Pro-finite properties and property Tau

Martin Kassabov

February 11, 2008

Pro-finite properties

Pro-finite properties

Definition A property *P* defined for finitely generated residually finite groups is called pro-finite if it depends only of the pro-finite completion.

Pro-finite properties

Definition A property *P* defined for finitely generated residually finite groups is called pro-finite if it depends only of the pro-finite completion.

I.e. for two f.g. groups Γ_1 and Γ_2 with the same pro-finite completion then if Γ_1 has P then so does Γ_2 .

Trivial Examples

If a property is (or is equivalent to one) defined using the pro-finite completion then it is pro-finite.

Trivial Examples

If a property is (or is equivalent to one) defined using the pro-finite completion then it is pro-finite.

virtual nilpotency

Trivial Examples

If a property is (or is equivalent to one) defined using the pro-finite completion then it is pro-finite.

- virtual nilpotency
- having certain subgroup growth

If it is possible to classify all groups having some property *P*, then it is easy to check if this property is pro-finite or not.

If it is possible to classify all groups having some property *P*, then it is easy to check if this property is pro-finite or not.

virtual poly-cyclic

If it is possible to classify all groups having some property *P*, then it is easy to check if this property is pro-finite or not.

- virtual poly-cyclic
- polynomial word growth

If it is possible to classify all groups having some property *P*, then it is easy to check if this property is pro-finite or not.

- virtual poly-cyclic
- polynomial word growth

Theorem (Lackenby) Largeness + finitely presented is a pro-finite property (it is even pro-p).

If it is possible to classify all groups having some property *P*, then it is easy to check if this property is pro-finite or not.

- virtual poly-cyclic
- polynomial word growth

Theorem (Lackenby) Largeness + finitely presented is a pro-finite property (it is even pro-*p*).

A group is large if it contains a finite index subgroup which maps onto non-abelian free group.

Question Are Tau and T pro-finite properties?

Question Are Tau and T pro-finite properties?

This is extremely unlikely for T.

Question Are Tau and T pro-finite properties?

This is extremely unlikely for T.

It seems that Tau is a pro-finite property since it is "defined" using the pro-finite topology.

Definition Let G be a group and let S be a subset of G.

Definition Let *G* be a group and let *S* be a subset of *G*. An unit vector *v* in an unitary representation $\rho : G \to U(\mathcal{H})$ of *G* is called (S, ϵ) -almost invariant if

Definition Let *G* be a group and let *S* be a subset of *G*. An unit vector *v* in an unitary representation $\rho : G \to U(\mathcal{H})$ of *G* is called (S, ϵ) -almost invariant if

 $||\rho(g)v - v|| \le \epsilon$ for any $g \in S$.

Definition Let *G* be a group and let *S* be a subset of *G*. An unit vector *v* in an unitary representation $\rho : G \to U(\mathcal{H})$ of *G* is called (S, ϵ) -almost invariant if

$$||\rho(g)v - v|| \le \epsilon$$
 for any $g \in S$.

The maximal ϵ such that the existence of an ϵ -almost invariant vector implies the existence of an invariant vector is called Kazhdan constant of G with respect to S and is denoted by $\mathcal{K}(G; S)$.

Properties T and Tau

A group has Kazhdan property T iff there exist a compact set *S* such that $\mathcal{K}(G; S) > 0$,

Properties T and Tau

A group has Kazhdan property T iff there exist a compact set *S* such that $\mathcal{K}(G; S) > 0$, i.e., there exists $\epsilon > 0$ such that any representation with (S, ϵ) -almost invariant vector contains the trivial representation.

Properties T and Tau

A group has Kazhdan property T iff there exist a compact set *S* such that $\mathcal{K}(G; S) > 0$, i.e., there exists $\epsilon > 0$ such that any representation with (S, ϵ) -almost invariant vector contains the trivial representation.

A group has property Tau iff there exist a finite set S and $\epsilon > 0$ such that any representation which factors through a finite index subgroup with (S, ϵ) -almost invariant vector contains the trivial representation.

"Definition" A group Γ has Tau iff its pro-finite completion $\widehat{\Gamma}$ has T. Since representations of $\widehat{\Gamma}$ are exactly the same as representation which factors through a finite index subgroup.

"Definition" A group Γ has Tau iff its pro-finite completion $\widehat{\Gamma}$ has T.

Since representations of $\widehat{\Gamma}$ are exactly the same as representation which factors through a finite index subgroup.

This "definition" is incorrect because $\widehat{\Gamma}$ is compact and always has T.

"Definition" A group Γ has Tau iff its pro-finite completion $\widehat{\Gamma}$ has T.

Since representations of $\widehat{\Gamma}$ are exactly the same as representation which factors through a finite index subgroup.

This "definition" is incorrect because $\widehat{\Gamma}$ is compact and always has T.

"Definition" A group Γ has Tau iff there exists a finite set S inside $\widehat{\Gamma}$ such that the Kazhdan constant $\mathcal{K}(\widehat{\Gamma}; S) > 0$.

"Definition" A group Γ has Tau iff its pro-finite completion $\widehat{\Gamma}$ has T.

Since representations of $\widehat{\Gamma}$ are exactly the same as representation which factors through a finite index subgroup.

This "definition" is incorrect because $\widehat{\Gamma}$ is compact and always has T.

"Definition" A group Γ has Tau iff there exists a finite set S inside $\widehat{\Gamma}$ such that the Kazhdan constant $\mathcal{K}(\widehat{\Gamma}; S) > 0$. This "definition" implies that Tau is a pro-finite property.

"Definition" A group Γ has Tau iff its pro-finite completion $\widehat{\Gamma}$ has T.

Since representations of $\widehat{\Gamma}$ are exactly the same as representation which factors through a finite index subgroup.

This "definition" is incorrect because $\widehat{\Gamma}$ is compact and always has T.

"Definition" A group Γ has Tau iff there exists a finite set S inside $\widehat{\Gamma}$ such that the Kazhdan constant $\mathcal{K}(\widehat{\Gamma}; S) > 0$. This "definition" implies that Tau is a pro-finite property.

However this "definition" is also incorrect...

Products

Let G_i be a family of finite groups.

Products

Let G_i be a family of finite groups. A generating set for a subgroup Γ inside $\mathbb{G} = \prod G_i$ is almost same as a system of generating sets S_i for the groups G_i .

Products

Let G_i be a family of finite groups. A generating set for a subgroup Γ inside $\mathbb{G} = \prod G_i$ is almost same as a system of generating sets S_i for the groups G_i .

In most cases such group Γ has (relative) Tau iff the Kazhdan constants $\mathcal{K}(G_i; S_i)$ are uniformly bounded.

There exists several examples of families of groups with both expanding and non-expanding generating sets, like

There exists several examples of families of groups with both expanding and non-expanding generating sets, like

• $\operatorname{SL}_2(\mathbb{F}_p) \ltimes \mathbb{F}_2^{p+1}$

There exists several examples of families of groups with both expanding and non-expanding generating sets, like

- $\operatorname{SL}_2(\mathbb{F}_p) \ltimes \mathbb{F}_2^{p+1}$
- $\operatorname{SL}_n(\mathbb{F}_p)$ for p fixed

There exists several examples of families of groups with both expanding and non-expanding generating sets, like

- $\operatorname{SL}_2(\mathbb{F}_p) \ltimes \mathbb{F}_2^{p+1}$
- $\operatorname{SL}_n(\mathbb{F}_p)$ for p fixed
- $\operatorname{Alt}(n)$

There exists several examples of families of groups with both expanding and non-expanding generating sets, like

- $\operatorname{SL}_2(\mathbb{F}_p) \ltimes \mathbb{F}_2^{p+1}$
- $\operatorname{SL}_n(\mathbb{F}_p)$ for p fixed
- $\operatorname{Alt}(n)$

This implies that there exist two groups Γ_1 and Γ_2 which are dense in a same pro-finite group \mathbb{G} such that one has (relative) Tau but the other does not.

There exists several examples of families of groups with both expanding and non-expanding generating sets, like

- $\operatorname{SL}_2(\mathbb{F}_p) \ltimes \mathbb{F}_2^{p+1}$
- $\operatorname{SL}_n(\mathbb{F}_p)$ for p fixed
- Alt(n)

This implies that there exist two groups Γ_1 and Γ_2 which are dense in a same pro-finite group \mathbb{G} such that one has (relative) Tau but the other does not. However this does not imply that Tau is not pro-finite

property, because these groups have different pro-finite completions (in most cases one of the groups has infinite abelian quotient).

Question Can we make the pro-finite completions to coincide?

Question Can we make the pro-finite completions to coincide?

We need a method to construct discrete groups with a given pro-finite completion.

Question Can we make the pro-finite completions to coincide?

We need a method to construct discrete groups with a given pro-finite completion.

Theorem (K-Nikolov) Let S_i be a "nice" family of finite simple groups. There exists a finitely generated Γ with pro-finite completion

$$\prod_i S_i$$

Definition A subgroup $G < \mathbb{G}$ is a frame-like for \mathbb{G} if the following hold:

Definition A subgroup $G < \mathbb{G}$ is a frame-like for \mathbb{G} if the following hold: (a) *G* is finitely generated

Definition A subgroup $G < \mathbb{G}$ is a frame-like for \mathbb{G} if the following hold: (a) *G* is finitely generated

(b) G contains $\bigoplus G_i$.

Definition A subgroup $G < \mathbb{G}$ is a frame-like for \mathbb{G} if the following hold: (a) *G* is finitely generated (b) *G* contains $\bigoplus G$:

(b) G contains $\bigoplus G_i$. G is called frame if also (c) The natural surjection $\widehat{G} \to \mathbb{G}$ is an isomorphism.

Definition A subgroup $G < \mathbb{G}$ is a frame-like for \mathbb{G} if the following hold: (a) G is finitely generated

(b) G contains $\bigoplus G_i$. G is called frame if also (c) The natural surjection $\widehat{G} \to \mathbb{G}$ is an isomorphism. Lemma If G is a frame-like subgroup then

 $\widehat{G} = \mathbb{G} \times C_G$

i.e., there is a projection $\pi : G \to C_G$.

Gluing frame-like subgroups

Let K_i and L_i are subgroup of G_i such that $G_i = \langle K_i, L_i \rangle$. The pro-finite groups $\mathbb{K} = \prod K_i$ and $\mathbb{L} = \prod L_i$ are a subgroups of \mathbb{G} .

Gluing frame-like subgroups

Let K_i and L_i are subgroup of G_i such that $G_i = \langle K_i, L_i \rangle$. The pro-finite groups $\mathbb{K} = \prod K_i$ and $\mathbb{L} = \prod L_i$ are a subgroups of \mathbb{G} .

Lemma If *K* and *L* are frame-like subgroup in \mathbb{K} and \mathbb{L} then $G = \langle K, L \rangle$ is a frame-like subgroup in \mathbb{G} .

Gluing frame-like subgroups

Let K_i and L_i are subgroup of G_i such that $G_i = \langle K_i, L_i \rangle$. The pro-finite groups $\mathbb{K} = \prod K_i$ and $\mathbb{L} = \prod L_i$ are a subgroups of \mathbb{G} .

Lemma If *K* and *L* are frame-like subgroup in \mathbb{K} and \mathbb{L} then $G = \langle K, L \rangle$ is a frame-like subgroup in \mathbb{G} .

Moreover the congruence kernel C_G is generated by C_K and C_L .

Existence of frames

Theorem (K-Nikolov) There exits a finitely generated Γ_0 which is a frame in $\prod \operatorname{Alt}(n)$, in particular $\widehat{\Gamma_0}$ is isomorphic to $\prod \operatorname{Alt}(n)$.

Existence of frames

Theorem (K-Nikolov) There exits a finitely generated Γ_0 which is a frame in $\prod \operatorname{Alt}(n)$, in particular $\widehat{\Gamma_0}$ is isomorphic to $\prod \operatorname{Alt}(n)$.

Moreover there exists involution $\gamma \in \Gamma_0$ such the projection of γ in Alt(n) has no more than 3 fixed points.

Existence of frames

Theorem (K-Nikolov) There exits a finitely generated Γ_0 which is a frame in $\prod \operatorname{Alt}(n)$, in particular $\widehat{\Gamma_0}$ is isomorphic to $\prod \operatorname{Alt}(n)$.

Moreover there exists involution $\gamma \in \Gamma_0$ such the projection of γ in Alt(n) has no more than 3 fixed points.

Does it have property Tau? Probably not...

Breaking Tau

Consider the maps:

$$\pi_n : \operatorname{Alt}(n) \star \operatorname{Alt}(n) \to \prod_{n^2 < i \le (n+1)^2} \operatorname{Alt}(i)$$

where each copy of Alt(n) is embedded diagonally in $Alt(n)^{\times n} \subset Alt(i)$ and the "supports" of the images of the two copies are "offset" by 1 point.

Breaking Tau

Consider the maps:

$$\pi_n : \operatorname{Alt}(n) \star \operatorname{Alt}(n) \to \prod_{n^2 < i \le (n+1)^2} \operatorname{Alt}(i)$$

where each copy of Alt(n) is embedded diagonally in $Alt(n)^{\times n} \subset Alt(i)$ and the "supports" of the images of the two copies are "offset" by 1 point. This gives a map

$$\pi: \prod \operatorname{Alt}(n) \star \prod \operatorname{Alt}(n) \to \prod \operatorname{Alt}(n)$$

and such that $\Gamma_1 = \pi(\Gamma_0 \star \Gamma_0)$ does not have property Tau.

Breaking Tau

Consider the maps:

$$\pi_n : \operatorname{Alt}(n) \star \operatorname{Alt}(n) \to \prod_{n^2 < i \le (n+1)^2} \operatorname{Alt}(i)$$

where each copy of Alt(n) is embedded diagonally in $Alt(n)^{\times n} \subset Alt(i)$ and the "supports" of the images of the two copies are "offset" by 1 point. This gives a map

$$\pi: \prod \operatorname{Alt}(n) \star \prod \operatorname{Alt}(n) \to \prod \operatorname{Alt}(n)$$

and such that $\Gamma_1 = \pi(\Gamma_0 \star \Gamma_0)$ does not have property Tau. The gluing lemma gives that $\widehat{\Gamma_1} = \prod \operatorname{Alt}(n)$.

Obtaining Tau

Theorem (K) There exists generating sets S_n for Alt(n) such that

Obtaining Tau

Theorem (K) There exists generating sets S_n for Alt(n) such that

S_n consists of 100 involutions with no more than 3 fixed points;

Obtaining Tau

Theorem (K) There exists generating sets S_n for Alt(n) such that

- S_n consists of 100 involutions with no more than 3 fixed points;
- $\mathcal{K}(\operatorname{Alt}(n); S_n) > \epsilon \text{ for some } \epsilon > 0.$

$$\rho: \left(\prod \operatorname{Alt}(n)\right)^{\star 100} \to \prod \operatorname{Alt}(n)$$

such that

$$\rho: \left(\prod \operatorname{Alt}(n)\right)^{\star 100} \to \prod \operatorname{Alt}(n)$$

such that

•
$$\Gamma_2 = \rho(\Gamma_0 \star \cdots \star \Gamma_0)$$
 is a frame in $\prod \operatorname{Alt}(n)$;

$$\rho: \left(\prod \operatorname{Alt}(n)\right)^{\star 100} \to \prod \operatorname{Alt}(n)$$

such that

•
$$\Gamma_2 = \rho(\Gamma_0 \star \cdots \star \Gamma_0)$$
 is a frame in $\prod \operatorname{Alt}(n)$;

• there exists $S \subset \Gamma_2$ which projects on the expanding generating set S_n for any n.

$$\rho: \left(\prod \operatorname{Alt}(n)\right)^{\star 100} \to \prod \operatorname{Alt}(n)$$

such that

•
$$\Gamma_2 = \rho(\Gamma_0 \star \cdots \star \Gamma_0)$$
 is a frame in $\prod \operatorname{Alt}(n)$;

• there exists $S \subset \Gamma_2$ which projects on the expanding generating set S_n for any n.

Therefore Γ_2 has property Tau and $\widehat{\Gamma_2} = \prod \operatorname{Alt}(n)$.

$$\rho: \left(\prod \operatorname{Alt}(n)\right)^{\star 100} \to \prod \operatorname{Alt}(n)$$

such that

•
$$\Gamma_2 = \rho(\Gamma_0 \star \cdots \star \Gamma_0)$$
 is a frame in $\prod \operatorname{Alt}(n)$;

• there exists $S \subset \Gamma_2$ which projects on the expanding generating set S_n for any n.

Therefore Γ_2 has property Tau and $\widehat{\Gamma_2} = \prod \operatorname{Alt}(n)$.

These two examples show that Tau is NOT a pro-finite property.