Jean Bourgain

Institute for Advanced Study Princeton, NJ 08540

February 13, 2008

CONJECTURE

Let S be a finite subset of $SL_d(\mathbb{Z})$ generating a Zariski dense subgroup. Then there is $q_0 \in \mathbb{Z}$ such that the family of Cayley graphs

$$\mathcal{G}ig(SL_d(\mathbb{Z}/q\mathbb{Z}),\pi_q(S)ig)$$

with $q \in \mathbb{Z}_+$, $(q, q_0) = 1$ forms a family of expanders

$$c(\mathcal{G}) = c_q(\mathcal{G}_q) > c(S) > 0$$

 $c(\mathcal{G}) = \text{expansion coefficient of } \mathcal{G}$
 $= \inf \left\{ \frac{|\partial X|}{|X|} \text{ where } |X| < \frac{1}{2}|V| \right\}$

(partly motivated by problems of prime sieving)

Connectedness of the graph

strong approximation property

Matthews, Vaserstein, Weisfeiler (1984)

Pink (2000)

Theorem. Let G be a Zariski dense subgroup of $SL_d(\mathbb{Z})$. There is $q_0 \in \mathbb{Z}$ such that $\pi_q(G) = SL_d(\mathbb{Z}/q\mathbb{Z})$ if $(q,q_0) = 1$

 π_q : reduction mod q

CASE d=2

(I)
$$q = p$$
 (prime) B-Gamburd (based on work of Helfgott)

Theorem. Let $S_p = \{g_1, g_1^{-1}, \dots, g_k, g_k^{-1}\}$ be a symmetric generating set for $SL_2(p)$, such that

girth
$$(\mathcal{G}(SL_2(p), S_p)) > \tau \log p$$

 $(\tau > 0 \text{ independent of } p).$

Then the expansion coefficient of $\mathcal{G}(SL_2(p), S_p)$ admits a uniform lower bound $c(\tau) > 0$.

Problem. Remove the large girth assumption

(II) q squarefree B-Gamburd-Sarnak

Proof of the Conjecture for d = 2, q squarefree

$$q = \prod_j p_j$$

$$SL_2(\mathbb{Z}/q\mathbb{Z}) \simeq \prod_j SL_2(\mathbb{Z}/p_j\mathbb{Z})$$

Applications to prime sieving

Theorem. (BGS)

Let G be a finitely generated non-elementary subgroup of $SL_2(\mathbb{Z})$. Then there is a positive integer r = r(G) such that the set

$$\{g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G | abcd \text{ has at most } r \text{ prime factors} \}$$

is Zariski dense

(III)
$$q = p^n$$
 (B-Gamburd)

Proof of the Conjecture for d=2 and moduli q of the form p^n , with uniformity in p and n.

Part of the argument relates to Solovay–Kitaev algorithm

If we fix p and let $n \to \infty$, the argument may be extended to d>2

Theorem. Assume $\langle S \rangle$ Zariski dense in $SL_d(\mathbb{Z})$. Let $q = p^n$, p sufficiently large prime, and

$$\mathcal{G} = \mathcal{G}(SL_d(\mathbb{Z}/q\mathbb{Z}), \pi_q(S))$$

$$d=2$$
: $c(\mathcal{G}) > c(S) > 0$

$$d > 2$$
: $c(\mathcal{G}) > c(p, S) > 0$

$$SL_2(p^n)$$
 with p fixed, $n o \infty$ \leftrightarrow $SU(2)$

Theorem. (B-Gamburd, 06)

Let $k \geq 2$ and g_1, \ldots, g_k algebraic elements in G = SU(2)

Consider the Hecke operator

$$T: L^2(G) \to L^2(G)$$
 $Tf(x) = \sum_{j=1}^k (f(g_j x) + f(g_j^{-1} x))$

Then there is a spectral gap

$$\lambda_1(T) < 2k - \gamma$$

where $\gamma = \gamma(g_1, \dots, g_k) > 0$ may be controlled by a noncommutative diophantine property

Applications to Banach–Ruziewiez problem, quantum-computation, orientations in the Conway-Radin quaquaversal tilings, ...

Theorem. p fixed and sufficiently large

$$S = \{g_1, \dots, g_k, g_1^{-1}, \dots, g_k^{-1}\} \subset SL_d(\mathbb{Z})$$

such that

$$<\pi_p(S)>=SL_d(\mathbb{Z}/p\mathbb{Z})$$

Then

$$\mathcal{G}(SL_d(\mathbb{Z}/p^n\mathbb{Z}), \pi_{p^n}(S)) = \mathcal{G}_n$$

is expander family

INGREDIENTS

- (1) Reduction to non-existence of certain 'approximative subgroups' of $SL_d(\mathbb{Z}/q\mathbb{Z})$
 - Spectral multiplicity argument
 - Non-commutative Balog-Szemeredi-Gowers
- (2) Theory of random matrix products
- (3) Construction of large sets of commuting elements
- (4) Sum-product theorem in $\mathbb{Z}/q\mathbb{Z}$
- (5) Solovay-Kitaev type multi-scale construction

Corollary. Assume

$$S = \{g_1, \dots, g_k, g_1^{-1}, \dots, g_k^{-1}\} \subset SL_d(\mathbb{Z})$$

generates a Zariski-dense group and consider the probability measure

$$\nu = \frac{1}{|S|} \sum_{g \in S} \delta_g$$

Let $\mathfrak S$ be a nontrivial algebraic subvariety of $SL_d(\mathbb C)$. Then the convolution powers $\nu^{(\ell)}$ of ν satisfy

$$\nu^{(\ell)}(\mathfrak{S}) < e^{-c\ell} \text{ for } \ell \to \infty$$

for some $c = c(S, \mathfrak{S}) > 0$

Main Proposition

Assume $\langle supp \ \nu \rangle$ Zariski dense

$$q = p^n$$
 $(p \text{ fixed}, n \to \infty)$

For all $\gamma > 0$, there is $c = c(\nu, p, \gamma)$ such that

$$\|\nu^{(\ell)}\|_{\infty} < q^{\gamma} |SL_d(\mathbb{Z}/q\mathbb{Z})|^{-1}$$
 for $\ell > C$. $\log q$

Expansion property then follows from Sarnak-Xue trace argument using the fact that a faithful irreducible representation of $SL_d(\mathbb{Z}/q\mathbb{Z})$ has dimension at least $\sim q$.

⇒ lower bounds on eigenvalue multiplicities in regular representation

Reduction to 'Approximate groups'

Proposition. (non-commutative BSG)

Let G be a finite group, N = |G|.

Suppose $\mu \in \mathcal{P}(G)$ a symmetric probability measure on G s.t.

$$\|\mu\|_{\infty} < N^{-\gamma}$$

and

$$\|\mu\|_2 > N^{-\frac{1}{2} + \gamma}$$

with $\gamma > 0$ an arbitrary given constant. Assume further

$$\|\mu * \mu\|_2 > N^{-\varepsilon} \|\mu\|_2$$

with $0 < \varepsilon < \varepsilon(\gamma)$.

Then there is $H \subset G$ subset with the following properties

- (1) $H = H^{-1}$
- (2) $|H| < N^{1-\gamma}$
- (3) There is $X \subset G, |X| < N^{\varepsilon'}$ with $H.H \subset X.H \cap H.X$
- (4) $\mu(x_0H) > N^{-\varepsilon'}$ for some $x_0 \in G$

where $\varepsilon' \sim \varepsilon$

Random matrix products

Bougerol-Lacroix (Birkhauser 86)

Guivarch (ETDS 90)

We use the assumption that $\langle \text{supp } \nu \rangle$ is Zariski dense

Proposition 1. (simplicity of the eigenvalues)

$$\nu^{(\ell)} \left\{ g \middle|_{l}^{g \text{ diagonalizable with distinct eigenvalues } \lambda_1, \dots, \lambda_d \right\} \\ \frac{1}{\ell} \log |\lambda_j| \approx \gamma^{(j)} = \text{Lyapounov exponent} \right\}$$

$$> 1 - e^{-c\ell}$$

Proposition 2. (escaping hyperplanes)

$$\nu^{(\ell)}\{g | \operatorname{Tr} g\xi g^{-1}\eta = 0\} < e^{-c\ell}$$

whenever $\xi, \eta \neq 0$, $\operatorname{Tr} \xi = 0 = \operatorname{Tr} \eta$.

Here $c = c(\nu) > 0$.

Consequences \pmod{Q}

Proposition 1'. Let $Q \in \mathbb{Z}_+$ (large) and $\ell > \log Q$. Then

 $u^{(\ell)}\{g\in SL_d(\mathbb{Z})| \text{Res } (P_g,P_g')\equiv 0 (\text{mod }Q)\} < Q^{-c}$ with $c=c(\nu)$ and P_g the characteristic polynomial of g

Proposition 2'. Let $Q \in \mathbb{Z}_+$, $\ell > \log Q$. There is an uniform estimate

 $u^{(\ell)}\{g \in SL_d(\mathbb{Z}) | Tr \ g\xi g^{-1}\eta \equiv 0 (mod \ Q_1)\} < Q^{-c}$ whenever $\xi, \eta \in Mat_d(\mathbb{Z})$ satisfy

$$\pi_Q(\xi) \neq 0, \pi_Q(\eta) \neq 0$$

$$Tr \xi = 0 = Tr \eta$$

Here $Q_1 = Q^c, c = c(d) \in \mathbb{Z}$

$\textbf{Lifting} \qquad \text{mod } \mathbf{Q} \longrightarrow \mathbb{C}$

Use of effective Bezout theorem

Proposition. (Berenstein-Yger, Acta 91)

Let $p_1, \ldots, p_N \in \mathbb{Z}[x_1, \ldots, x_n]$ without common zeros in \mathbb{C}^n ,

$$\deg p_j \le D \quad (D \ge 3).$$

$$h(p_j) \leq h$$

Then there is an integer $\Delta \in \mathbb{Z}_+$ and polynomials $q_1, \ldots, q_N \in \mathbb{Z}[x_1, \ldots, x_n]$ such that

$$p_1q_1 + \dots + p_Nq_N = \Delta$$

and

$$\deg q_j \le n(2n+1)D^n$$

$$\log \Delta + \sum h(q_j) < C(n)[h + \log N + D \log D]$$

In the application n, D < C(d) and $h \sim \ell$

Commuting elements (Helfgott's argument)

Lemma. There are elements g_2, \ldots, g_{d^2} in $H^{(6)} \subset Mat_d(\mathbb{Z})$ and $q_0 = p^{m_0}$, $m_0 < \varepsilon n$ such that $||g_i|| < q_0$ and $\{1, g_2, \ldots, g_{d^2}\}$ are linearly independent.

Take $g_1 = 1$ and consider the map

 $\operatorname{Mat}_d(\mathbb{Z}/q\mathbb{Z}) o (\mathbb{Z}/q\mathbb{Z})^{d^2}: \ g \mapsto (\operatorname{Tr} gg_i)_{1 \leq i \leq d^2}$ which multiplicity is at most $q^{C\varepsilon}$.

Restrict map to $H.H \Rightarrow$ large set of traces

- ⇒ small conjugacy classes
- ⇒ large set of commuting elements

Lemma. There is $h \in H^{(8)}$ and $S \subset H.H$ such that

(1)
$$Res(P_h, P'_h) \neq 0$$
 $(mod p^{m_0})$

(2)
$$|S| > q^c$$

(3)
$$gh = hg \pmod{q}$$

Diagonalize $h \in SL_d(\mathbb{Z})$ considering an extension field K of \mathbb{Q} .

Let \mathcal{P} be a prime divisor of (p) in the ring of integers O of K. Then

$$h = \sum_{i=1}^{d} \mu_i \ e_i \otimes e_i \qquad \prod_{i \neq j} (\mu_i - \mu_j) \notin \mathcal{P}^{m_0}$$

In this basis, each $g \in S$ has representation

$$g = \sum \lambda_i \ e_i \otimes e_i \qquad (\operatorname{mod} \mathcal{P}^{n-m_0})$$

(we assume \mathcal{P} unramified)

(Uniform) sum-product theorem in $\mathbb{Z}/q\mathbb{Z}$

The following statements are uniform in the modulus $q \in \mathbb{Z}_+$

Theorem. Given $0 < \delta_1, \delta_2 < 1$, there are $\varepsilon > 0$ and $\delta_3 > 0$ such that the following holds

Let $q \in \mathbb{Z}_+$, large enough, and $A \subset \mathbb{Z}/q\mathbb{Z}$ satisfy

(i)
$$|A| < q^{1-\delta_1}$$

(ii) $|\pi_{q_1}(A)| > q_1^{\delta_2}$ whenever $q_1|q$ and $q_1 > q^{\varepsilon}$

Then

$$|A + A| + |A.A| > q^{\delta_3}|A|$$

$$q = \prod_{j} p_j^{m_j}$$

$$\mathbb{Z}/q\mathbb{Z} \simeq \prod_j \mathbb{Z}/p_j^{m_j}\mathbb{Z}$$

Statement for $q=p^m$, p fixed and $m\to\infty$, is a p-adic version of 'discretized ring theorem' for subsets $A\subset\mathbb{R}$

Corollary 1.

Given $\delta > 0$, there is a constant C and $r, s \in \mathbb{Z}_+$, r, s < C such that the following holds

Let $A \subset \mathbb{Z}$ and q of the form $q = p^n$ s.t.

$$|\pi_q(A)| > q^{\delta}$$

Then there are $q_1 = p^{n_1}, q_2 = p^{n_2}$ such that

(1)
$$n_1 < n_2 < Cn \text{ and } n_2 - n_1 > \frac{\delta}{4}n$$

(2) $\pi_{q_2}(A') \supset \{x \in \mathbb{Z}/q_2\mathbb{Z} | x \equiv 0 \pmod{q_1} \}$ where

$$A' = \underbrace{A^{(s)} \pm \cdots \pm A^{(s)}}_{r},$$
$$A^{(s)} = \underbrace{A \cdots A}_{s}$$

Corollary 2. (subsets of Cartesian products \mathbb{Z}^w)

Given $\delta > 0$, there is $\kappa > 0$ and $r, s \in \mathbb{Z}_+$, r, s < C such that the following holds.

Let $A \subset \mathbb{Z}^w$ and q of the form $q = p^n$. Assume

$$|\pi_q(A)| > q^{\delta}$$

Then there are $q_1 = p^{n_1}, q_2 = p^{n_2}$ and a vector $\xi \in \mathbb{Z}^w$ s.t.

- (1) $n_1 < n_2 < Cn \text{ and } n_2 n_1 > \kappa n$
- (2) $\pi_p(\xi) \neq 0$

(3)
$$\pi_{q_2}(A') \supset \left\{ q_1 t \xi \mid 0 \le t \in \mathbb{Z}, 0 \le t < \frac{q_2}{q_1} \right\}$$

where

$$A' = rA^{(s)} - rA^{(s)}$$
 in the ring \mathbb{Z}^w

Commutators and multi-scale structure

Lemma.

Let
$$g \equiv 1 \pmod{p^m}$$
 and $h \equiv 1 \pmod{p^{m'}}$

Then

$$C(g,h) \equiv 1+[g,h] \pmod{p^{m+m'+\min(m,m')}}$$

where

$$C(g,h) = ghg^{-1}h^{-1}$$
 and $[g,h] = gh - hg$

Let $q_1 < q_2 < \tilde{q}$ be relatively small divisors of $q = p^n$

Fix $\zeta \in \operatorname{Mat}_d(\mathbb{Z})$ such that

$$1 + \tilde{q}\zeta \in H^{(4)}$$
 $\pi_p(\zeta) \neq 0$ Tr $\zeta = 0$

Let $S \subset H^{(2)}$ be the diagonal set and consider elements

$$g = 1 + q_1 x \in SS^{-1}$$

where

$$x = \sum \sigma_i \, e_i \otimes e_i \qquad \left(\bmod \, \frac{q_2}{q_1} \right)$$

Then

$$C(1+\tilde{q}\zeta,g) = 1+\tilde{q}q_1 \sum_{i\neq j} (\sigma_i - \sigma_j)\zeta_{ij} e_i \otimes e_j \pmod{\tilde{q}q_2}$$

and iterating k times with $g^{(1)}, \ldots, g^{(k)} \in SS^{-1}$ as above

$$C(\cdots C(C(1+\tilde{q}\zeta,g^1),g^2)\cdots g^k) =$$

$$1 + \tilde{q}q_1^k \sum_{i \neq j} \prod_{\ell \leq k} (\sigma_i^{(\ell)} - \sigma_j^{(\ell)}) \zeta_{ij}(e_i \otimes e_j)$$

$$\pmod{\tilde{q}q_1^{k-1}q_2}$$

Let

$$w = \frac{d(d-1)}{2}$$

Consider the ring \mathbb{Z}^w and quotients

Denote

$$A = \{ (\sigma_i - \sigma_j)_{1 < i < j < d} | 1 + q_1 x \in SS^{-1} \}$$

H-Commutators \longrightarrow product set $A^{(k)}$

Also

$$(1 + \tilde{q}q_1^k z)(1 + \tilde{q}q_1^k z') = 1 + \tilde{q}q_1^k (z + z')$$
 (mod $\tilde{q}q_1^{k-1}q_2$)

H-products \longrightarrow sum sets $A^{(k)} + A^{(k)}$

Apply sum-product results in $(\mathbb{Z}/q\mathbb{Z})^w$

Conclusion. There are divisors $Q_1 < Q_2$ of q and $\xi \in Mat_d(\mathbb{Z})$ such that

(1)
$$\log Q_1 \sim \log Q_2 \sim \log \frac{Q_2}{Q_1} \sim \varepsilon_0 \log q$$

(1)
$$Tr \xi = 0$$

(3)
$$\pi_p(\xi) \neq 0$$

(4) There is a suitable product set H' of H s.t.

$$\pi_{Q_2}(\{1+Q_1t\xi\,\big|\,t\in\mathbb{Z}\})\subset\pi_{Q_2}(H')$$

Next, conjugate ξ with elements of H and use the fact that $\{g\xi g^{-1}|g\in H\}$ span full space of traceless matrices mod q_0 where

$$q_0|q$$
 and $\log q_0 < C\varepsilon \log q \ll \varepsilon_0 \log q$

Conclusion'. There are divisors $Q_1 < Q_2$ of q as above s.t.

$$\pi_{Q_2}(\{1+Q_1x|x\in Mat_d(\mathbb{Z}), Trx=0\})\subset \pi_{Q_2}(H')$$

 $| \cdot |_p = p$ -adic absolute value

We proved that if

$$|1-g|_p < \frac{1}{Q_1},$$

then there is some $h \in H'$ s.t.

$$|g - h|_p < \frac{1}{Q_2}$$

Here $\log Q_1 \sim \log Q_2 \sim \log \frac{Q_2}{Q_1} \sim \varepsilon_0 \log q$

Further amplification using Solovay-Kitaev algorithm

$$\Rightarrow |H'| > |SL_d(\mathbb{Z}/q\mathbb{Z})|^{1-\varepsilon_0} = N^{1-\varepsilon_0}$$

Contradicts assumptions on H

$$|H'| < N^{C\varepsilon}|H| < N^{1-\gamma + C\varepsilon}$$

Generation problem

$$d = 2 \text{ or } d > 2$$

 $\underline{SU(2)}$ Let S be a subset of SU(2) which allows to approximate up to ε_0 (ε_0 fixed small constant), $S=S^{-1}$.

It is true that

$$\max_{g \in SU(2)} \min_{h \in \underbrace{S \cdots S}_{\ell}} \|g - h\| < e^{-c\ell} \text{ when } \ell \to \infty?$$

True if S is algebraic.

$$\underline{\operatorname{SL}_2(\mathbb{Z}_p)}$$
 Let $S\subset SL_2(\mathbb{Z}_p), S=S^{-1}$ and $\pi_p(S)=SL_2(\mathbb{Z}/p\mathbb{Z})$

Is there a constant C (possibly independent of S) such that $\forall n$

$$\ell > Cn \Rightarrow \pi_{p^n}(\underbrace{S \cdots S}_{\ell}) = SL_2(\mathbb{Z}/p^n\mathbb{Z})?$$

True if $S \subset SL_2(\mathbb{Z})$.