Biregular expanders and the Ramanujan Conjecture

Cristina Ballantine

College of the Holy Cross

Expanders in Pure and Applied Mathematics IPAM - February 14, 2008

Dedicated to the memory of Beth Samuels

Remembering Beth

Theorem (Lubotzky, Samuels, Vishne)

Let Γ be a cocompact lattice in $G(F) = PGL_d(F)$. Then $\Gamma \backslash \mathcal{B}$ is a Ramanujan complex iff every irreducible spherical infinite-dimensional sub-representation of $L^2(\Gamma \backslash G(F))$ is tempered.

Notation

- Graph X = (V, E)
- $V = \{v_1, v_2, \dots, v_m\}$ set of vertices
- E set of edges (subsets of order 2 of V)
- Adjacency matrix of X: $A = (a_{ij})$

Expander Graphs

Definition

An (n, k, c)-expander is a k-regular graph $X_{n,k} = (V, E)$ with |V| = n and

$$\forall V' \subseteq V, |V'| \leq \frac{n}{2}: \quad |\partial(V')| \geq c|V'|$$

$$\partial(V') = \{v \in V \setminus V' \mid (v, v') \in E \text{ for some } v' \in V'\}$$

c - expansion coefficient

Good expanders - Ramanujan graphs

Proposition

$$X_{n,k}$$
 is an (n, k, c) -expander with $2c \ge 1 - \frac{|\lambda(X_{n,k})|}{k}$.

• $\lambda(X_{n,k})$ - second largest eigenvalue (in absolute value) of $X_{n,k}$.

Theorem (Alon-Boppana)

$$\liminf_{n\to\infty} |\lambda(X_{n,k})| \ge 2\sqrt{k-1}$$

Definition (Lubotzky, Phillips, Sarnak)

A (q+1)-regular graph X is called a Ramanujan graph if $|\lambda(X)| \leq 2\sqrt{q}$.

Ramanujan graphs from groups

- $G = GL_n(\mathbb{Q}_p)$
- Maximal compact subgroups of $G: \{K = GL_n(\mathbb{Z}_p)\}$
- X Bruhat-Tits building for G
- n=2: X is a (p+1)-regular tree
- n = 3: X is a $2(p^2 + p + 1)$ -regular graph
- G acts simplicially on X
- $\Gamma \setminus X$ finite graph (Γ discrete co-compact subgroup of G)

The Adjacency Operator A

- vertices of $X \leftrightarrow G/K$
- Hecke algebra: $\mathcal{H}(G,K)=\{f:G\to\mathbb{C}\mid f(kgk')=f(g)\}$ $(\phi*\psi)(g):=\int_G\phi(x)\psi(x^{-1}g)\,dx$
- \mathcal{H} generated by $T_i = \chi(K(1, \dots, 1, p, \dots, p)K)$
- \mathcal{H} acts on $L^2(G/K)$ by $(f*\phi)(x) := \int_G \phi(y)f(xy) dy$
- T_i acts on $L^2(G/K)$ as a colored adjacency operator.
- T_i's commute.

Eigenvalues of A

- $\lambda \in \operatorname{Spec}(X) \iff T_i(f) = \lambda \cdot f$
- λ (one dimensional) representation of ${\cal H}$

one dimensional representations of ${\mathcal H}$

irreducible unramified representations of G

• $\Gamma \setminus X$ Ramanujan \Leftrightarrow all irreducible unramified (unitary) representations of G appearing in $L^2(G/\Gamma)$ are tempered (RC).

Ramanujan Graphs and Generalizations

- n = 2: LPS (Jacquet-Langlands correspondence)
- n = 3: B. (Rogawski's classification of representations of U(3) & Arthur's conjectures)
- general n (function filed case): Lubotzky-Samuels-Vishne (Laforgue's work)
- Ramanujan hypergraphs: Li (Laumot-Rapoport-Stuhler)

Biregular Ramanujan Graphs

• $B_{k,l,n}$ is a (k,l)-regular bigraph (biregular, bipartite) on n vertices

Theorem (Li, Feng)

$$\liminf_{n\to\infty} |\lambda(B_{k,l,n})| \ge \sqrt{k-1} + \sqrt{l-1}$$

Definition (Hashimoto)

A $(q_1 + 1, q_2 + 1)$ -bigraph is called Ramanujan bigraph if

$$|\lambda^2 - q_1 - q_2| \le 2\sqrt{q_1q_2},$$

$$\forall \ \lambda \in Spec(X), \ \lambda^2 \neq (1+q_1)(1+q_2).$$

Bigraphs from groups

- $G = U_3(\mathbb{Q}_p)$
- $ilde{X}$ Bruhat-Tits building of G $(q_1+1,q_2+1)=(p^3+1,p+1) \ {\sf biregular}, \ {\sf bipartite} \ {\sf tree}$
- $X = \tilde{X}/\Gamma$, Γ discrete, co-compact subgroup of G
- Maximal compact subgroups of: $\{K_1\}, \{K_2\}.$
- $B = K_1 \cap K_2$

Adjacency and the Iwahori-Hecke algebra

•
$$T_1, T_2 \in End(\mathbb{Z}[E\tilde{X}])$$
: $T_i(e) := \sum_{\substack{e' \in \tilde{E}_i(e) \\ e' \neq e}} e' \quad (i = 1, 2)$

• T_1 , T_2 induce naturally endomorphisms on $M^1(X)$,

$$((T_i)^*f)(e) := \sum_{e' \in E_i(e)} f(e') - f(e) \quad (i = 1, 2).$$

Theorem (Hashimoto)

$$Z_X(u)^{-1} = \det(I - (T_1 T_2)^* u)$$

• Iwahori-Hecke algebra $\mathcal{H}=\mathcal{H}(G,B)\cong \mathbb{C}[T_1,T_2]/\langle T_i^2=(q_i-1)T_i+q_i,\ i=1,2
angle$

Hashimoto's results

- Finite dim'l irreducible representations φ of \mathcal{H} have dimension 1 or 2 and they are determined by the characteristic polynomial p_{φ} of $\varphi(T_1T_2)$.
- Degree two irreducible representations are parameterized by $c \in \mathbb{C}$, $c \neq 0$, $c \neq (q_1 + 1)(q_2 + 1)$.

$$p_{\varphi}(u) = 1 - (c - q_1 - q_2)u + q_1q_2u^2.$$

• $c \in Spec(X)$

 $\varphi \leftrightarrow \pi$ sherical unitary irreducible representation of G appearing in $L^2(G/\Gamma)$

Iwahori-Hecke Algebra

• (Bernstein-Lusztig presentation) $\mathcal{H}=\mathcal{H}_W\otimes\mathcal{A}$ $\mathcal{H}_W=\mathbb{C}[T]/\langle T^2=(z^{2\lambda}-1)T+z^{2\lambda}\rangle,\,\mathcal{A}=\mathbb{C}[\theta]$ commutation relation:

$$heta T - T heta^{-1} = (z^{2\lambda} - 1) heta + (z^{\lambda + \lambda^*} - z^{\lambda - \lambda^*})$$
(for $SU_3(\mathbb{Q}_p), \quad z = \sqrt{p}, \quad \lambda = 3, \quad \lambda^* = 1$)

Iwahori ← Berenstein-Lusztig

$$T = T_1$$
, $\theta = \frac{1}{\sqrt{q_1 q_2}} T_1 T_2$, $z^{2\lambda} = q_1$ and $z^{2\lambda^*} = q_2$

Tempered representations

•
$$Tr(\Theta) = \frac{1}{\sqrt{q_1 q_2}} Tr(T_1 T_2) = \frac{c - q_1 - q_2}{\sqrt{q_1 q_2}}$$
.

Ramanujan condition
$$|c-q_1-q_2|\leq 2\sqrt{q_1q_2}$$

$$\downarrow \\ |\mathit{Tr}(\Theta)|\leq 2 \text{ (i.e., }\Theta \text{ is tempered)}$$

- θ acts by a scalar z^{ν} , $\nu \in \mathbb{C}$.
- The eigenvalues of θ are z^{ν} and $z^{-\nu}$.

Ramanujan bigraphs

Theorem (Rogawski)

If G is a compact inner form of U(3) arising from a division algebra with an involution of the second kind, there are no non-tempered representations (the Ramanujan-Petersen conjecture is satisfied).

 Open problem (Arthur): If the group does not satisfy the Ramanujan conjecture, there are very few non-tempered representations. Thus there are very few exceptional eigenvalues. What is their combinatorial meaning?