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Pro-finite properties

Definition A property P defined for finitely generated
residually finite groups is called pro-finite if it depends only
of the pro-finite completion.

Pro-finite properties andproperty Tau – p. 3/18



Pro-finite properties

Definition A property P defined for finitely generated
residually finite groups is called pro-finite if it depends only
of the pro-finite completion.

I.e. for two f.g. groups Γ1 and Γ2 with the same pro-finite
completion then if Γ1 has P then so does Γ2.
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Trivial Examples

If a property is (or is equivalent to one) defined using the
pro-finite completion then it is pro-finite.
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Trivial Examples

If a property is (or is equivalent to one) defined using the
pro-finite completion then it is pro-finite.

virtual nilpotency
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Trivial Examples

If a property is (or is equivalent to one) defined using the
pro-finite completion then it is pro-finite.

virtual nilpotency

having certain subgroup growth
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Non-trivial Examples

If it is possible to classify all groups having some property
P , then it is easy to check if this property is pro-finite or not.
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Non-trivial Examples

If it is possible to classify all groups having some property
P , then it is easy to check if this property is pro-finite or not.

virtual poly-cyclic
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Non-trivial Examples

If it is possible to classify all groups having some property
P , then it is easy to check if this property is pro-finite or not.

virtual poly-cyclic

polynomial word growth
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Non-trivial Examples

If it is possible to classify all groups having some property
P , then it is easy to check if this property is pro-finite or not.

virtual poly-cyclic

polynomial word growth

Theorem (Lackenby) Largeness + finitely presented is a
pro-finite property (it is even pro-p).
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Non-trivial Examples

If it is possible to classify all groups having some property
P , then it is easy to check if this property is pro-finite or not.

virtual poly-cyclic

polynomial word growth

Theorem (Lackenby) Largeness + finitely presented is a
pro-finite property (it is even pro-p).
A group is large if it contains a finite index subgroup which
maps onto non-abelian free group.
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Question Are Tau and T pro-finite properties?
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Question Are Tau and T pro-finite properties?

This is extremely unlikely for T.
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Question Are Tau and T pro-finite properties?

This is extremely unlikely for T.

It seems that Tau is a pro-finite property since it is "defined"
using the pro-finite topology.
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Kazhdan Constant

Definition Let G be a group and let S be a subset of G.
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Kazhdan Constant

Definition Let G be a group and let S be a subset of G. An
unit vector v in an unitary representation ρ : G → U(H) of G

is called (S, ǫ)-almost invariant if
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Kazhdan Constant

Definition Let G be a group and let S be a subset of G. An
unit vector v in an unitary representation ρ : G → U(H) of G

is called (S, ǫ)-almost invariant if

||ρ(g)v − v|| ≤ ǫ for any g ∈ S.
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Kazhdan Constant

Definition Let G be a group and let S be a subset of G. An
unit vector v in an unitary representation ρ : G → U(H) of G

is called (S, ǫ)-almost invariant if

||ρ(g)v − v|| ≤ ǫ for any g ∈ S.

The maximal ǫ such that the existence of an ǫ-almost
invariant vector implies the existence of an invariant vector
is called Kazhdan constant of G with respect to S and is
denoted by K(G;S).
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Properties T and Tau

A group has Kazhdan property T iff there exist a compact
set S such that K(G;S) > 0,
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Properties T and Tau

A group has Kazhdan property T iff there exist a compact
set S such that K(G;S) > 0, i.e., there exists ǫ > 0 such that
any representation with (S, ǫ)-almost invariant vector
contains the trivial representation.
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Properties T and Tau

A group has Kazhdan property T iff there exist a compact
set S such that K(G;S) > 0, i.e., there exists ǫ > 0 such that
any representation with (S, ǫ)-almost invariant vector
contains the trivial representation.

A group has property Tau iff there exist a finite set S and
ǫ > 0 such that any representation which factors through a
finite index subgroup with (S, ǫ)-almost invariant vector
contains the trivial representation.
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Informal definitions for Tau

"Definition" A group Γ has Tau iff its pro-finite completion
Γ̂ has T.
Since representations of Γ̂ are exactly the same as
representation which factors through a finite index
subgroup.
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Informal definitions for Tau

"Definition" A group Γ has Tau iff its pro-finite completion
Γ̂ has T.
Since representations of Γ̂ are exactly the same as
representation which factors through a finite index
subgroup.

This "definition" is incorrect because Γ̂ is compact and
always has T.
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Informal definitions for Tau

"Definition" A group Γ has Tau iff its pro-finite completion
Γ̂ has T.
Since representations of Γ̂ are exactly the same as
representation which factors through a finite index
subgroup.

This "definition" is incorrect because Γ̂ is compact and
always has T.

"Definition" A group Γ has Tau iff there exists a finite set
S inside Γ̂ such that the Kazhdan constant K(Γ̂;S) > 0.
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Informal definitions for Tau

"Definition" A group Γ has Tau iff its pro-finite completion
Γ̂ has T.
Since representations of Γ̂ are exactly the same as
representation which factors through a finite index
subgroup.

This "definition" is incorrect because Γ̂ is compact and
always has T.

"Definition" A group Γ has Tau iff there exists a finite set
S inside Γ̂ such that the Kazhdan constant K(Γ̂;S) > 0.
This "definition" implies that Tau is a pro-finite property.
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Informal definitions for Tau

"Definition" A group Γ has Tau iff its pro-finite completion
Γ̂ has T.
Since representations of Γ̂ are exactly the same as
representation which factors through a finite index
subgroup.

This "definition" is incorrect because Γ̂ is compact and
always has T.

"Definition" A group Γ has Tau iff there exists a finite set
S inside Γ̂ such that the Kazhdan constant K(Γ̂;S) > 0.
This "definition" implies that Tau is a pro-finite property.

However this "definition" is also incorrect...
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Products

Let Gi be a family of finite groups.
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Products

Let Gi be a family of finite groups.
A generating set for a subgroup Γ inside G =

∏
Gi is almost

same as a system of generating sets Si for the groups Gi.
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Products

Let Gi be a family of finite groups.
A generating set for a subgroup Γ inside G =

∏
Gi is almost

same as a system of generating sets Si for the groups Gi.

In most cases such group Γ has (relative) Tau iff the
Kazhdan constants K(Gi;Si) are uniformly bounded.
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Examples

There exists several examples of families of groups with
both expanding and non-expanding generating sets, like
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Examples

There exists several examples of families of groups with
both expanding and non-expanding generating sets, like

SL2(Fp) ⋉ F
p+1
2
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Examples

There exists several examples of families of groups with
both expanding and non-expanding generating sets, like

SL2(Fp) ⋉ F
p+1
2

SLn(Fp) for p fixed
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Examples

There exists several examples of families of groups with
both expanding and non-expanding generating sets, like

SL2(Fp) ⋉ F
p+1
2

SLn(Fp) for p fixed

Alt(n)
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Examples

There exists several examples of families of groups with
both expanding and non-expanding generating sets, like

SL2(Fp) ⋉ F
p+1
2

SLn(Fp) for p fixed

Alt(n)

This implies that there exist two groups Γ1 and Γ2 which are
dense in a same pro-finite group G such that one has
(relative) Tau but the other does not.

Pro-finite properties andproperty Tau – p. 11/18



Examples

There exists several examples of families of groups with
both expanding and non-expanding generating sets, like

SL2(Fp) ⋉ F
p+1
2

SLn(Fp) for p fixed

Alt(n)

This implies that there exist two groups Γ1 and Γ2 which are
dense in a same pro-finite group G such that one has
(relative) Tau but the other does not.
However this does not imply that Tau is not pro-finite
property, because these groups have different pro-finite
completions (in most cases one of the groups has infinite
abelian quotient).
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Question Can we make the pro-finite completions to
coincide?
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Question Can we make the pro-finite completions to
coincide?

We need a method to construct discrete groups with a
given pro-finite completion.
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Question Can we make the pro-finite completions to
coincide?

We need a method to construct discrete groups with a
given pro-finite completion.

Theorem (K-Nikolov) Let Si be a "nice" family of finite
simple groups. There exists a finitely generated Γ with
pro-finite completion ∏

i

Si
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Frame subgroups

Definition A subgroup G < G is a frame-like for G if the
following hold:
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Frame subgroups

Definition A subgroup G < G is a frame-like for G if the
following hold:
(a) G is finitely generated
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Frame subgroups

Definition A subgroup G < G is a frame-like for G if the
following hold:
(a) G is finitely generated

(b) G contains
⊕

Gi.
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Frame subgroups

Definition A subgroup G < G is a frame-like for G if the
following hold:
(a) G is finitely generated

(b) G contains
⊕

Gi.
G is called frame if also
(c) The natural surjection Ĝ → G is an isomorphism.
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Frame subgroups

Definition A subgroup G < G is a frame-like for G if the
following hold:
(a) G is finitely generated

(b) G contains
⊕

Gi.
G is called frame if also
(c) The natural surjection Ĝ → G is an isomorphism.
Lemma If G is a frame-like subgroup then

Ĝ = G × CG

i.e., there is a projection π : G → CG.
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Gluing frame-like subgroups

Let Ki and Li are subgroup of Gi such that Gi = 〈Ki, Li〉.
The pro-finite groups K =

∏
Ki and L =

∏
Li are a

subgroups of G.
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Gluing frame-like subgroups

Let Ki and Li are subgroup of Gi such that Gi = 〈Ki, Li〉.
The pro-finite groups K =

∏
Ki and L =

∏
Li are a

subgroups of G.

Lemma If K and L are frame-like subgroup in K and L

then G = 〈K,L〉 is a frame-like subgroup in G.
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Gluing frame-like subgroups

Let Ki and Li are subgroup of Gi such that Gi = 〈Ki, Li〉.
The pro-finite groups K =

∏
Ki and L =

∏
Li are a

subgroups of G.

Lemma If K and L are frame-like subgroup in K and L

then G = 〈K,L〉 is a frame-like subgroup in G.

Moreover the congruence kernel CG is generated by CK

and CL.
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Existence of frames

Theorem (K-Nikolov) There exits a finitely generated Γ0

which is a frame in
∏

Alt(n), in particular Γ̂0 is isomorphic
to

∏
Alt(n).
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Existence of frames

Theorem (K-Nikolov) There exits a finitely generated Γ0

which is a frame in
∏

Alt(n), in particular Γ̂0 is isomorphic
to

∏
Alt(n).

Moreover there exists involution γ ∈ Γ0 such the projection
of γ in Alt(n) has no more than 3 fixed points.
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Existence of frames

Theorem (K-Nikolov) There exits a finitely generated Γ0

which is a frame in
∏

Alt(n), in particular Γ̂0 is isomorphic
to

∏
Alt(n).

Moreover there exists involution γ ∈ Γ0 such the projection
of γ in Alt(n) has no more than 3 fixed points.

Does it have property Tau? Probably not...
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Breaking Tau

Consider the maps:

πn : Alt(n) ⋆ Alt(n) →
∏

n2<i≤(n+1)2

Alt(i)

where each copy of Alt(n) is embedded diagonally in
Alt(n)×n ⊂ Alt(i) and the "supports" of the images of the
two copies are "offset" by 1 point.
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Breaking Tau

Consider the maps:

πn : Alt(n) ⋆ Alt(n) →
∏

n2<i≤(n+1)2

Alt(i)

where each copy of Alt(n) is embedded diagonally in
Alt(n)×n ⊂ Alt(i) and the "supports" of the images of the
two copies are "offset" by 1 point.
This gives a map

π :
∏

Alt(n) ⋆
∏

Alt(n) →
∏

Alt(n)

and such that Γ1 = π(Γ0 ⋆ Γ0) does not have property Tau.
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Breaking Tau

Consider the maps:

πn : Alt(n) ⋆ Alt(n) →
∏

n2<i≤(n+1)2

Alt(i)

where each copy of Alt(n) is embedded diagonally in
Alt(n)×n ⊂ Alt(i) and the "supports" of the images of the
two copies are "offset" by 1 point.
This gives a map

π :
∏

Alt(n) ⋆
∏

Alt(n) →
∏

Alt(n)

and such that Γ1 = π(Γ0 ⋆ Γ0) does not have property Tau.
The gluing lemma gives that Γ̂1 =

∏
Alt(n).
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Obtaining Tau

Theorem (K) There exists generating sets Sn for Alt(n)
such that
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Obtaining Tau

Theorem (K) There exists generating sets Sn for Alt(n)
such that

Sn consists of 100 involutions with no more than 3 fixed
points;
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Obtaining Tau

Theorem (K) There exists generating sets Sn for Alt(n)
such that

Sn consists of 100 involutions with no more than 3 fixed
points;

K(Alt(n);Sn) > ǫ for some ǫ > 0.
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This allows us to construct

ρ :
(∏

Alt(n)
)⋆100

→
∏

Alt(n)

such that
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This allows us to construct

ρ :
(∏

Alt(n)
)⋆100

→
∏

Alt(n)

such that

Γ2 = ρ(Γ0 ⋆ · · · ⋆ Γ0) is a frame in
∏

Alt(n);
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This allows us to construct

ρ :
(∏

Alt(n)
)⋆100

→
∏

Alt(n)

such that

Γ2 = ρ(Γ0 ⋆ · · · ⋆ Γ0) is a frame in
∏

Alt(n);

there exists S ⊂ Γ2 which projects on the expanding
generating set Sn for any n.
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This allows us to construct

ρ :
(∏

Alt(n)
)⋆100

→
∏

Alt(n)

such that

Γ2 = ρ(Γ0 ⋆ · · · ⋆ Γ0) is a frame in
∏

Alt(n);

there exists S ⊂ Γ2 which projects on the expanding
generating set Sn for any n.

Therefore Γ2 has property Tau and Γ̂2 =
∏

Alt(n).
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This allows us to construct

ρ :
(∏

Alt(n)
)⋆100

→
∏

Alt(n)

such that

Γ2 = ρ(Γ0 ⋆ · · · ⋆ Γ0) is a frame in
∏

Alt(n);

there exists S ⊂ Γ2 which projects on the expanding
generating set Sn for any n.

Therefore Γ2 has property Tau and Γ̂2 =
∏

Alt(n).

These two examples show that Tau is NOT a pro-finite
property.
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