \max |\lambda| \neq \rho$, λ in spectrum $A=$adjacency matrix of graph X

$\sigma =$ spectral radius Adjacency operator on universal cover of X

Lubotzky says a connected irregular graph is Ramanujan if $\rho' \leq \sigma$
Some Facts About the Constants
Let $d=\text{average degree}$, Hoory, J. Comb. Theory, 93 (2005) shows

$$2(d-1)^{1/2} \leq \sigma$$

R is closest pole of zeta to 0

$\rho = \text{maximum } |\lambda|, \lambda \text{ in spectrum } A=\text{adjacency matrix of } X$

$\rho' = \text{maximum } |\lambda| \neq \rho, \lambda \text{ in spectrum } A=\text{adjacency matrix of } X$

$\sigma = \text{spectral radius } A=\text{Adjacency operator on universal cover of } X$

One can show that $\rho \geq d$

Examples all have $\rho \geq 1 + (1/R) \geq d$

Can only show $\rho \geq (p/q)+(1/R)$,

where $q+1=\text{max degree}$, $p+1=\text{min degree}$

Labeling Edges of Graphs

$X = \text{finite connected (not-necessarily regular graph)}$

Orient the m edges.

Label them as follows.

Here the inverse edge has opposite orientation.

e_1, e_2, \ldots, e_m,

$e_{m+1} = (e_1)^{-1}, \ldots, e_{2m} = (e_m)^{-1}$

With this labeling, we have the properties of the edge matrix on the next slide.
The Edge Matrix W

Define W to be the $2|E| \times 2|E|$ matrix with i,j entry 1 if edge i feeds into edge j, (end vertex of i is start vertex of j) provided that $e_i \neq$ the inverse of e_j, otherwise the i,j entry is 0.

Theorem. $\zeta(u,X)^{-1} = \det(I-Wu)$.

Corollary. The poles of Ihara zeta are the reciprocals of the eigenvalues of W.

The pole R of zeta is:

$R = \frac{1}{\text{Perron-Frobenius eigenvalue of } W}$.

Properties of W

1) $W = \begin{pmatrix} A & B \\ C & A^T \end{pmatrix}$, B and C symmetric

2) Row sums of entries are $q_j + 1$ = degree jth vertex

3) Singular Values (square roots eigenvalues of WW^T) are \{q_1, \ldots, q_n, 1, \ldots, 1\}.

4) $(I+W)^{2|E|-1}$ has all positive entries, if $2 \leq r \leq \text{rank fundamental group}$.

So we can apply Perron-Frobenius theorem to W.

Poles Ihara Zeta

are in region $q^{-1} \leq R \leq |u| \leq 1$,

$q + 1$ = maximum degree of vertices of X.

So eigenvalues of W being reciprocals of poles are outside unit circle and inside circle of radius q.

\[\]
Theorem of Kotani and Sunada

1. If $p+1=\min$ vertex degree, and $q+1=\max$imum vertex degree, non-real poles u of zeta satisfy

\[
\frac{1}{\sqrt{q}} \leq |u| \leq \frac{1}{\sqrt{p}}
\]

2. Poles symmetric under rotation by $2\pi/\Delta$, where

$\Delta = \gcd$ lengths of primes in graph

Corollary: Non-real eigenvalues of W are between \sqrt{p} and \sqrt{q}.

Work of Joel Friedman, Angel & Hoory

The non-backtracking spectrum of the universal cover of a graph, preprint on Friedman's website

They call W the non-backtracking adjacency matrix

They find 2 dimensional region D which is spectrum of the corresponding operator on the universal cover of the base graph X. One small example is drawn (K4-edge).

Irregular Graph Analog of Alon Conjecture:

new (i.e., not from X) spectrum of W-matrix for random n-sheeted covering (lift) Y of X should approach region D as n goes to infinity.

$R^{-1/2}$ is the spectral radius of the W-operator on the universal cover of X.

So approximate RH for covers of fixed base graph is contained in Alon conjecture.
Spectrum of Random Matrix with Properties of W-matrix

\[
W = \begin{pmatrix} A & B \\ C & A^T \end{pmatrix}
\]

- B and C symmetric
- Girko circle law

We used Matlab command `randn(1000)` to get A, B, C matrices with random normally distributed entries mean 0 std dev 1

Experiment on Locations of Zeros of Ihara Zeta of Irregular Graphs

All poles but -1 of \(\zeta_X(u)\) for a random graph with 80 vertices denoted by little boxes using Mathematica.

The 5 circles are centered at 0 & have radii \(R, q^{1/2}, R^{1/2}, (pq)^{-1/4}, p^{1/2}\)

\(q+1=\text{max degree},\ p+1=\text{min degree}; R=\text{radius of convergence of Euler product for } \zeta_X(u)\)

RH is false but poles are not far inside green circle

RandomGraph[80,1/10] is the Mathematica command we used. It means the probability of an edge between 2 vertices is 1/10.
Experiment on Locations of Zeros of Ihara Zeta of Irregular Graphs

All poles except -1 of $\zeta_X(u)$ for a random graph with 100 vertices are denoted by little boxes, using Mathematica

```
RandomGraph[100, 1/2]
```

Circles are centered at the origin and have radii R, $q^{-1/2}$, $R^{1/2}$, $p^{-1/2}$

$q+1=$ max degree,
$p+1=$ min degree

$R=$ radius of convergence of Euler product for $\zeta_X(u)$

RH is false maybe not as false as in previous example with probability 1/10 of an edge rather than 1/2.

Graph satisfies Hoory inequality and is thus Ramanujan in Lubotzky's sense.

Matthew Horton's Graph has $1/R \approx e$ to 7 digits.

Poles of Ihara zeta are boxes on right. Circles have radii $R, q^{1/2}, R^{1/2}, p^{1/2}$, if $q+1=$ max deg, $p+1=$ min deg. Here $(p, 1+1/R, d=average\ degree) \approx (5.26243, 3.71828, 2.47863)$

The RH is false; does not satisfy Hoory inequality. Poles more spread out over plane.
Poles of Ihara Zeta for a $\mathbb{Z}_6 \times \mathbb{Z}_6$-Cover of 2 Loops + Extra Vertex are pink dots

Circles Centers $(0,0)$; Radii: $3^{-1/2}$, $R^{1/2}$, 1; $R \cong 0.47$
RH very False

Z is random 700 cover of 2 loops plus vertex graph in picture.
The pink dots are at poles of ζ_Z. Circles have radii $q^{-1/2}$, $R^{1/2}$, $p^{-1/2}$, with $q=3$, $p=1$, $R \cong 0.4694$. RH approximately True.
References: 3 papers with Harold Stark in *Advances in Math*.

- See my draft of a book:

 www.math.ucsd.edu/~aterras/newbook.pdf

- Draft of new paper: also on my website

 www.math.ucsd.edu/~aterras/cambridge.pdf

- There was a graph zetas special session of this AMS meeting – many interesting papers some on my website.